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Abstract

A stochastic block model for dynamic network data is introduced, where directed re-
lations among a set of nodes are observed at different time occasions and the blocks are
represented by a sequence of latent variables following a Markov chain. Dyads are explicitly
modeled conditional on the states occupied by both nodes involved in the relation. With re-
spect to the approaches already available in the literature, the main focus is on reciprocity.
In this regard, three different parameterizations are proposed in which: (i) reciprocity is
allowed to depend on the blocks of the nodes in the dyad; (ii) reciprocity is assumed to
be constant across blocks; and (iii) reciprocity is ruled out. The assumption of conditional
independence between dyads (referred to different pairs of nodes and time occasions) given
the latent blocks is always retained. Given the complexity of the model, inference on its
parameters is based on a variational approach, where a lower bound of the log-likelihood
function is maximized instead of the intractable full model log-likelihood. An approximate
likelihood ratio test statistic is proposed which compares the value at convergence of this
lower bound under different model specifications. This allows us to formally test for both
the hypothesis of no reciprocity and that of constant reciprocity with respect to the latent
blocks. The proposed approach is illustrated via a simulation study based on different sce-
narios. The application to two benchmark datasets in the social network literature is also
proposed to illustrate the effectiveness of the proposal in studying reciprocity and identifying
groups of nodes having a similar social behavior.

Keywords: Dyads, EM algorithm, hidden Markov models, likelihood ratio test, variational
inference

1. Introduction

A number of social, behavioral, and biological phenomena can be naturally represented in
terms of networks. In this literature, the relation between units, that is, “actors” or “nodes”,
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is the main target of inference and statistical models for the analysis of these relations have
known a flowering interest. Most methods available in the literature are tailored to deal
with static networks, where data consist of a single snapshot observed at a given occasion;
see, among others, Goldenberg et al. (2010) and Amati et al. (2018) for a review.

Within this context, models for clustering and community discovering based on latent
variables play an important role. Among these models, it is worth mentioning latent space
models (Sarkar and Moore, 2006; Sarkar et al., 2007; Hoff, 2011; Lee and Priebe, 2011;
Durante and Dunson, 2014), which project network nodes on a reduced latent space where
relations between them are explored, and Stochastic Block Models (SBMs; Holland et al.,
1983; Snijders and Nowicki, 1997; Nowicki and Snijders, 2001; Daudin et al., 2008), which
assume that network nodes belong to one of k distinct blocks. In this latter framework,
relational variables are assumed to be independent conditional on the blocks of the nodes
involved in the relation (local independence assumption). Blocks are defined by a discrete
latent variable, with the probability of observing a connection between two nodes only
depending on the corresponding block memberships. Therefore, nodes in the same block
connect to all the others in a similar fashion and are said to be stochastically equivalent.
The identification of these blocks provides a concise description of the network.

However, in some cases, the research interest may be on the evolution of the network
over time, provided that longitudinal network data are available. In this context, standard
tools of analysis need to be extended to deal with observations repeatedly taken over time,
that is, with multiple snapshots of the network observed at different time points. Although
longitudinal data permit a deeper study of the phenomenon of interest, the dependence
between measures taken on the same sample units represents a further challenge that has
to be faced (e.g., Diggle et al., 2002).

The literature about models specifically tailored to deal with dynamic networks is rather
recent, with most proposals starting from approaches developed for static networks. In
this article, we focus on extensions of the SBM for longitudinal data. In particular, Yang
et al. (2011) developed a dynamic SBM by considering time-varying block memberships that
evolve over time according to an unobservable Markov chain. The resulting model can be
conceived as a particular type of hidden (latent) Markov model (for general references, see
Bartolucci et al., 2013; Zucchini et al., 2016) for dynamic networks. Xu and Hero (2014)
further extended the dynamic SBM of Yang et al. (2011) by considering time-varying edge
probabilities. The same model has been recently discussed by Matias and Miele (2017),
who proposed an approach to solve the lack of identifiability due to label switching between
time steps and a well-principled estimation approach. Finally, Xu (2015) proposed a model
in which the presence of a relation at a given occasion directly influences future relation
probabilities. An approach that is in between the dynamic latent space and the dynamic
SBM is the dynamic mixed-membership SBM of Xing et al. (2010) and Ho et al. (2011). In
this context, each node may have partial membership to different blocks.

Alternative proposals to the dynamic SBM are represented by the dynamic exponential
random graph model for the analysis of social networks observed in discrete time (Robins
and Pattison, 2001; Hanneke et al., 2010; Lusher et al., 2013, Chapter 10). Further references
include the stochastic actor-oriented model (Snijders, 1996, 2001, 2005; Snijders et al., 2010)
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and the relational event model (Butts, 2008; Quintane et al., 2014), which are based on a
continuous time Markov process and on a time-to-event representation, respectively.

Extending the proposal of Yang et al. (2011), we develop an SBM for dynamic networks
observed in discrete time in which the principal element of analysis is the dyad referred to
each pair of nodes, conditional on the hidden states they occupy at each occasion. Therefore,
we avoid restrictive assumptions about the dependence/independence between reciprocal re-
lations and, thus, obtain higher flexibility than that of standard dynamic SBMs. The main
assumption is that of conditional independence between the dyads, given the corresponding
latent variables representing the blocks. Note, however, that marginal dependence between
dyads is not ruled out, but is explained in a meaningful way by the latent variables. There-
fore, triangulation or similar higher-order effects are accounted for. In agreement with Vu
et al. (2013), among others, conditional independence between dyads offers at least three
advantages: (i) it implies simplification in the estimation process; (ii) it facilitates data
simulation; and (iii) it avoids the degeneracy issue which is frequently encountered when
dealing with SBMs.

To permit a deeper insight into reciprocity effects, we propose to parametrically spec-
ify every dyadic relation between nodes in the network by means of a suitably formulated
log-linear model, given the latent blocks. Therefore, we may distinguish between main and
reciprocal effects reflecting the tendency to observe asymmetric and symmetric relations,
respectively, and therefore we may obtain information on the network’s cohesion. In par-
ticular, our approach allows us to formulate three different hypotheses: (i) reciprocity may
depend on the blocks in which the nodes involved in the relation belong to; (ii) reciprocity
is constant across blocks; and (iii) reciprocity is absent.

Estimation of the proposed model represents a challenging matter as computing the
log-likelihood function would require the evaluation of a multiple summation defined over
all possible configurations of the latent variables. Clearly, this becomes quickly unfeasible
as the size of the network, and then the number of such latent variables, increases. In
the literature, two main approaches are available to derive model parameter estimates.
Markov Chain Monte Carlo (MCMC) algorithms represent a typical option in the Bayesian
framework (e.g., Yang et al., 2011), while variational approximation methods represent a
quite classical solution in the frequentist context (e.g., Yang et al., 2011; Matias and Miele,
2017). In this paper, we start from the proposal of Yang et al. (2011) and obtain parameter
estimates through a Variational Expectation-Maximization (VEM) algorithm based on the
assumption of posterior independence between dyads. Also, we propose an approximate
inferential procedure with the aim of testing for the presence of reciprocity effects in the
network. Starting from the lower bound of the likelihood function required for variational
inference, we show how an approximate Likelihood Ratio (LR) test statistic, which is simply
computed, may be used for inferential purposes on the reciprocity parameters.

