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Abstract

Recent literature on panel data emphasizes the importance of accounting for time-varying
unobservable individual effects, which may stem from either omitted individual character-
istics or macro-level shocks that affect each individual unit differently. In this paper, we
propose a simple specification test of the null hypothesis that the individual effects are time-
invariant against the alternative that they are time-varying. Our test is an application of
Hausman (1978) testing procedure and can be used for any generalized linear model for
panel data that admits a sufficient statistic for the individual effect. This is a wide class of
models which includes the Gaussian linear model and a variety of nonlinear models typically
employed for discrete or categorical outcomes. The basic idea of the test is to compare esti-
mators defined as the maximand of full and pairwise conditional likelihood functions. Our
approach does not require assumptions on the distribution of unobserved heterogeneity, nor
it requires the latter to be independent of the regressors in the model. We investigate the
finite sample properties of the test through a set of Monte Carlo experiments. Our results
show that the test performs well, with small size distortions and good power properties. A
health economics example based on data from the Health and Retirement Study is used to
illustrate the proposed test.

Keywords: Generalized linear models; Longitudinal data; Fixed-effects; Hausman-type
tests; Self-reported health; Health and Retirement Study.

JEL: C12, C33, C35.

∗We thank Bill Greene, Pravin Trivedi, the Editor, an Associated Editor and two anonymous referees for their
constructive suggestions. We also thank participants at the 2012 Annual Health Econometrics Workshop and
the 2013 Italian Congress of Econometrics and Empirical Economics, and seminar participants at the University
of Padua (Department of Statistical Sciences) and the Max Planck Institute of Economics for useful comments.
We are grateful to Florian Heiss for allowing us to use his arldv Stata package. Corresponding author: Franco
Peracchi, Department of Economics and Finance, University of Rome Tor Vergata, via Columbia 2, 00133 Rome,
Italy. E-mail: franco.peracchi@uniroma2.it.

Post-print version of the paper published in the Journal of Econometrics;
https://doi.org/10.1016/j.jeconom.2014.09.002



1 Introduction

A distinctive feature of panel data modeling is the treatment of unobserved heterogeneity, which

is typically interpreted as the effect of unobservable factors on the outcome of interest. The

simplest way of dealing with this form of heterogeneity is to include in the model time-invariant

unobservable individual (i.e., unit-specific) effects. Assuming that these effects are constant over

time, however, may be difficult to justify in certain applications. For example, Stowasser et al.

(2011) convincingly argue that the dynamic pattern of self-reported health status can be better

modeled by introducing a latent time-varying individual-specific health component. Clearly,

biased parameter estimates may result if the individual effects are assumed to be time-invariant

when in fact they are not. This is especially true in the case of long panels.

A few studies have recently tried to relax the assumption of time-invariant individual effects

by modeling unobserved heterogeneity as a unit-specific time-series process. One strategy is

to include time-varying random effects, treated as continuous or discrete and assumed to be

independent of the regressors. This startegy may be adopted for both the linear and the nonlinear

case. For example, Heiss (2008) proposes a limited dependent variable model that relies on a

sequence of time-varying effects which are assumed to follow a first-order autoregressive process

with parameters that are common across sample units, while Bartolucci and Farcomeni (2009)

present a multivariate extension of the dynamic logit model based on time-varying individual

effects which are assumed to follow a time-homogeneous Markov chain for every sample unit.

These approaches have both pros and cons. Although the specification in Heiss (2008) is

parsimonious (it uses only one additional parameter with respect to a standard random-effects

model) and more easily justifiable (continuous random effects are perhaps more natural to con-

ceive in many applications), the discrete approach adopted by Bartolucci and Farcomeni (2009)

results in a model that is more flexible and tends to fit the data better; see Bartolucci et al.

(2011) for more detailed comments. On the other hand, both approaches are computationally

demanding. Further, the first approach requires strong parametric assumptions on the distribu-

tion of the random effects. Therefore, practitioners may find it useful to carry out a preliminary

test for the presence of time-invariant unobserved heterogeneity before estimating this type of

models.

In this paper, we propose a simple test for the null hypothesis of time-invariant individual
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effects in generalized linear models (GLMs) for panel data. This class of models is quite broad

and includes the Gaussian linear model and a variety of nonlinear models typically employed for

discrete or categorical outcomes, such as logit, probit, Poisson and negative binomial regression

models. The basic idea of the test is to compare alternative estimators obtained by maximizing

full and pairwise conditional likelihood functions. Since our test is a pure specification test1

based on the comparison of two alternative estimators of the same parameter vector, we refer to

it as a Hausman-like test. Unlike the standard version of the Hausman test (Hausman, 1978),

however, we compare estimators that are both inconsistent under the alternative. In fact, as

pointed out by Ruud (1984), what matters for a specification test to have power is that it is

based on estimators that diverge under the alternative (that is, their difference converges in

probability to a nonzero limit), and that the sampling variance of their difference is sufficiently

small. We show that, since our alternative estimators depend on different functions of the

data, they generally converge in probability to different points in the parameter space when the

individual effects are time-varying. Thus, our test has power against a variety of alternatives

resulting in time-varying individual effects, such as omitted time-varying regressors, failure of

functional form assumptions, and general misspecification of the systematic part of the model.

Clearly, when the inconsistency of both estimators is the same, as in the case of a panel with

only two waves, our test has no power.2

It is worth emphasizing three features of our test. First, it does not require assumptions

on the distribution of unobserved heterogeneity, nor it requires the latter to be independent

of the regressors in the model. Second, it can be easily implemented using standard statistical

software, as the test statistic is a simple quadratic form involving the difference of the parameter

estimates and consistent estimates of their asymptotic variances and covariance.3 Third, it does

not require assumption on how time-invariant regressors enter the model, as the conditional

likelihood function does not depend on them.

The remainder of this paper is organized as follows. Section 2 introduces our test in the case

of a linear panel data model. Section 2.2 analyzes its power properties in this simpler setting.
1 A pure specification test is a testing procedure in which no structure is placed on the alternative hypothesis;

see Cox and Hinkley (1974) and Ruud (1984) for a detailed discussion.
2 See Holly (1982) and Newey (1985) for a detailed discussion of the conditions under which a specification

test is inconsistent.
3The proposed specification test has been implemented in a series of R and Stata functions which are available

from the corresponding author upon request.
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Section 3 presents the statistical framework and the proposed test. Section 4 investigates the

small sample properties of the proposed test through a set of Monte Carlo experiments. Section 5

provides an empirical illustration based on data from the Health and Retirement Study. Finally,

Section 6 offers some conclusions.