Properties of the proposed inferential method, and in particular of the approximate LR
test, are investigated via simulation and through the application to two benchmark datasets
in the dynamic network literature: the Newcomb Fraternity network and the Enron dataset.
The results show the potentialities of the proposed approach. Upon request, we make
available the R implementation of the proposed estimation algorithm.
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The paper is organized as follows. Section 2 introduces the dynamic SBM according
to the initial proposal of Yang et al. (2011) and then illustrates the proposed extension
to deal with different forms of reciprocity. Section 3 entails the description of the VEM
algorithm for parameter estimation and introduces the approximate LR test for hypotheses
of reciprocity. The results of the simulation study and of the real data applications are
provided in Sections 4 and 5, respectively. The last section contains some concluding remarks
and outlines potential future developments.

2. Dynamic stochastic block models

For a network of n individuals observed at T time occasions, let Y
(t)
ij , i, j = 1, . . . , n, j 6= i,

denote a binary response variable which is equal to 1 if there exists an edge from unit i to
unit j at occasion t and is equal to 0 otherwise; y

(t)
ij is used to denote a realization of Y

(t)
ij .

Moreover, let Y (t) be the binary adjacency matrix recorded at occasion t = 1, . . . , T, which
summarizes the relations between nodes. Here, we focus on directed networks without self-
loops, so that Y (t) is not constrained to be symmetric and all the corresponding diagonal
elements are missing. Finally, we define the set of all network snapshots taken across time
as Y = {Y (1), . . . ,Y (T )}.

2.1. Current approaches

In the spirit of standard dynamic SBMs (e.g., Yang et al., 2011; Matias and Miele, 2017),
each node in the network is assumed to belong to one of k distinct blocks. These blocks
are identified by the individual- and time-specific latent variables U

(t)
i that are discrete with

support {1, . . . , k}. Moreover, dynamic SBMs assume that the vectorsU i = (U
(1)
i , . . . , U

(T )
i )′

are mutually independent and identically distributed; each of them follows a Markov chain
with initial probability vector λ, having elements λu, u = 1, . . . , k, and transition probability
matrix Π, having dimension k×k and elements πu|v. These parameters are defined as follows:

λu = p(U
(1)
i = u), u = 1, . . . , k,

πv|u = p(U
(t)
i = v | U (t−1)

i = u), u, v = 1, . . . , k, t = 2, . . . , T.

Note that the initial and the transition probabilities are assumed to be the same for all nodes,
with transition probabilities that are also time homogeneous. These assumptions are seldom
restrictive, even if generalizations may be easily obtained by parametrically specifying λu
and πu|v and by considering unit- and time-dependent covariates; see Bartolucci et al. (2013)
for a thorough discussion on the topic.

A further crucial assumption of dynamic SBMs is that of local independence: given all
latent variables U

(t)
i and U

(t)
j , the relational variables Y

(t)
ij (response variables) are condi-

tionally independent. Moreover, each of these variables follows a Bernoulli distribution with
success probability that only depends on the hidden states (or blocks) occupied by node i
and j at occasion t, that is,

Y
(t)
ij | U

(t)
i = u1, U

(t)
j = u2 ∼ Bern(φu1u2), u1, u2 = 1, . . . , k, t = 1, . . . , T,
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where φu1u2 = p(Y
(t)
ij = 1|U (t)

i = u1, U
(t)
j = u2).

Different generalizations of the above model are available in the literature. Weighted
networks may be easily accommodated by considering a different conditional distribution
for the random variables Y

(t)
ij ; affiliation structures or sparse data may be both modeled

by considering suitable mixtures with two components; time-varying parameters for the
response distribution may also be considered to improve model flexibility. See, among others,
Ambroise and Matias (2012), Xu and Hero (2014), or Matias and Miele (2017) for a detailed
description of these approaches.

In the next section, we will further extend the dynamic SBM. In particular, we partially
relax the local independence assumption and account for reciprocal effects by directly mod-
eling dyadic relations. This allows us to avoid restrictive assumptions about reciprocity,
while simplifying both data simulation and the estimation of model parameters.

2.2. Proposed dyadic formulation

Let D
(t)
ij = (Y

(t)
ij , Y

(t)
ji )′ denote the random vector corresponding to the dyad involving

nodes i and j at occasion t, with i, j = 1, . . . , n, i < j, and t = 1, . . . , T . In this context,
the dyadic relation between i and j can be null – (0, 0) –, asymmetric – {(0, 1), (1, 0)} –, or
mutual – (1, 1).

In order to model reciprocity, we assume that the dyads D
(t)
ij (rather than the single re-

sponse variables Y
(t)
ij ) are conditionally independent given all latent variables U

(t)
1 , . . . , U

(t)
n ,

relaxing in this way the local independence assumption. As already mentioned, the pro-
posed model does not rule out marginal dependence between the dyads; on the contrary,
this dependence is explained in a meaningful way by the latent variables. More precisely,
dependence between two dyads of type D

(t1)
ij and D

(t2)
ij , for two different time occasions t1

and t2, or of type D
(t)
hi , D

(t)
hj , and D

(t)
ij for three units h, i, and j at the same time occasion

is allowed and, thus, triangulation or higher order effects that are well known in the social
network literature (Holland and Leinhardt, 1976) are accounted for. Clearly, the type of
local independence that we assume here is less restrictive than the standard assumption de-
scribed in the previous section. Conditional on U

(t)
i = u1 and U

(t)
j = u2, the blocks occupied

by the nodes in a given dyad at a certain occasion t, we denote the dyad probabilities as

ψy1y2|u1u2 = p(Y
(t)
ij = y1, Y

(t)
ji = y2 | U (t)

i = u1, U
(t)
j = u2)

= p(D
(t)
ij = d | U (t)

i = u1, U
(t)
j = u2), (1)

with u1, u2 = 1, . . . , k, y1, y2 = 0, 1, and d = (y1, y2), so that d ∈ {(0, 0), (0, 1), (1, 0), (1, 1)}.
Therefore, relations between two nodes are completely described by the following 2 × 2
matrix of conditional dyad probabilities:

HH
HHHHYij

Yji 0 1

0 ψ00|u1u2 ψ01|u1u2

1 ψ10|u1u2 ψ11|u1u2

(2)
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In the following, we will denote the above matrix by Ψ(u1, u2).
As already clarified, reciprocal relations between units play a major role in this work. In

particular, we propose to parametrically specify dyad probabilities in equation (1) according
to the following log-linear model:

ψy1y2|u1u2 =
exp [αu1u2y1 + (αu1u2 + βu1u2)y2 + ρu1u2 y1y2]

M(α,β,ρ)
(3)

where M(α,β,ρ) is the normalizing constant obtained by summing the numerator for all
possible configurations of (y1, y2) and, as before, u1, u2 = 1, . . . , k, and y1, y2 = 0, 1.

To ensure identifiability, we assume that βuu = 0, for u = 1, . . . , k. Furthermore,
αu1u2 = αu2u1 + βu2u1 , βu1u2 = −βu2u1 , and ρu1u2 = ρu2u1 , for all u1 6= u2. In practice, the
parameters that must be estimated are αu1u2 and ρu1u2 for u1 6 u2 and βu1u2 for u1 < u2,
with u1, u2 = 1, . . . , k. These free parameters are collected in the vectors α, β, and ρ,
whose elements are ordered as follows: α = (α11, . . . , α1k, . . . , αkk)′, β = (β12, . . . , βk−1,k)′,
and ρ = (ρ11, . . . , ρ1k, . . . , ρkk)′.

Besides permitting a clear analysis of reciprocity, the proposed formulation improves the
interpretability of the results. In this regard, it is worth noting that parameters αu1u2 and
βu1u2 may be directly expressed in terms of logits. In fact, we have that

αu1u2 = log
ψ10|u1u2

ψ00|u1u2

= log
p(Y

(t)
ij = 1|U (t)

i = u1, U
(t)
j = u2, Y

(t)
ji = 0)

p(Y
(t)
ij = 0|U (t)

i = u1, U
(t)
j = u2, Y

(t)
ji = 0)

,

corresponding to the tendency of observing a relation from a node in block u1 to a node
in block u2 (given that such a relation is not reciprocated). As regards the second set of
parameters, we have that

βu1u2 = log
ψ01|u1u2

ψ10|u1u2

, (4)

so that positive values for βu1u2 correspond to a higher probability of observing asymmetric
relations from units in block u2 to units in block u1 than the opposite. Negative values for
βu1u2 correspond to a higher probability of asymmetric relations from units in block u1 to
units in block u2 than that from u2 to u1. Clearly, when βu1u2 = 0, no differences in terms
of non-reciprocated relations between the two blocks are present. Last, the parameter ρu1u2

in equation (3) characterizes mutual relations between nodes in the network. It corresponds
to the following log-odds ratio:

ρu1u2 = log
ψ00|u1u2ψ11|u1u2

ψ01|u1u2ψ10|u1u2

,

which is a well-known measure of association between two binary variables in the statistical
literature (e.g., Agresti, 2013, Ch. 2).

Note that the log-linear parameterization we propose is in agreement with the constraints
suggested by Nowicki and Snijders (2001) to avoid redundancy in the parameters ψy1y2|u1u2
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and requiring these probabilities to be invariant with respect to reflection:

ψ01|uu = ψ10|uu, u = 1, . . . , k,

ψ01|u1u2 = ψ10|u2u1 , u1, u2 = 1, . . . , k, u1 6= u2.

This implies that the matrix of conditional dyad probabilities Ψ(u1, u2) defined in (2) is
symmetric when u1 = u2, that is, Ψ(u, u) = Ψ(u, u)′. Under the proposed model, this holds
as a consequence of the constraints βuu = 0 and is in agreement with the interpretation of
these parameters provided in equation (4). Moreover, we have Ψ(u1, u2) = Ψ(u2, u1)

′ when
u1 6= u2 as a consequence of the constraints we assume to ensure identifiability.

Different versions of the proposed model specification are obtained by imposing con-
straints on the ρu1u2 parameters. In particular, when we consider the hypothesis

HI : ρu1u2 = 0, u1, u2 = 1, . . . , k, u1 6 u2, (5)

the model directly reduces to the standard dynamic SBM of Yang et al. (2011), based on the

local independence between responses Y
(t)
ij . In denoting this hypothesis, the suffix I stands

for independence in the sense of absence of reciprocity. In the following, we will refer to this
model as the null (or independence) model, denoted by MI . Furthermore, reciprocity effects
which do not vary with blocks may be obtained by assuming the following hypothesis:

HC : ρu1u2 = ρ, u1, u2 = 1, . . . , k, u1 6 u2, (6)

where the suffix C stands for constant reciprocity. In the following, we will refer to this
model as the constant reciprocity model, denoted by MC . The unconstrained model, based
on non-homogeneous ρu1u2 parameters will be denoted by MU . In the next section, we will
present an approximate procedure to test for the above hypotheses.

3. Model inference

Let U = {U i, i = 1, . . . , n} denote the overall set of latent variables in the model;
based on the assumptions introduced so far, the observed network distribution is obtained
by marginalizing out all these latent variables from the joint distribution of Y and U . In
particular, we have

p(Y) =
∑
U

p(Y ,U) =
∑
U

p(Y | U)p(U), (7)

where
∑
U denotes the sum over the support of U and

p(Y | U) =
n−1∏
i=1

n∏
j=i+1

T∏
t=1

p(y
(t)
ij , y

(t)
ji | U

(t)
i = u

(t)
i , U

(t)
j = u

(t)
j ),

p(U) =
n∏

i=1

λ
u
(t)
i

T∏
t=2

π
u
(t)
i |u

(t−1)
i

.
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Computation of the network distribution through (7) requires the evaluation of a sum over
kTn(n−1)/2 terms that becomes quickly cumbersome as the number of nodes in the network
(n) increases. Consequently, full maximum likelihood estimates are not achievable, apart
from networks of a very limited size.

3.1. Variational inference

Let θ denote the vector of all free model parameters collected in λ, Π, α, β, and ρ.
When dealing with discrete latent variables, obtaining parameter estimates via an Expec-
tation Maximization algorithm (EM - Dempster et al., 1977) is a quite popular approach.
However, due to the computational difficulties in obtaining the marginal network distribu-
tion, posterior expectations of the complete data log-likelihood which are required for the
EM algorithm are themselves intractable. In this article, following the approach suggested
by Daudin et al. (2008) for static SBMs and by Yang et al. (2011) and Matias and Miele
(2017) for the corresponding dynamic versions, we propose to derive parameter estimates
by exploiting a VEM algorithm.

Let p(U | Y) denote the posterior distribution of U given the observed data Y and let
Q(U) denote its approximation. The VEM algorithm maximizes the following lower bound
of the log-likelihood function:

J (θ) = log p(Y)−KL [Q(U) || p(U | Y)]

= log p(Y)−
∑
U

Q(U) log
Q(U)

p(U | Y)

= log p(Y)−
∑
U

Q(U) logQ(U) +
∑
U

Q(U) log p(Y ,U)−
∑
U

Q(U) log p(Y). (8)

Clearly, the first and the last term of equation (8) cancel out, so that

J (θ) =
∑
U

Q(U) log p(Y ,U)−
∑
U

Q(U) logQ(U), (9)

and the evaluation of the intractable likelihood p(Y) is not required any longer. As regards
Q(U), we focus on the class of approximate distributions assuming conditional independence
between the latent variables in the network given the observed data, namely

Q(U) =
n∏

i=1

T∏
t=1

h
(
u
(t)
i ; τ

(t)
i

)
, (10)

where h(·; τ (t)
i ) denotes a multinomial probability distribution with parameters 1 and τ

(t)
i =

(τ
(t)
i1 , . . . , τ

(t)
ik )′. In this respect, equation (9) can be rewritten as

J (θ) = J 1(θ) + J 2(θ)− J 3(θ),
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where

J 1(θ) =
n∑

i=1

k∑
u=1

τ
(1)
iu log λu +

n∑
i=1

T∑
t=2

k∑
u=1

k∑
v=1

τ
(t−1)
iu τ

(t)
iv log πv|u,

J 2(θ) =
n−1∑
i=1

n∑
j=i+1

T∑
t=1

k∑
u=1

k∑
v=1

τ
(t)
iu τ

(t)
jv log p(y

(t)
ij , y

(t)
ji | U

(t)
i = u, U

(t)
j = v),

J 3(θ) =
n∑

i=1

T∑
t=1

k∑
u=1

τ
(t)
iu log τ

(t)
iu .

To obtain parameter estimates, the VEM algorithm alternates two separate steps until
convergence: the E-step and the M-step.