2 The test in the case of linear panel data models

Consider a balanced panel where n units, drawn at random from a given population, are observed

for exactly T periods. For each sample unit i = 1, . . . , n, we denote by yi = (yi1, . . . , yiT )′ the

vector of observations on the outcome of interest and by Xi the matrix of observations on k

time-varying regressors. The tth row of Xi is denoted by xit = (xit1, . . . , xitk)′.

Under the null hypothesis of time-invariant unobserved heterogeneity, our model for the data

is the standard linear panel data model

yit = αi + β′xit + εit, i = 1, . . . , n, t = 1, . . . , T, (1)

where αi is a time-invariant unobservable individual effect and the error vector εi = (εi1, . . . , εiT )′

is assumed to be mean independent of Xi. At this stage, no other assumption is made on the εit,

so they may be heteroskedastic or serially correlated for a given i. Under our set of assumptions,

a consistent estimator of β is the fixed-effects (FE) estimator

β̂1 =
(

n∑
i=1
X̃
′
iX̃i

)−1 n∑
i=1
X̃
′
iỹi,

with X̃i = LXi and ỹi = Lyi, where L is the T × T symmetric idempotent matrix that trans-

forms a vector into deviations from the time average of its elements. An alternative consistent

estimator of β is the first-difference (FD) estimator

β̂2 =
(

n∑
i=1

∆X ′i∆Xi

)−1 n∑
i=1

∆X ′i∆yi,

where ∆Xi = PXi, ∆yi = Pyi and P is the (T − 1) × T matrix that transforms a vector

into first differences. Both estimators may be regarded as OLS estimators based on different

transformations of the original data. Since we allow the εit to be heteroskedastic or serially

correlated, neither estimator is efficient under the null hypothesis,4 although both are consistent.
4 The FE estimator is more efficient when the errors in (1) are homoskedastic and serially uncorrelated, while

the FD estimator is more efficient when they follow a random walk.
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2.1 The test statistic

To test the null hypothesis of time-invariant unobserved heterogeneity we propose a Hausman-

type test based on the difference δ̂ = β̂1− β̂2 between the FE and the FD estimators. In fact, a

comparison of the FE and FD estimators via a Hausman test is mentioned by Wooldridge (2010,

p. 325) as a way to formally detect violations of strict exogeneity,5 although he does not study

in detail the power properties of the test and its possible generalization to nonlinear models.

Under the null hypothesis of time-invariant unobserved heterogeneity,

√
n

(
β̂1 − β0
β̂2 − β0

)
d→ N

((
0
0

)
,

[
V 1 C12
C ′12 V 2

])
.

This implies that the asymptotic null distribution of
√
nδ̂ =

√
n(β̂1− β̂2) is Gaussian with mean

zero and variance V 0 = V 1 + V 2 −C12 −C ′12. A consistent estimator of V 1 is

V̂ 1 =
(

1
n

n∑
i=1
X̃
′
iX̃i

)−1( 1
n

n∑
i=1
X̃
′
iε̂i1ε̂

′
i1X̃i

)(
1
n

n∑
i=1
X̃
′
iX̃i

)−1

, (2)

with ε̂i1 = ỹi − X̃iβ̂1, a consistent estimator of V 2 has the same form as V 1 with X̃i replaced

by ∆Xi and ε̂i1 replaced by ε̂i2 = ∆yi −∆Xiβ̂2, while a consistent estimator of C12 is

Ĉ12 =
(

1
n

n∑
i=1
X̃
′
iX̃i

)−1( 1
n

n∑
i=1
X̃
′
iε̂i1ε̂

′
i2∆Xi

)(
1
n

n∑
i=1

∆X ′i∆Xi

)−1

.

Therefore, our test statistic is

ξ̂ = n δ̂
′
V̂
−
0 δ̂, (3)

where V̂ 0 = V̂ 1 + V̂ 2− Ĉ12− Ĉ
′
12 is a consistent estimate of V 0 and V̂ −0 denotes a generalized

inverse of V̂ 0.6 By construction, V̂ 0 is guaranteed to be non-negative definite. The asymptotic

null distribution of ξ̂ as n → ∞ is χ2 with number of degrees of freedom equal to the rank of

V 0 which, in the “regular case” when V 0 is positive definite, is just equal to the number k of

time-varying regressors. We can therefore test the null hypothesis in the usual way and compute

an asymptotic p-value measuring the strength of the evidence provided by the data against this

hypothesis. Notice that our test is valid even when the errors in (1) are heteroskedastic or

serially correlated.
5 It follows that our test has power against a broad class of alternatives resulting in endogeneity, such as time-

varying individual effects, omitted time-varying regressors, failure of functional form assumptions and general
misspecification of the systematic part of the model.

6 Generalized inverses are not unique, but Holly and Monfort (1986) shows that test statistics of the form (3)
are invariant to the choice of generalized inverse.
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2.2 Power of the test

For our test to have power, the FE and FD estimators must converge in probability to different

points in the parameter space under the alternative. Since the two estimators are exactly the

same when either T = 2 or xit = xt for all i, our test has power only when T ≥ 3 and some

of the regressors vary over both i and t. Further, since the two estimators are both consistent

when unobserved heterogeneity is uncorrelated with the time-varying regressors, our test has

power only when unobserved heterogeneity is correlated with the time-varying regressors.

In this section we study the inconsistency of the FE and FD estimators when unobserved

heterogeneity is time-varying in order to draw conclusions about the power of the proposed test.

For simplicity, we focus on the case of a single observed regressor xit, so yit = αit + βxit + εit,

and we assume that

xit = φαit + (1− φ2)1/2zit, (4)

where the εit and the zit are independently and identically distributed (i.i.d.), independently of

the αit, with zero mean and unit variance. Thus, xit has zero mean and unit variance, and its

correlation with αit is equal to φ. When φ = 0, xit and αit are uncorrelated.