The E-step consists in maximizing J (θ) with respect to τ
(t)
i , i = 1, . . . , n, t = 1, . . . , T ,

under the constraint that these quantities are non-negative and
∑

u τ
(t)
iu = 1. This leads to

the following updating rule:

τ
(t)
iu ∝ exp

 n∑
j=1
j 6=i

k∑
v=1

τ
(t)
jv log p(y

(t)
ij , y

(t)
ji | U

(t)
i = u, U

(t)
j = v) + r

(t)
iu

 , (11)

with

r
(t)
iu =


log λu +

∑k
v=1 τ

(2)
iv log πv|u, t = 1,∑k

s=1 τ
(t−1)
is log πu|s +

∑k
v=1 τ

(t+1)
iv log πv|u, 1 < t < T,∑k

s=1 τ
(T−1)
is log πu|s, t = T.

In equation (11), the symbol ∝ means that the quantities τ
(t)
iu are obtained by normalizing

the expression at the right hand side.
At the M-step of the VEM algorithm, we maximize J (θ) with respect to θ. In particular,

we first maximize J 1(θ) with respect to the initial and the transition probabilities, λu and
πv|u, of the hidden Markov process, under the constraints that these are all non-negative

with
∑k

u=1 λu = 1 and
∑k

v=1 πv|u = 1, u = 1, . . . , k; the corresponding parameter estimates
are updated as

λu =

∑n
i=1 τ

(1)
iu

n
, u = 1, . . . , k,

πv|u =

∑n
i=1

∑T
t=2 τ

(t−1)
iu τ

(t)
iv∑n

i=1

∑T
t=2 τ

(t−1)
iu

, u, v = 1, . . . , k.

Moreover, to update α, β, and ρ, we maximize J 2(θ) with respect to these parameters. This
requires the use of a Newton-Raphson algorithm having the same structure of a standard
iterative algorithm used to estimate log-linear models for contingency tables. Obviously,
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this algorithm needs to take into account if we are assuming the unconstrained model, MU ,
in which the ρu1u2 parameters are free, or its constrained versions, MI or MC , under the
hypotheses defined in (5) and (6), respectively.

The E- and the M-step of the VEM algorithm are iterated until convergence, that is,
until the (relative) difference between subsequent approximate log-likelihood values J (θ) is
lower than an arbitrary small quantity ε > 0, such as 10−10.

3.1.1. Algorithm initialization

The initialization of the VEM algorithm plays a central role (see e.g., Vu et al., 2013;
Matias and Miele, 2017). In fact, the target function is typical multimodal; this is a common
problem in estimation of discrete latent variable models, even when a full log-likelihood func-
tion is used for estimation. Therefore, a multi-start strategy, based both on a deterministic
and a random starting rule, is necessary.

A deterministic starting rule is based on firstly clustering nodes in the network via a
k-means procedure and then obtaining parameter estimates accordingly. In this regard,
Matias and Miele (2017) proposed to run a k-means algorithm on the rows of an extended
data matrix obtained concatenating by columns all adjacency matrices Y (t). In practice, this
correspond to a time-constant clustering of the n nodes to initialize the algorithm. However,
we found that a more efficient choice is considering a sort of time-varying clustering. To this
purpose, we suggest to run a k-means algorithm on the rows of the extended data matrix
obtained via row-concatenation of the adjacency matrices Y (t), and derive model parameter
estimates accordingly. As a result, we obtain the initial clustering of n × T observations,
which takes into account the dynamic structure of the data.

In our applications, we experimented both deterministic initialization strategies described
above and we found a clear improvement of the results, in terms of precision of estimates
and clustering performance, with our proposal. Accordingly, for both the simulation study
and the real data applications, we adopted the strategy based on row-concatenation of the
adjacency matrices Y (t) in order to obtain the initial estimates of the null model MI . For
the other specifications, MU and MC , we exploited the fact that models are nested and,
therefore, the initial values of the corresponding parameters can be set equal to the final
estimates of the MI version.

Random starting solutions are obtained by considering a time-varying random assign-
ment of the nodes in the network to one of the k distinct blocks of the dynamic SBM. As
before, based on such a clustering, initial values for model parameters may be derived and
the algorithm may be run until convergence.

Overall, for a given k, the solution that at convergence of the algorithm corresponds to
the highest value of the approximate log-likelihood function J (θ) is taken as the optimal
estimate. Hereafter, the estimates obtained in this way are denoted by θ̂.

3.1.2. Model selection and clustering

To select a suitable number of blocks k for the proposed dynamic SBM for a certain
dataset, we rely on the Integrated Classification Likelihood (ICL) approach (Biernacki et al.,
2000); see also Daudin et al. (2008) and Matias and Miele (2017). In our case, this criterion
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relies on an index that, for a given k and corresponding parameter estimates θ̂, is defined as

ICL = log p(Y , Û)− k − 1

2
log n− k(k − 1)

2
log[n(T − 1)]− k2 + g

2
log[n(n− 1)T ], (12)

where Û denotes the optimal clustering of units (obtained as clarified below), computed at
θ̂. As regards the penalization terms in equation (12), the first and the second terms refer to
the initial and the transition probabilities, respectively, whereas the last term corresponds to
the conditional dyad probabilities, with k2 being the number of free parameters in α and β,
and g being the number of free parameters in ρ. More precisely, g is equal to k(k+ 1)/2, 1,
and 0 under MU ,MC , and MI , respectively. According to the criterion at issue, the optimal
number of latent blocks is the one corresponding to the maximum value of ICL.

An additional relevant issue when dealing with SBMs concerns the clustering of the
observed units into blocks, which may be obtained by the variational inference scheme we
propose. In particular, based on the estimated parameters of the multinomial distribution
introduced in equation (10), that is, based on τ̂

(t)
i , nodes may be assigned to one of the k

blocks of the dynamic SBM according to a standard maximum a posteriori rule. Clustering
performance of the proposed approach will be assessed in the simulation study discussed in
Section 4.

3.1.3. Standard errors

Following an approach similar to that described by Vu et al. (2013), we obtain standard
errors for the parameter estimates via parametric bootstrap (Efron, 1979). Once parameter
estimates θ̂ have been computed and the optimal number of hidden states (k) has been
selected, we simulate B random replicates of the network Y from a dynamic SBM with k
blocks and parameters θ̂. For each dataset, a VEM algorithm is used to derive approximate

maximum likelihood estimates. Let θ̂
(b)

denote the vector of model parameter estimates for
the b-th bootstrap sample. Standard error estimates for θ̂ correspond to the square root of
the diagonal elements of the matrix

Σ̂ =
1

B − 1

B∑
b=1

(
θ̂
(b)
− θ̂

)(
θ̂
(b)
− θ̂

)′
.

3.2. Testing for reciprocity

It is already clear that reciprocity plays a central role when dealing with directed net-
works. To test for the presence of this characteristic, we propose an approximate LR test
based on the lower bound of the likelihood function, J (θ). Let θ̂I and θ̂U denote the vec-
tors of parameters estimated under models MI and MU , respectively. Recall that these two
models correspond to the hypothesis HI and HC defined in equations (5) and (6), respec-
tively. We propose a general test for the independence assumption HI based on the following
(approximate) LR test statistic

RI = −2
[
J (θ̂I)− J (θ̂U)

]
.
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We compare the observed value of this test statistic against a χ2 distribution with a number
of degrees of freedom equal to the number of free parameters in ρ, that is k(k + 1)/2. In
fact, we may consider RI as an approximation of the LR statistic −2

[
`(θ̂I) − `(θ̂U)

]
that,

under suitable regularity conditions, has null asymptotic distribution of this type (Cox and
Hinkley, 1979). Note that the difference between the exact LR statistic and RI corresponds
to the difference between two Kulback-Leibler distances of the type defined in (8) and we
expect this difference to become negligible for n large.

For a more detailed analysis, we can also consider the decomposition of RI as follows:

RI = RC +RCI ,

where
RC = −2

[
J (θ̂C)− J (θ̂U)

]
is the approximate LR test statistic for testing the constant reciprocity assumption HC

against the hypothesis of unconstrained parameters, with θ̂C denoting the vectors parameter
estimates under this hypothesis. The statistic RC is compared against a χ2 distribution with
k(k + 1)/2− 1 degrees of freedom. On the other hand,

RCI = −2
[
J (θ̂I)− J (θ̂C)

]
is the approximate LR test statistic for comparing the independence model MI against the
constant reciprocity model MC , that is HI against HC . This test statistic is compared
against a χ2 distribution with one degree of freedom.

The simulation study and the real data applications we discuss in the following will illus-
trate the properties of the proposed approximate inferential procedures. The link between
the LR test statistics and the model selection criteria will be also clarified. In fact, it might
happen that the outcome of the test depends on the selected number of blocks. To avoid this
ambiguity, we can first identify the optimal k under different model specifications and then,
if different values of k are selected, compare the values of the corresponding test statistics.

4. Simulation study

In in this section, we illustrate the results of a large scale Monte Carlo simulation study.
In this study, we focused both on the performance of the approximate LR statistics and
on the clustering performance of the proposed approach. We considered several distinct
experimental scenarios, based on different network sizes and different values of the reciprocity
parameter.

4.1. Design

We randomly drew 1,000 samples from a two state (k = 2) dynamic SBM for n =
20, 50, 100 nodes observed at T = 10 different time occasions. The following values for the
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initial probability vector and the transition probability matrix are assumed:

λ = (0.4, 0.6)′, Π =

(
0.7 0.3
0.2 0.8

)
.

For the parameterization of the dyad probabilities, we set α = (−2,−3,−1)′ and β12 = 0. As
regards reciprocity parameters, we considered both the independence model MI , by setting
ρu1u2 = 0, and the constant reciprocity model MC , by setting ρu1u2 = ρ, u1, u2 = 1, . . . , k.
In this latter case, we considered a grid of values for ρ, ranging between −2.5 and 2.5. To
give an idea of how the matrix Ψ(u1, u2) looks like by fixing the above values for α, β, and
ρ, we report in Table 1 this matrix for some choices of ρ.

Table 1: Matrix of conditional dyad probabilities Ψ(u1, u2) for varying choices of ρ.

u1 = 1, u2 = 1 u1 = 1, u2 = 2 u1 = 2, u2 = 2

ρ 0 1 0 1 0 1

−2.5
0 0.786 0.106 0.909 0.045 0.572 0.211
1 0.106 0.001 0.045 0.000 0.211 0.006

0.0
0 0.776 0.105 0.907 0.045 0.534 0.197
1 0.105 0.014 0.045 0.002 0.197 0.072

2.5
0 0.669 0.091 0.885 0.044 0.295 0.109
1 0.091 0.149 0.044 0.027 0.109 0.487

As is clear from Table 1, when ρ increases the chance of observing mutual relations
increases, with the result that the adjacency matrices Y (t) become progressively less sparse.

4.2. Results: LR test statistic performance

To evaluate the performance of the proposed approach, for each simulated scenario we
considered the distribution of the approximate LR test statistics RI and RCI , which allow
us to compare the independence model (MI) against the unconstrained model (MU) and the
constant reciprocity model (MC), respectively.

Table 2 reports the simulation results for the dynamic SBM under the different experi-
mental scenarios in terms of mean and variance of the test statistic RI . Furthermore, the
table shows the value of p = p(RI > χ2

0.05,3) that corresponds to the probability of the type
I error when we simulate the data under the model MI (ρ = 0), while it corresponds to the
power of the test when data are simulated under the model MC (ρ 6= 0). Similar results
are reported in Table 3 for the test statistic RCI . In this case, the probability of the type
I error and the power of the test are obtained by simulation considering an asymptotic χ2

distribution with 1 degree of freedom only, that is, as p = p(RCI > χ2
0.05,1).

The results confirm our conjecture that, when simulating data from the model MI , both
approximate test statistics have a distribution reasonably close to a χ2 distribution, leading
to the rejection of HI in about 5% of the simulated samples. On the other hand, under the
homogeneity assumption for the reciprocity effects, we observe that the power of the test
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Table 2: Mean (R̄I), variance (V ar(RI)), and estimated probability of type I error/power of the test statistic
RI (p) under different scenarios.

n = 20 n = 50 n = 100

ρ R̄I Var(RI) p R̄I Var(RI) p R̄I Var(RI) p

-2.50 61.15 443.79 1.000 390.59 1949.63 1.000 1581.82 12797.59 1.000
-1.50 35.76 200.22 0.993 229.01 1167.33 1.000 922.82 5912.34 1.000
-1.00 21.15 109.27 0.975 129.17 557.34 1.000 523.86 2605.36 1.000
-0.75 13.45 56.39 0.923 82.73 369.29 1.000 333.29 1592.40 1.000
-0.50 7.53 28.92 0.737 42.13 178.39 1.000 167.06 728.66 1.000
-0.25 2.89 9.25 0.272 12.71 49.36 0.922 47.97 192.24 1.000
-0.10 1.40 3.10 0.109 3.06 10.42 0.308 9.29 36.08 0.826
0.00 1.00 2.02 0.052 0.93 1.83 0.045 1.02 2.07 0.052
0.10 1.35 4.56 0.085 3.14 10.40 0.300 9.43 35.60 0.835
0.25 3.15 13.70 0.297 14.68 57.46 0.957 57.44 260.67 1.000
0.50 10.65 46.61 0.861 62.66 275.15 1.000 251.68 1130.22 1.000
0.75 24.68 114.21 1.000 152.31 752.48 1.000 613.80 3461.35 1.000
1.00 45.71 220.82 1.000 293.87 1574.97 1.000 1180.30 7741.51 1.000
1.50 114.84 598.56 1.000 736.43 4668.70 1.000 2977.89 29305.76 1.000
2.50 342.95 1806.82 1.000 2191.43 13394.32 1.000 8893.55 81455.09 1.000

Table 3: Mean (R̄CI), variance (V ar(RCI)), and estimated probability of type I error/power of the test
statistic RCI (p) under different scenarios.