Denoting by uit = αit+εit the composite error term in model (1) and letting xi = (xi1, . . . , xiT )′

and ui = (ui1, . . . , uiT )′, the FE and the FD estimators may be expressed as

β̂1 = β +
∑n
i=1 x̃

′
iũi∑n

i=1 x̃
′
ix̃i

, β̂2 = β +
∑n
i=1 ∆x′i∆ui∑n
i=1 ∆x′i∆xi

,

where x̃i = Lxi, ∆xi = Pxi, with ũi and ∆ui defined accordingly. As n→∞, we have that

plim β̂1 − β = E x̃′iũi
E x̃′ix̃i

, plim β̂2 − β = E ∆x′i∆ui
E ∆x′i∆xi

,

and plim(β̂1−β̂2) may be obtained as difference between the previous two expressions. Moreover,

E x̃′iũi = φτ̃ ,

E x̃′ix̃i = φ2τ̃ + (1− φ2)(T − 1),

E ∆x′i∆ui = φ∆τ,

E ∆x′i∆xi = φ2∆τ + 2(1− φ2)(T − 1),

where τ̃ =
∑T
t=1 E(αit− ᾱit)2, ∆τ =

∑T
t=2 E(αit−αi,t−1)2, and we use the fact that

∑T
t=1 E(zit−

z̄it)2 = T − 1 and
∑T
t=2 E(zit − zi,t−1)2 = 2(T − 1) because the zit are i.i.d. with unit variance.
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Thus,

plim β̂1 − β = φτ̃

φ2τ̃ + (1− φ2)(T − 1) (5)

and

plim β̂2 − β = φ∆τ
φ2∆τ + 2(1− φ2)(T − 1) . (6)

This shows that our test has no power when φ = 0, because in this case both estimators are

consistent, nor when φ = ±1, because in this case both converge to β ± 1. Notice that if

αit − αi,t−1 is stationary then ∆τ is proportional to T − 1, which in turn implies that the

inconsistency of the FD estimator does not depend on T .7

To get sharper results we need to be more specific about the time-series properties of the

individual effects. We first consider the case of individual effects that are independent across

sample units and follow a stationary AR(1) process parameterized as

αit =
{
vi1, t = 1,
ραit−1 + (1− ρ2)1/2vit, t = 2, . . . , T, (7)

where the vit are i.i.d. with zero mean and unit variance, independently of the εit and the zit.

Notice that ρ = 1 here represents the case where the individual effects are time-invariant, while

ρ = 0 represent the case where they follow a white-noise. Appendix A.1 shows that, under (7),

τ̃ = T − 1− 2
∑T−1
t=1 [1− (t/T )]ρt and ∆τ = 2(T − 1)(1− ρ). If ρ = 1 then τ̃ = ∆τ = 0, whereas

if ρ = 0 then τ̃ = T − 1 and ∆τ = 2(T − 1). Thus, β̂1 converges in probability to β if ρ = 1 and

to β+φ if ρ = 0. In all other cases, the inconsistency of β̂1 increases with T . As for β̂2, we have

plim β̂2 − β = φ
1− ρ

1− ρφ2 , (8)

which does not depend on T . Since β̂2 also converges in probability to β if ρ = 1 and to β + φ

if ρ = 0, our test has no power in these two cases. On the other hand, the fact that β̂1 and β̂2

behave very differently as functions of T when T ≥ 3 is the source of the increasing power of

our test as T increases. Figure 1 shows the relationship between plim(β̂1− β̂2) and ρ for φ = .50

and different values of T (T = 3, 5, 10). It is interesting to note that this relationship is inversely

U -shaped, with evidence of an asymmetric behavior for low and high values of ρ.

In Appendix A.1 we also consider the case when αit follows a pure random walk

αit =
{
vi1, t = 1,
αit−1 + vit, t = 2, . . . , T,

7 A similar result was noted by Wooldridge (2010, pp. 322–323) for the case when xit is weakly dependent and
∆xit∆uit is stationary.
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where the vit are i.i.d., independently of εit and zit. In this case τ̃ = (T 2−1)/6 and ∆τ = T −1,

so our test has power approaching 1 as n→∞ for any T .

Finally, “interactive fixed-effects” case considered by Bai (2009), αit = λift with

ft =
{
v1, t = 1,
ρft−1 + (1− ρ)1/2vt, t = 2, . . . , T,

where |ρ| < 1 and the λi and the vt are i.i.d., independently of the εit and the zit.8 The main

difference with respect to the AR(1) case is that ft is common to all units. How this “macro”

factor impacts on the ith micro-unit depends on the value of λi. Appendix A.2 shows that, as

n→∞ and T →∞, plim β̂1− β = φ while plim β̂2− β is exactly the same as (8). We conclude

that our test has no power when ρ = 0, that is, when the ft are independent over time.

3 Generalization to nonlinear panel data models

The testing approach illustrated in Section 2 may be generalized to nonlinear panel data models

based on a GLM formulation. In this case, we compare two estimators of the model parameters

based on two different formulations of the conditional maximum likelihood (CML) method.

The first is the standard CML estimator which, under the assumption that the unobservable

individual effects are time-invariant, conditions on a sufficient statistic for αi, such as the sum

y+
i of the outcomes observed for the ith unit over the T periods. The second is a pairwise

version of the CML estimator based on pairs of consecutive outcomes, which conditions on their

sum over the two periods. The basis for this extension is the fact that, under the additional

assumption of Gaussian errors in (1), these two CML estimators respectively coincide with the

FE and the FD estimators in Section 2.