n = 20 n = 50 n = 100

ρ R̄CI Var(RCI) p R̄CI Var(RCI) p R̄CI Var(RCI) p

-2.50 62.88 441.33 1.000 392.93 1958.23 1.000 1583.89 12813.85 1.000
-1.50 38.11 200.09 0.988 231.12 1177.18 1.000 924.85 5930.55 1.000
-1.00 23.67 117.15 0.959 131.21 563.74 1.000 525.90 2617.52 1.000
-0.75 15.88 61.07 0.868 84.92 375.93 1.000 335.29 1588.78 1.000
-0.50 10.21 37.30 0.601 44.10 182.99 1.000 169.01 733.51 1.000
-0.25 5.42 14.42 0.227 14.77 54.87 0.825 49.89 194.19 1.000
-0.10 3.89 9.24 0.095 5.11 14.46 0.203 11.27 40.50 0.679
0.00 3.51 7.52 0.078 3.00 6.04 0.055 2.94 6.73 0.051
0.10 3.74 9.15 0.086 5.11 15.13 0.210 11.53 40.09 0.703
0.25 5.76 19.62 0.244 16.55 60.25 0.883 59.50 268.90 1.000
0.50 13.06 53.14 0.743 64.70 281.35 1.000 253.65 1128.36 1.000
0.75 26.99 119.26 0.991 154.22 754.42 1.000 615.73 3476.57 1.000
1.00 47.91 224.45 1.000 296.14 1623.78 1.000 1182.33 7749.08 1.000
1.50 116.90 603.89 1.000 738.37 4665.33 1.000 2979.98 29281.81 1.000
2.50 345.05 1816.17 1.000 2193.41 13414.52 1.000 8895.61 81449.12 1.000

increases as much as ρ deviates from 0. Moreover, the power of the test increases as the
sample size n increases.

4.3. Results: clustering performance

We also explored the performance of the proposed method for clustering units across
time. For this aim, we evaluated the agreement between the estimated and the true latent
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structure in terms of Adjusted Rand Index (Hubert and Arabie, 1985), which is denoted by
ARI hereafter. This index is obtained from the standard Rand Index (Rand, 1971), which
varies between 0 and 1. The main difference is that ARI may also attain negative values,
while retaining the same upper bound equal to 1 when there is a perfect agreement between
the true and estimated clustering structure. Moreover, it is equal to 0 when the number of
nodes correctly classified is equal to that expected by chance.

Table 4 reports the results we obtained in terms of average ARI over the simulated
samples under the different model specifications reflecting varying degrees of reciprocity.

Table 4: Average ARI under different scenarios and the different estimated models.

n = 20 n = 50 n = 100

ρ MI MC MU MI MC MU MI MC MU

-2.50 0.5395 0.5840 0.5838 0.9694 0.9694 0.9695 0.9984 0.9984 0.9984
-1.50 0.6107 0.6512 0.6508 0.9711 0.9723 0.9721 0.9988 0.9989 0.9988
-1.00 0.6845 0.7055 0.7034 0.9786 0.9789 0.9786 0.9990 0.9990 0.9991
-0.75 0.6678 0.6685 0.6690 0.9801 0.9803 0.9803 0.9991 0.9992 0.9991
-0.50 0.7055 0.7063 0.7025 0.9787 0.9788 0.9789 0.9994 0.9995 0.9995
-0.25 0.7417 0.7423 0.7423 0.9841 0.9842 0.9842 0.9998 0.9998 0.9998
-0.10 0.7465 0.7460 0.7468 0.9844 0.9844 0.9846 0.9998 0.9997 0.9998
0.00 0.7776 0.7766 0.7749 0.9872 0.9871 0.9873 0.9998 0.9998 0.9998
0.10 0.7775 0.7767 0.7722 0.9887 0.9889 0.9891 0.9998 0.9998 0.9998
0.25 0.8059 0.8083 0.8054 0.9878 0.9883 0.9881 0.9998 0.9998 0.9998
0.50 0.8295 0.8331 0.8353 0.9934 0.9934 0.9934 0.9999 0.9999 0.9999
0.75 0.8246 0.8291 0.8312 0.9951 0.9951 0.9950 1.0000 1.0000 1.0000
1.00 0.8742 0.8817 0.8788 0.9962 0.9962 0.9961 1.0000 1.0000 1.0000
1.50 0.8999 0.9074 0.9062 0.9988 0.9988 0.9987 1.0000 1.0000 1.0000
2.50 0.9722 0.9731 0.9727 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

On the basis of these results, we conclude that the estimation algorithm performs prop-
erly in clustering nodes, with a better behavior (corresponding to an increasing value of the
average ARI) for higher values of the reciprocity parameter. This is an expected result, since
a larger value of ρ corresponds to a larger probability of mutual relations and, accordingly, to
a less sparse network. The lowest values of the index are observed for n = 20 and ρ = −2.5
although they are always greater than 0.5. Obviously, the best results are obtained when
n = 100, with an average ARI which is close to 1 under all model specifications.

Results reported in Table 4 do not show substantial differences between models MI , MC ,
and MU in terms of clustering, besides the true model specification. Accordingly, to better
investigate how reciprocity affects the clustering accuracy, we considered a further simulation
set up. This is characterized by a less neat clustering structure in the data and by a reduced
amount of information. In particular, we considered n = 20 nodes and closer values for the
tendency parameters α, that is, α = (−2.5,−3,−1.5)′. We also focused on large (absolute)
values for the reciprocity effect: ρ = −2.5,−1.5, 1.5, 2.5. The average ARI for the different
simulation scenarios is reported in Table 5. Comparing these results with those discussed
so far, we clearly observe lower performance of algorithm in recovering the true clustering
when the blocks are not well separated. Furthermore, under this latter scenario, differences
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between MI , MC , and MU become more evident, especially in the presence of more sparse
data matrices (smaller ρ). As expected, we obtain better results in terms of classification
under MC and MU with respect to MI . This finding clearly show that the true reciprocity
structure in the data may affect the clustering performance, especially when the separation
between blocks in the simulated model is less neat.

Table 5: Average ARI under the additional scenarios with n = 20 and α = (−2.5,−3,−1.5)′ and the
different estimated models.

ρ MI MC MU

-2.5 0.1199 0.1838 0.1887
-1.5 0.1368 0.2038 0.1948
1.5 0.6216 0.6470 0.6423
2.5 0.8064 0.8227 0.8157

To further explore the performance of the proposed approach, we also set up a comparison
with the alternative inferential procedures for dynamic SBMs available in literature. In
particular, we considered the MCMC method developed by Yang et al. (2011) in the Bayesian
framework and the variational approach of Matias and Miele (2017). Estimation algorithms
for these approaches are freely available: the R code for the variational approach of Matias
and Miele (2017) is available at the CRAN website (https://cran.r-project.org/web/
packages/dynsbm/index.html); the Matlab code for the MCMC approach of Yang et al.
(2011) is available on the author’s website (i.e. http://homepage.cs.uiowa.edu/~tyng/

codes/).
To make the comparison, we simulated data according to the design introduced in

Section 4.1, focusing on a subset of values for the reciprocity parameter, that is, ρ =
−2.5,−1.5, 0, 1.5, 2.5. It is worth recalling that both competing methods are based on the
independence assumption between response variables Y

(t)
ij and thus they do not allow for

reciprocity. In this regard, when simulating data with ρ = 0, we are estimating the true
model and we are directly able to compare the quality of results of the proposed approach
to those of the main alternatives. On the contrary, when ρ 6= 0, we aim at evaluating how
the lack of reciprocity affects the clustering accuracy of such alternatives. The quality of
results is again assessed by considering the average ARI across simulations; these results
are reported in Table 6. In this table, we also report the average ARI obtained under the
proposed MC and MU specifications appearing in Table 4 to facilitate the comparison.