3.1 Likelihood-based justification

Under the additional assumption that the errors in model (1) are Gaussian and serially uncor-

related with constant variance σ2
ε , the joint density of yi (conditional on Xi) is

f(yi|Xi) =
(

1√
2πσ2

ε

)T
exp

[
− 1

2σ2
ε

T∑
t=1

(yit − αi − β′xit)2
]
,

8 For ease of exposition, we discuss the case where αit has a factor structure with only one factor but results
can be easily extended to the case of more than one factor.
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whereas the density of y+
i =

∑T
t=1 yit is

f(y+
i |Xi) = 1√

2πTσ2
ε

exp

− 1
2Tσ2

ε

(
y+
i − Tαi −

T∑
t=1
β′xit

)2 .
Thus, the density of yi conditional on y+

i (and Xi) is equal to

f(yi|Xi, y
+
i ) =

√
2πTσ2

ε

(
√

2πσ2
ε )T

exp
[
− 1

2σ2
ε

T∑
t=1

(ỹit − β̃
′
xit)2

]
, (9)

and depends only on β, not on αi. The corresponding conditional log-likelihood is equal to

L1(β) =
∑n
i=1 L1i(β), where L1i(β) is proportional to −

∑T
t=1(ỹit − β̃

′
xit)2. Maximizing L1(β)

gives the Full Conditional Maximum Likelihood (FCML) estimator, which coincides with the

FE estimator β̂1. If we allow the errors in (1) to be heteroskedasticity, serially correlated

or Gaussian, then the FCML estimator is still consistent and asymptotically normal, but its

asymptotic variance has the “sandwich form” and may be estimated consistently by V̂ 1 =

Ĥ
−1
1 Ŝ11Ĥ

−1
1 , where the matrix Ĥ1 = n−1∑n

i=1 X̃
′
iX̃i is equal to minus the Hessian of the

log-likelihood L1(β) and the matrix Ŝ11 = n−1∑n
i=1 X̃

′
iε̂i1ε̂

′
i1X̃i is equal to the outer product

of the likelihood score ∂L1(β)/∂β evaluated at β̂1.

On the other hand, putting T = 2 in (9), we have

f(yi,t−1, yit|xi,t−1,xit, yi,t−1 + yit) = 1√
πσ2

ε

exp

− 1
2σ2

ε

t∑
h=t−1

(ỹiht − β′x̃iht)2

 ,
where ỹiht = yih−.5(yit+yi,t−1) and x̃iht = xih−.5(xit+xi,t−1), for h = t−1, t. The correspond-

ing pairwise conditional log-likelihood is L2(β) =
∑n
i=1 L2i(β), where L2i(β) is proportional to

−
∑T
t=2(∆yit−β′∆xit)2. Maximizing L2(β) gives the Pairwise Conditional Maximum Likelihood

(PCML) estimator β̂2, which is equivalent to the FD estimator. If we allow the errors in (1) to

be heteroskedasticity, serially correlated or Gaussian, then the PCML estimator is still consistent

and asymptotically normal, but its asymptotic variance has the “sandwich form” and may be esti-

mated consistently by V̂ 2 = Ĥ
−1
2 Ŝ22Ĥ

−1
2 , where the matrix Ĥ2 = n−1∑n

i=1 ∆X ′i∆Xi is equal

to minus the Hessian of the log-likelihood L2(β) and the matrix Ŝ22 = n−1∑n
i=1 ∆X ′iε̂i2ε̂′i2∆Xi

is equal to the outer product of the likelihood score ∂L2(β)/∂β evaluated at β̂2.

The Hausman-like test statistic based on the difference between these two estimators has

the same form as the statistic in (3). If β̂1 is asymptotically efficient we may use as weighting
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matrix a generalized inverse of V̂ 0 = V̂ 2 − V̂ 1, otherwise we can use a generalized inverse of

V̂ 0 = DkŴ 0D
′
k, where Dk = [Ik − Ik] and

Ŵ 0 =
[
Ŵ 11 Ŵ 12

Ŵ
′
12 Ŵ 22

]
=
[
Ĥ1 O

O Ĥ2

]−1 [
Ŝ11 Ŝ12

Ŝ
′
12 Ŝ22

] [
Ĥ1 O

O Ĥ2

]−1

, (10)

with Ŝ12 = n−1∑n
i=1 X̃

′
iε̂i1ε̂

′
i2∆Xi. The expression for V̂ 0 reported above coincides with that

proposed in Section 2 but, as will be clear in the following, is of more general validity.

3.2 Generalized linear models

Under the null hypothesis of time-invariant unobserved heterogeneity, our model is of GLM type

(McCullagh and Nelder, 1989). In this formulation, the conditional distribution of yit given Xi

is assumed to belong to the linear exponential family with density function of the form

f(yit|Xi) = f(yit|xit) = exp
[
yitηit − b(ηit)

γ
+ c(yit, γ)

]
, (11)

where ηit is a parameter that varies both across sample units and over time depending on the

regressors and the time-invariant individual effect, γ > 0 is a dispersion parameter treated here

as known, b(·) is a known, strictly convex and twice differentiable function, and c(·, γ) is a known

function. An important property of GLMs is that the conditional mean and variance of yit given

Xi and αi are respectively equal to µit = b′(ηit) and σ2
it = γ b′′(ηit). We further assume that

µit = h(αi + β′xit), where h(·) is the inverse link function.

To ensure the existence of a conditional likelihood, we restrict the inverse link function to

be canonical, that is h(·) = b′(·), in which case ηit = αi + β′xit. For example, h(·) is the

logit transformation for the binomial regression model, the log transformation for the Poisson

regression model, and the identity function for the Gaussian linear model. The existence of the

conditional likelihood depends on the structure of the model and is not guaranteed in general.

If the inverse link function is canonical and the yit are independent conditional on Xi, then

the logarithm of the joint density of yi is equal to

ln f(yi |Xi) = αiy
+
i + β′

T∑
t=1
xityit −

T∑
t=1

b(αi + β′xit) +
T∑
i=1

c(yit).

This log-density is the sum of two terms: the first is αiy+
i −

∑T
t=1 b(αi+β′xit), which depends only

on y+
i =

∑T
t=1 yit and on αi (and also on β and Xi), the second is β′

∑T
t=1 xityit +

∑T
i=1 c(yit),

9



which does not depend on y+
i and αi. We conclude that y+

i is sufficient for αi, so the density

f(yi |Xi, y
+
i ) of yi conditional on y+

i (and Xi) depends only on β, not on αi; see Chamberlain

(1980), Diggle et al. (2002), and Sartori and Severini (2004). Notice that, along with αi, the

conditional likelihood approach also eliminates any time-invariant regressor originally included

in the model. The resulting FCML estimator of β, again denoted by β̂1, maximizes the full

conditional log-likelihood

L1(β) =
n∑
i=1

L1i(β),

where L1i(β) is equal (up to an additive constant) to the logarithm of f(yi |Xi, y
+
i ).

The PCML estimator, denoted again by β̂2, is instead obtained by maximizing the pairwise

conditional log-likelihood function

L2(β) =
n∑
i=1

L2i(β)

where L2i(β) is equal (up to an additive constant) to the logarithm of f(yi,t−1, yit|xi,t−1,xit, yi,t−1+

yit), the density of an adjacent pair of outcomes conditional on the sufficient statistic yi,t−1 + yit

for αi. When the inverse link is canonical, this conditional density again depends only on β, not

on αi. If T = 2, then L1(β) = L2(β) so β̂1 and β̂2 coincide.

Under the null hypothesis of time-invariant individual effects, β̂1 and β̂2 are both consistent

for the true value β0 of β provided that the assumed conditional mean µit = h(αi + β′xit) is

correctly specified (Gourieroux et al., 1984). This allows the yit to be dependent or “clustered”

conditional on Xi. It also allows for over- or under-dispersion (for example, the conditional

variance of yit in a count-data model may be greater than µit). In all these cases, β̂1 and β̂2 are

asymptotically normal but their asymptotic variance has the “sandwich form”. Further,

√
n

(
β̂1 − β0
β̂2 − β0

)
d→ N (0, W 0) ,

where W 0 has exactly the same form as (10) and its elements may be consistently estimated by

Ŵ 11 = Ĥ
−1
1 Ŝ11Ĥ

−1
1 , Ŵ 22 = Ĥ

−1
2 Ŝ22Ĥ

−1
2 and Ŵ 12 = Ĥ

−1
1 Ŝ12Ĥ

−1
2 , with

Ĥp = − 1
n

n∑
i=1

∂2Lpi(β̂p)
∂β ∂β′

, p = 1, 2,

and

Ŝpq = 1
n

n∑
i=1

∂Lpi(β̂p)
∂β

∂Lqi(β̂q)
∂β′

, p, q = 1, 2.
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Under the alternative hypothesis of time-varying individual effects, neither estimator is gen-

erally consistent for β. Further, being based on different functions of the data when T > 2, β̂1

and β̂2 will generally converge to different points in the parameter space. In fact, as pointed out

by Varin et al. (2011) and Xu and Reid (2012), β̂2 is more robust to violations of the assumption

of time-invariant unobserved heterogeneity than β̂1, as it only requires this assumption to be

satisfied for the two-dimensional conditional likelihood quantities.

The above results suggest a test that rejects the null hypothesis of time-invariant unobserved

heterogeneity for large values of the statistic ξ̂ defined in (3), namely a quadratic form in the

difference δ̂ = β̂1 − β̂2 with weighting matrix V̂ 0 = DkŴ 0D
′
k, where the elements of W 0

have been defined above in terms of the matrices Ĥp, p = 1, 2, and Ŝpq, p, q = 1, 2. As for the

linear case, V̂ 0 is guaranteed to be non-negative definite, and the resulting Hausman-like test

is valid even when the outcomes observed for the ith unit are “clustered” or exhibit over- or

under-dispersion (Cameron and Trivedi, 2005). If, as it may happen, the asymptotic variance

matrix V 0 is singular, then the asymptotic null distribution of the test statistic is χ2 with a

number of degrees of freedom equal to the rank of V 0.

To illustrate our results, in the remainder of this section we provide more details for some

commonly used panel data GLMs in which the dispersion parameter is known, namely the binary

logit model, the ordered logit model and the Poisson regression model. We refer the reader to

Hausman et al. (1984) and Wooldridge (2010) for a detailed discussion of CML estimation of

other GLMs, such as the exponential and gamma models for continuos nonnegative outcomes

and the negative binomial (type I) model for discrete outcomes.

3.3 Examples

In the binary logit case, yit can take only two values, 0 or 1. The full conditional log-likelihood

L1(β) is based on

f(yi|Xi, y
+
i ) =

∏T
t=1 exp(β′xityit)∑

di∈Di+

∏T
t=1 exp(β′xitdit)

, (12)

where Di+ consists of all T -dimensional vectors di = (di1, . . . , diT ) whose elements dit are equal

to 0 or 1 and add up to y+
i = 1, . . . , T − 1. The pairwise conditional log-likelihood L2(β) is

instead based on

f(yi,t−1, yit|xi,t−1,xit, yi,t−1 + yit = 1) = exp(β′xi,t−1yi,t−1 + β′xityit)
exp(β′xi,t−1di,t−1 + β′xitdit)

, (13)

11



where di,t−1 and dit are equal to 0 or 1 and add up to 1.

In the ordered logit case, yit can take any integer value from 0 to J − 1. Let y(j)
it denote

the binary indicator obtained by dichotomizing the ordinal outcome yit at value j, that is,

y
(j)
it = 1{yit > j − 1}, j = 1, . . . , J . Under the assumption that the unknown parameter vector

is the same for all y(j)
it , Baetschmann et al. (2011) show that the FCML estimator maximizes

L1(β) =
n∑
i=1

J−1∑
j=1

ln f(y(j)
i |Xi, y

(j)
i+ ),

where f(y(j)
i |Xi, αi, y

(j)
i+ ) has the same form as (12) with y

(j)
i = (y(j)

i1 , . . . , y
(j)
iT )′ and y

(j)
i+ =

1, 2, . . . , T − 1. The PCML estimator maximizes instead

L2(β) =
n∑
i=1

J−1∑
j=1

T∑
t=2

ln f(y(j)
i,t−1, y

(j)
it |Xi, y

(j)
i,t−1 + y

(j)
it = 1),

where f(y(j)
i,t−1, y

(j)
it |Xi, y

(j)
i,t−1 + y

(j)
it = 1) has the same form as (13).

In the Poisson regression case, yit can take any integer value 0, 1, 2, . . .. The full conditional

log-likelihood L1(β) is based on

f(yi|Xi, y
+
i ) = (

∑T
t=1 yit)!∏T
t=1 yit!

T∏
t=1

[
exp(β′xit)∑T
t=1 exp(β′xit)

]yit

.

As pointed out by Cameron and Trivedi (2005), this conditional log-likelihood is proportional to

the concentrated log-likelihood obtained by substituting α̂i =
∑T
t=1 yit/

∑T
t=1 exp(β′xit) in the

unconditional log-likelihood. The pairwise conditional log-likelihood is instead based /on

f(yi,t−1, yit|xi,t−1,xit, yi,t−1 + yit) =

= (yi,t−1 + yit)!
yi,t−1!yit!