Comparing the results obtained when adopting the approach of Matias and Miele (2017)
and Yang et al. (2011) with those derived when estimating MC and MU , we observe that
the proposed approach always outperforms the alternatives, especially when n and ρ are
small. The superiority of the proposed approach with respect to the competitors is evident
when reciprocity plays a role in the simulation of the data, but also when considering the
independence model (ρ = 0). As regards the approach suggested by Matias and Miele (2017),
these findings may be due, at least partially, to the initialization strategy adopted by the
authors which, as stated in Section 3.1.1, does not admit an initial time-varying clustering of
the units. As already mentioned, we tried to implement a similar strategy for our approach
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Table 6: Average ARI for the approach of Matias and Miele (2017) (MM) and of Yang et al. (2011) (Y)
under different scenarios.

n = 20 n = 50 n = 100

ρ MC MU MM Y MC MU MM Y MC MU MM Y

-2.5 0.5840 0.5838 0.0770 -0.0078 0.9694 0.9695 0.2805 0.5669 0.9984 0.9984 0.9461 0.9549
-1.5 0.6512 0.6508 0.0877 -0.0091 0.9723 0.9721 0.3440 0.6730 0.9989 0.9988 0.9596 0.9638

0 0.7766 0.7749 0.1304 -0.0005 0.9871 0.9873 0.8015 0.8723 0.9998 0.9998 0.9859 0.9886
1.5 0.9074 0.9062 0.5098 0.6331 0.9988 0.9987 0.9718 0.9857 1.0000 1.0000 0.9998 0.9997
2.5 0.9731 0.9727 0.9178 0.9256 1.0000 1.0000 0.9725 0.9996 1.0000 1.0000 0.9887 1.0000

and empirical findings showed a poor performance of the algorithm in recovering the true
clustering. As regards the MCMC approach of Yang et al. (2011), the low quality of the
results may be possibly due to an inadequate choice of the prior.

In conclusion, it is worth to notice that the gap in terms of clustering accuracy of our
proposal with respect to the alternative approaches is mostly evident for smaller values of ρ.
As stated before, these lead to a more sparse data matrix. Therefore, we may conclude that,
unlike the alternatives, our proposal permits to properly recognize the clustering structure
of the data, even when dealing with sparse data.

5. Empirical applications

In this section, we describe the application of the proposed methodology to two bench-
mark datasets in the network literature: the Newcomb Fraternity network and the Enron
email network.

5.1. Newcomb Fraternity network

The network at issue, described in Newcomb (1961), consists of 14 network snapshots on
preference rankings (coded from 1 to 16) from 17 students. Data were collected longitudinally
over 15 weeks between 1953 and 1956 (although data from week 9 are missing) among
students living in an off-campus (fraternity) house at the University of Michigan. For the
purpose of the analysis, we considered the binary socio-matrices Y (t) derived from these data
which are freely available as part of the R package networkDynamic (Butts et al., 2016). In

each network snapshot, Y
(t)
ij = 1 if student i states a ranking for student j equal to 8 or less

at time occasion t; Y
(t)
ij = 0 otherwise.

In such a context, we are interested in measuring the degree of cohesion of the network
and characterizing relations between students. In this respect, we estimated the proposed
dynamic SBM with k = 1, . . . , 5, considering the different model specifications illustrated in
Section 2.2 and corresponding to different hypotheses on reciprocity.

As stated in Section 3.1.1, for each k, we run a k-means algorithm on the rows of
the extended data matrix obtained via row-concatenation of the adjacency matrices Y (t).
To reduce the risk of spurious solutions due to local maxima, we considered 100 random
initializations of this algorithm. The parameters obtained from the resulting partitions were
used as initial values for the VEM algorithm.
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Table 7 reports the value of the approximate log-likelihood function obtained at conver-
gence of the VEM algorithm, J (θ̂), and the value of ICL used to select the optimal number
of latent blocks. From these results, we observe that the ICL criterion leads to selecting
k = 3 latent blocks, regardless the chosen model specification. Furthermore, when using this
criterion also for identifying the optimal model specification, the results reported in Table
7 confirm a better fit of MC with respect to both MI and MU .

Table 7: Newcomb Fraternity data. Value of J (θ̂) at convergence and ICL for different choices of k and
different model specifications.

Number of Hidden States (k)

1 2 3 4 5

J
(·)

MI -2639.50 -2479.92 -2124.15 -2108.67 -2048.43
MC -2575.21 -2285.40 -2087.65 -2066.32 -2019.02
MU -2575.21 -2282.19 -2083.08 -2048.86 -1999.98

I
C
L MI -2643.63 -2505.36 -2181.28 -2214.34 -2212.51

MC -2583.46 -2313.45 -2148.91 -2175.67 -2187.71
MU -2583.46 -2318.44 -2165.19 -2195.14 -2225.80

To verify whether model MC is truly optimal, when compared to MI and MU , we con-
sidered the approximate LR test introduced in Section 3.2 for the chosen number of latent
blocks (k = 3). Results are reported in Table 8. In such a context, the observed values
of the test statistics RI , RCI , and RC have to be compared against a χ2 distribution with
k(k + 1)/2 = 6, 1, and k(k + 1)/2− 1 = 5 degrees of freedom, respectively.

Table 8: Newcomb Fraternity data. Approximate LR test statistic for different choices of k.

Number of Hidden States (k)

1 2 3 4 5

RI 128.59 94.11 82.15 109.26 70.03
RCI 128.59 73.69 73.00 91.63 41.33
RC 0.00 20.42 9.16 17.63 28.70

Considering the results reported in Table 8 with k = 3, we may observe that the LR test
statistic RI is statistically significant (p(χ2

6 > RI) < 0.001) and, therefore, leads to prefer
MU with respect to MI . A significant test statistic is also observed when comparing MI

against MC : p(χ2
1 > RCI) < 0.001. On the other hand, considering the observed value of

RC , we conclude that the assumption of constant reciprocity, HC , cannot be rejected based
on the observed data as p(χ2

5 > RC) = 0.102. These findings are therefore in line with the
results based on the comparison of the ICL values reported in Table 7.

The estimated parameters under this model specification are shown in the following. In
particular, Table 9 reports the estimated value of α, β, and ρ together with the correspond-
ing standard errors obtained via the parametric bootstrap procedure illustrated in Section
3.1.3.
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Table 9: Newcomb Fraternity data. Estimates and estimated standard errors (se) for the α,β, ρ parameters
under the constant reciprocity assumption for the dynamic SBM with k = 3 hidden states.