[
exp(β′xi,t−1)

exp(β′xi,t−1) + exp(β′xit)

]yi,t−1 [ exp(β′xit)
exp(β′xi,t−1) + exp(β′xit)

]yit

.

4 Monte Carlo evidence

We now present some Monte Carlo evidence about the size and power properties of the proposed

test for four commonly used GLMs, namely binary logit, ordered logit, Poisson regression and

the Gaussian linear model. For the Gaussian linear model we also compare our test with the

Hausman-type test proposed by Bai (2009).

12



4.1 Setup

For binary and ordered logit models, the outcome of interest is generated as yit =
∑J−1
j=1 1{y∗it >

τj}, where 1{A} is the indicator of the event A, the τj are fixed thresholds, J ≥ 2 is the number

of outcome categories, and y∗it is a continuous latent variable that obeys the linear model

y∗it = αit + βxit + εit, i = 1, . . . , n, t = 1, . . . , T, (14)

with xit a scalar regressor and the εit i.i.d. as standard logistic. We use τ1 = 0 for binary logit

(J = 2) and τj = -2, -.75, .75, 2 for ordered logit with J = 4 categories. For Poisson regression,

we define the mean as λit = exp(αit + βxit).

For all DGPs, the individual effects αit follow a stationary AR(1) process parameterized as

in (7), where the vit are i.i.d. as standard Gaussian.9 As for the autoregressive coefficient ρ, we

consider a set of eleven equally-spaced values ranging from 0 (purely random individual effects)

to 1 (time-invariant individual effects). To allow for dependence between the individual effects

and the regressor, we generate xit according to (4), where the zit are i.i.d. as standard Gaussian.

Since the FCML and the PCML estimators are both inconsistent for β under model misspec-

ification, we consider the following design. In the baseline scenario, we assume no correlation

between the individual effect and the regressor (φ = 0). We also set β = 1, implying a low

regression R2 (≈ .19) for the latent model (14).10 We consider two departures from the baseline:

(i) φ = 0 and β = 2, that is, no correlation between xit and αit but a higher latent regression

R2 (≈ .48);

(ii) φ = .50 and β = 1, that is, positive correlation between xit and αit.

For the Poisson and Gaussian regression models, the FCML and the PCML estimators are

consistent provided that the regressor and the individual effect are uncorrelated. Since our test

has no power in this case, our baseline scenario for the Poisson and the Gaussian models has

a low degree of correlation between the individual effect and the regressor (φ = .10), which

increases to φ = .50 in our second scenario. In both scenarios, we set β = 1.
9 We also ran all the described experiments assuming a discrete distribution for αit. In particular we have

used a three-state first-order homogeneous Markov chain with zero mean and unit variance. Results are similar,
so they are not reported although they are available upon request.

10 Since the individual effects have unit variance and the εit have variance equal to π2/3, if β = 1 the latent
model (14) has regression R2 equal to β2/(1 + β2 + π2/3) = .189. If β = 2, then R2 = .482.
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For each value of ρ and each scenario, we investigate the behavior of tests of asymptotic level

equal to 5 percent for two different sample size (n = 1, 000 and 4,000) and three different panel

lengths (T = 3, 5 and 10). These sample sizes and the panel lengths are selected with an eye

to the empirical illustration in Section 5. We ran a total of 11× 2× 3× 3 = 198 experiments in

the case of the logit and ordered logit models, and 11× 2× 3× 2 = 132 experiments in the case

of the Poisson and Gaussian models. The Monte Carlo size and power of our test are obtained

using 1, 000 replications of each experiment.

4.2 Results

Tables 1 and 2 present the size of our test for all models considered, along with the mean and

standard deviation (SD) of the test statistic under the different scenarios. The size distortion is

always very small and not statistically different from zero, but the test exhibits a slight tendency

to over-reject.

Results for the power of our test are presented separately for each model, in tabular form

in Tables 3–6 and graphically in Figures 2–5. As expected, our test has no power when either

ρ = 0 (no persistence) or ρ = 1 (time-invariant individual effects). Although in the Poisson and

Gaussian cases it has power only when the regressor and the individual effect are correlated,

in the logit and ordered logit cases it also has power when they are uncorrelated provided that

T > 3 and ρ is away from 0 and 1.

In line with the asymptotic behavior of the difference between the FE and the FD estimators

analyzed in Section 2.2 (see especially Figure 1), the profile of the power of our test as a function

of ρ is always inversely U -shaped, with evidence of an asymmetric behavior for low and high

values of ρ.

As for dependence on the panel length T , the power is always very low for short panels

(T = 3) but increases rapidly as T increases. Apart from marginal differences, this behavior

is common across scenarios and types of model, and is especially evident for the larger sample

size (n = 4, 000). This is again in line with the asymptotic behavior observed for the difference

between the FE and the FD estimators, and is consistent with the discussion in Varin (2008),

according to which the ML estimator based on a slightly misspecified pairwise log-likelihood

may be closer to the true parameter value than the FCML estimator. In our case, if T > 2 both

types of conditional likelihoods are misspecified when ρ is different from one, but the pairwise

14



conditional likelihood is “less misspecified” than the full conditional likelihood, the difference

between the two likelihoods increasing as T increases.

As for the role of the slope parameter β (or equivalently the regression R2) in the latent

linear model (14), the power of the test increases going from β = 1 to β = 2 in the ordered logit

case, but not in the binary logit case. This behavior reflects the fact that, unlike an ordered

outcome with more than two categories, a binary outcome is completely uninformative about

scale.

We conclude this section by briefly summarizing the main results of the comparison with

the test proposed by Bai (2009).11 Our evidence shows that Bai’s test has very small power

when the individual effects are correlated with the regressor and follow the AR(1) process in

(7), especially for ρ < .4. The reason is the fact that Bai’s interactive fixed-effects estimator is

consistent for β as both n→∞ and T →∞ when the individual effects have a factor structure,

but not when T is small or when the individual effects display a different and less restrictive

pattern of temporal dependence. In fact, our Monte Carlo results show that, when the time-

varying individual effects follow an AR(1) process, Bai’s interactive fixed-effects estimator has

a finite sample bias that is too close to that of the FE estimator for his test to have power. On

the other hand, as shown in Section A.2, our test has power in the case of a linear model with

interactive fixed effects when the common factors are persistent, but has no power when they

are independent over time. Bai’s test is instead powerful in both cases.

5 Empirical illustration

In our empirical illustration we consider the same example analyzed by Heiss (2008). The

outcome of interest is the self-rated health status (SRHS) of older Americans, recorded on a

5-point ordered scale (poor, fair, good, very good, excellent). The data are from the University

of Michigan Health and Retirement Study (HRS), a longitudinal survey of the U.S. population

aged 50 and older.

As an alternative to a conventional ordered logit model with time-invariant individual effects,

Heiss (2008) proposes a model that includes, in addition to both time-varying and time-invariant

exogenous regressors, a set of time-varying unobservable individual effects. The time-varying
11 Detailed tabulations are available upon request.
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individual effect, interpreted as an individual’s unobserved “true” health, is assumed to be

independent of the regressors and to follow an AR(1) process parameterized as in (7). Heiss

(2008) argues that such a model is much more plausible than other models in the literature, as

it is better able to capture the pattern of slowly declining autocorrelation exhibited by SRHS.12

His estimate of the autoregressive parameter ρ indicates that the individual effects are highly

persistent (ρ̂ = .9439, with an asymptotic standard error of .0128). However, he provides

no formal test of the null hypothesis that they are time-invariant, presumably because of the

technical difficulties with conventional likelihood-based tests in this case. These difficulties arise

from the fact that, since ρ lies in the closed interval [−1, 1], the hypothesis of time-invariant

individual effects (ρ = 1) is on the boundary of the parameter space, so standard asymptotic

results do not apply. On the other hand, no difficulty arises with our testing approach.

Our working sample from the HRS consists of a balanced panel of n = 4, 094 respondents

observed for all ten available waves from 1992 to 2010 (T = 10).13 Definitions and summary

statistics for all the variables considered are presented in Table 7. It is worth noting that the

cross-sectional dimension (n) and the time-series dimension (T ) of our sample exactly match

our Monte Carlo experiments.

Our test compares the FCML and the PCML estimators of an ordered logit model with

fixed effects, as described in Section 3.3. We also consider a version of the test based on FCML

and PCML estimators of a binary logit model with fixed effects, where the binary outcome is

equal to one if SRHS is good or better, and to zero otherwise. For each model we consider two

different specifications. The first (Model M1) includes as time-varying regressors only the body

mass index (BMI) and a quadratic age spline with a single knot at age 65, which historically has

been the normal retirement age in the USA. The second (Model M2) adds to Model M1 a set

of wave dummies. No constant term and no time-invariant regressor is included because, under

the CML method, they would be eliminated from the conditional log-likelihood along with the

time-invariant individual effects.

Table 8 reports the parameter estimates which are used to compute our test statistic. The

top panel shows the FCML estimates for the two different specifications of each model, while the
12 The direct competitor to the approach in Heiss (2008) would be a random-effects model with state dependence.

However, state dependence is not very convincing in this context as it implies that the simple perception of own
health affects future true health status.

13 We employ the RAND HRS Data File (Version L), a user-friendly version of the data produced by the RAND
Center for the Study of Aging.
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central panel shows the PCML estimates. The bottom panel shows the value of our test statistic

and its p-value based on an asymptotic χ2 distribution. Since the p-value is always lower than

1 percent, our test strongly rejects the hypothesis of time-invariant unobserved heterogeneity.

In line with our simulations, the test statistic is larger for the ordered logit model, especially

when time dummies are included. These results lend formal support to a modelling strategy

that allows for time-varying unobserved heterogeneity.

To complete our empirical illustration, we then estimate an AR(1) random-effects logit mod-

els similar to that considered by Heiss (2008), except for a different specification of the age effects

and the inclusion of BMI as an additional time-varying regressor. We include as time-invariant

regressors the same socio-demographic variables considered by Heiss (2008), namely indicator

for gender, race and educational attainments. Tables 9 shows the estimates obtained for both

the binary and the ordered logit models under our two model specifications.14 Our estimates

are very similar to those obtained by Heiss (2008). In particular, our estimates of ρ are always

very close to his estimate.

6 Conclusions

This paper proposes a computationally convenient Hausman-like specification test for the null

hypothesis of time-invariant unobserved heterogeneity in GLMs for panel data against the al-

ternative of time-varying unobserved heterogeneity of unspecified form. The test is based on

the comparison of alternative fixed effects estimators defined as maximand of full and pairwise

conditional likelihood functions.

The finite-sample properties of the proposed test are investigated via a set of Monte Carlo

experiments. Our results suggest that the test generally performs well, showing small size

distortions and good power properties especially when n > 1, 000 and T > 5 (common sample

sizes in economic applications).

Our test is attractive because: (i) computation of the test statistic only requires a quadratic

form which involves the difference of the parameter estimates and an estimator of its asymptotic

variance matrix, (ii) the test does not require assumptions on the distribution of the individual
14 Estimation is carried out using the arldv Stata package produced by Florian Heiss. The likelihood of this

model does not have a closed-form solution, so numerical integration is necessary. We use the sequential Gauss-
Legendre quadrature method proposed by Heiss (2008), with 50 integration points. To eliminate convergence
issues, we also dropped 37 individuals (370 observations) with BMI values greater than the 99.9th percentile.
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effects, (iii) it allows the individual effects to be correlated with the observed explanatory vari-

ables, (iv) it can be used regardless of the nature of the dependent variable, and (v) it can be

easily implemented using existing software for fixed effects panel data models.

We provide an empirical illustration using the same model for SRHS as Heiss (2008) but ex-

ploiting a longer balanced panel from the HRS. The null hypothesis of time-invariant unobserved

heterogeneity is rejected for both binary and ordered logit versions of the model, thus confirm-

ing the results in Heiss (2008) while using a procedure that is both simpler and more robust.

We conclude that a better model for this data may be based on the assumption that SRHS

depends on unobservable “true” health which follows some time-series process with declining

autocorrelations.
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Table 8: Test implementation for binary and ordered logit models.

Binary logit Ordered logit
M1 M2 M1 M2

FCML
Age-65 -.053 *** -.103 -.054 *** -.110

(.0096) (.1125) (.0067) (.0771)
(Age-65)2 .002 ** .002 .003 *** .002 **

(.0011) (.0013) (.0008) (.0009)
(Age-65)2

+ -.006 *** -.005 *** -.005 *** -.005 ***
(.0018) (.0019) (.0012) (.0013)

BMI -.011 -.011 -.018 ** -.018 **
(.0109) (.0110) (.0078) (.0079)

PCML
Age-65 -.052 *** -.217 -.058 *** -.162

(.0125) (.1463) (.0085) (.0988)
(Age-65)2 .005 *** .005 ** .004 *** .004 ***

(.0015) (.0018) (.0010) (.0012)
(Age-65)2

+ -.008 *** -.010 *** -.007 *** -.009 ***
(.0024) (.0025) (.0016) (.0017)

BMI -.021 -.025 * -.008 -.011
(.0141) (.0144) (.0101) (.0103)

Wave dummies No Yes No Yes
H0 = time-invariant individual effects

Test statistic 15.53 95.43 23.39 225.01
p-value .004 .000 .000 .000

Significance levels: * p < 10%; ** p < 5%, *** p < 1%. Standard errors in parenthesis.
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Table 9: AR(1) random-effects binary and ordered logit models.

Binary logit Ordered logit
M1 M2 M1 M2

Age-65 -.058 *** .015 -.065 *** -.001
(.0118) (.0215) (.0062) (.0138)

(Age-65)2 .003 ** .003 * .004 *** .003 ***
(.0014) (.0017) (.0007) (.0008)

(Age-65)2
+ -.008 *** -.009 *** -.007 *** -.007 ***

(.0022) (.0024) (.0012) (.0013)
Female .254 ** .326 *** .076 .143

(.1245) (.1266) (.0893) (.0901)
High school grad 2.079 *** 2.118 *** 1.457 *** 1.490 ***

(.1633) (.1648) (.1237) (.1242)
Some college 2.514 *** 2.582 *** 1.926 *** 1.980 ***

(.1876) (.1896) (.1369) (.1373)
College grad 3.788 *** 3.836 *** 2.731 *** 2.774 ***

(.2035) (.2055) (.1355) (.1356)
Non white -1.269 *** -1.264 *** -1.100 *** -1.092 ***

(.1678) (.1685) (.1270) (.1273)
BMI -.066 *** -.063 *** -.068 *** -.066 ***

(.0102) (.0103) (.0064) (.0065)
Constant 3.940 *** 4.621 ***

(.3262) (.3643)
Wave dummies No Yes No Yes
σ2 3.522 *** 3.544 *** 2.854 *** 2.864 ***

(.1001) (.1018) (.0452) (.0453)
ρ .948 *** .947 *** .950 *** .949 ***

(.0037) (.0037) (.0022) (.0022)
Log-lik -12580.92 -12533.92 -44103.21 -43974.68

Significance levels: * p < 10%; ** p < 5%, *** p < 1%. Standard errors in parenthesis.
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Figure 1: Behavior of the difference δ between the inconsistency of the FE and the FD estimators
as a function of the autocorrelation coefficient ρ in (7) for φ = .50 and different values of T .
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Figure 2: Power curves of the test for the binary logit model.

Figure 3: Power curves of the test for the ordered logit model.
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Figure 4: Power curves of the test for the Poisson regression model.

Figure 5: Power curves of the test for the Gaussian linear model.
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A Inconsistency of the FE and FD estimators

In Section A.1 we first consider the case of individual effects that are independent across sample

units and follow either a stationary AR(1) process, as in Heiss (2008), or a pure random walk.

Then, in Section A.2 we consider the case in which they are correlated across sample units, as

in Bai (2009). In the latter case, we derive asymptotic results for both n and T diverging to

infinity.

A.1 Cross-sectional independence

Suppose that the αit obey a stationary AR(1) process parameterized as (7). Under this as-

sumption, the vector αi = (αi1, . . . , αiT )′ has mean zero and variance matrix Σ, whose generic

element σrs is equal to ρ|r−s|. Therefore, the vector α̃i = Lαi has mean zero and variance

matrix equal to LΣL, and

τ̃ = trLΣL = T − 1
T

T∑
s=1

T∑
t=1

ρ|t−s| = T − 1− 2
T−1∑
t=1

(
1− t

T

)
ρt,

where tr denotes the trace operator. If ρ = 0 then τ̃ = T − 1, whereas if ρ = 1 then τ̃ = 0.

Substituting the expression for τ̃ into (5) shows that the inconsistency of β̂1 increases with T

unless either φ = 0 or ρ = 1, in which case it is equal to . On the other hand, plim β̂1 − β = φ

if ρ = 0.

The case of the FD estimator is simpler because ∆αit = αit − αi,t−1 has mean zero and

variance equal to 2(1− ρ), so ∆τ = 2(T − 1)(1− ρ), which is equal to 2(T − 1) if ρ = 0 and to

0 if ρ = 1. Substituting into (6), we obtain

plim β̂2 − β = φ(1− ρ)
φ2(1− ρ) + (1− φ2) = φ

1− ρ
1− ρφ2 .

Now suppose that the αit follow a pure random walk

αit =
{
vi1, t = 1,
αit−1 + vit, t = 2, . . . , T,

where the vit are again i.i.d., independently of εit and zit. The generic element of the matrix

Σ is now equal to σrs = min(r, s), so τ̃ = trLΣL = (T 2 − 1)/6. Substituting this expression

into (5), we find that the inconsistency of the FE estimator again increases with T unless φ = 0,

in which case it is equal to . As for the FD estimator, since now ∆αit has zero mean and unit
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variance, it follows that

plim β̂2 − β = φ(T − 1)
(T − 1)(2− φ2) = φ

2− φ2 .

A.2 Interactive fixed-effects

In the case considered by Bai (2009), αit = λift with

ft =
{
v1, t = 1,
ρft−1 + (1− ρ)1/2vt, t = 2, . . . , T,

where |ρ| < 1 and the λi and the vt are i.i.d. independently of the εit and the zit. Since

αit − ᾱit = λi(ft − f̄) and αit − αi,t−1 = λi(ft − ft−1), from the Law of Iterated Expectations

we obtain the same limits in probability as in (5) and (6), except that they are now defined for

n→∞ and T →∞. Because τ̃ /T → 1 and ∆τ/T → 2(1− ρ), we have that

plim β̂1 − β →
φ

φ2 + 1− φ2 = φ,

while plim β̂2 − β is exactly the same as (8).
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