α̂11 α̂12 α̂13 α̂22 α̂23 α̂33 β̂12 β̂13 β̂23 ρ̂

Estimates 1.203 -2.055 -1.103 -1.069 -0.718 1.738 2.760 0.737 -1.151 1.044
SE 0.211 0.162 0.149 0.120 0.154 3.450 0.208 0.208 0.198 0.114

Table 10: Newcomb Fraternity data. Estimates for the matrix of conditional dyad probabilities Ψ̂(u1, u2).

u1 = 1, u2 = 1 u1 = 1, u2 = 2 u1 = 1, u2 = 3

0 1 0 1 0 1

0 0.026 0.085 0.257 0.520 0.373 0.259
1 0.085 0.804 0.033 0.189 0.124 0.244

u1 = 2, u2 = 2 u1 = 2, u2 = 3 u1 = 3, u2 = 3

0 1 0 1 0 1

0 0.495 0.170 0.539 0.083 0.010 0.055
1 0.170 0.166 0.263 0.115 0.055 0.881

The result in Table 9 suggest the presence of significant mutual relations between stu-
dents, irrespective to the cluster they belong to (ρ̂ = 1.044). Regarding the remaining
parameters, α and β, interpretation may be based on the description provided in Section
2.2. Just to give an idea, according to the results in Table 9, students in block 1 are likely to
declare a non-reciprocated friendship with nodes belonging to the same block (α̂11 = 1.203),
while null within-group relations are mainly observed for students belonging to block 2 (α̂22

is negative). A non-significant effect is observed for α̂33. On the other hand, βu1u2 may be
interpreted in terms of asymmetric relations between nodes in blocks u1 and u2; see equation
(4). So, for instance, the value of β̂12 leads to the conclusion that the tendency of students
in the second block to have an asymmetric relation with students in the first block is signif-
icantly higher than the opposite relation. We also report in Table 10 the estimated matrix
of conditional dyad probabilities corresponding to the above parameters.

To conclude, Table 11 shows the estimated initial and transition probabilities of the
hidden Markov chain. As can be observed, cluster 2 is the most likely at the beginning of
the observation period (λ̂2 = 0.48). Moreover, estimated transitions show quite persistent
hidden states, with students’ memberships that mainly remain unchanged during time.

Table 11: Newcomb Fraternity data. Estimates and estimated standard errors (SE) for the latent Markov
model parameters of the dynamic SBM with k = 3 hidden states.

Estimates SE

u λ̂u π̂1|u π̂2|u π̂3|u λ̂u π̂1|u π̂2|u π̂3|u

1 0.348 1.000 0.000 0.000 0.116 0.000 0.000 0.000
2 0.476 0.014 0.959 0.027 0.132 0.017 0.030 0.023
3 0.176 0.000 0.000 1.000 0.090 0.030 0.070 0.100
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5.2. Enron email network

The second example is based on a dynamic network derived from the Enron corpus
(Priebe et al., 2005), consisting of a large set of email messages that was made public during
the legal investigation concerning the Enron corporation.

The dataset 1 concerns 184 Enron employees; we considered communications recorded
between April, 2001, and March, 2002, and we built an email network for each month, so
that the dynamic network has 12 time points. Clearly, this represents a simplification of
the data structure as information about the exact time the emails were sent are available.
However, for illustrative purposed, we decided to analyze the network on discrete time. In
this application, Y

(t)
ij = 1 if user i sent at least one email message to user j during the t-th

month of the analyzed time window, with i = 1, . . . , 183, j = i+1, . . . , 184 and t = 1, . . . , 12.
Following Xu and Hero (2014) we made no distinction between emails sent “to”, “cc”, or
“bcc”.

The interest is in understanding the evolution of dyadic relations between users (email
exchange) over time, and analyzing reciprocity between these relations. We are also inter-
ested in defining groups characterized by similar communication profiles. To this extent, we
estimated a dynamic SBM with a varying number of blocks (k = 1, . . . , 7), by adopting the
initialization strategy described in Section 3.1.1. Results are reported in Table 12. In this
application, ICL values lead to selecting a model with k = 6 hidden states for all considered
parameterizations. Based on the same index, we select the unconstrained model MU , with
reciprocity parameters depending on the latent blocks.

Table 12: Enron data. Value of J (θ̂) at convergence and ICL for different choices of k and different model
specifications.

Number of Hidden States (k)

1 2 3 4 5 6 7

J
(·)

MI -28824.73 -24013.02 -22479.96 -21477.72 -20598.79 -19843.34 -19706.03
MC -25215.17 -21745.57 -20652.19 -19957.50 -19340.35 -18619.62 -18577.28
MU -25215.17 -21704.47 -20546.47 -19695.55 -19132.86 -18429.46 -18356.60

I
C
L MI -28831.19 -24094.53 -22611.46 -21688.13 -20900.32 -20257.84 -20268.75

MC -25228.08 -21840.56 -20794.61 -20183.30 -19655.20 -19074.35 -19142.58
MU -25228.08 -21816.33 -20724.88 -19973.27 -19527.97 -19010.62 -19099.33

Even in this case, we may validate this result by comparing the values of the approximate
LR statistics introduced in Section 3.2. In Table 13, we report the observed values of RI ,
RCI , and RC , which have to be compared against a χ2 distribution with 21, 1, and 20
degrees of freedom, respectively. From this comparison, when k = 6, we observe that the
hypothesis of absence of reciprocity, HI , is strongly rejected by both tests based on RI and
RCI . Moreover, the observed value of the test statistic RC allows us to confirm that the
unconstrained model has to be preferred to the other model specifications, due to a very low

1Available at http://cis.jhu.edu/~parky/Enron/enron.html
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p-value: p(χ2
20 > RC) < 0.001. Accordingly, in this application, we conclude that reciprocal

relations are statistically significant, and that they depend on the latent blocks of the nodes.
The corresponding estimated values of α, β, and ρ are reported in Table 14, whereas the
estimated initial and transition probabilities are displayed in Table 15. These estimates may
be interpreted as illustrated for the Newcomb Fraternity network.

6. Concluding remarks

In this paper, we introduce a class of stochastic block models for dynamic networks where
the standard hypothesis of independence between univariate responses is relaxed in favor of
less stringent assumptions. In particular, the element of analysis is the set of dyads referred
to ordered pairs of units and the assumption of conditional independence between them is
considered. Obviously, marginal dependence, due for instance to triangulation effects, is not
ruled out but can be, instead, explained in a meaningful way by the latent variables.

Reciprocity plays a central role in this paper. In particular, we propose to parametrically
specify dyad probabilities with the aim of measuring mutual effects. By properly specifying
the reciprocity structure, we may obtain different parameterizations of the model and, thus,
allow for different types of cohesion between nodes. Non-homogeneous, homogeneous, and
null reciprocity effects are the possible specifications we can consider.

For this class of models, computation of the full likelihood to obtain parameter estimates
becomes progressively unfeasible as the dimension of the network increases. For this reason,
we propose to make inference by a variational approximation of the intractable full likelihood
function, based on the assumption of posterior independence between the dyads.

We show how the approximate likelihood function, which is exploited to derive parame-
ter estimates, also offers the possibility to define an approximate LR statistic. This allows
us to compare different model specifications by means of a proper hypothesis testing pro-
cedure. Empirical findings confirm that the χ2 distribution properly approximate the true
distribution of such a test statistic.

The behavior of the proposed approach is evaluated by means of a large scale simulation
study, in which different experimental scenarios are considered. Results show very good
performance of the proposed approximate LR test in identifying the true data generating
process and the effectiveness of our approach, in general, in recovering the true data structure
in terms of clustering. The analysis of the Newcomb Fraternity and the Enron datasets
provides further insights into the proposed method.

Table 13: Enron data. Approximate LR test statistic for different choices of k and different model specifica-
tions.

Hidden States k

1 2 3 4 5 6 7

RI 7219.13 4617.11 3866.98 3564.33 2931.87 2827.76 2698.86
RCI 7219.13 4534.91 3655.54 3040.43 2516.88 2447.45 2257.49
RC 0.00 82.20 211.45 523.90 414.99 380.31 441.37
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Table 14: Enron data. Estimates for the α,β,ρ parameters for the dynamic SBM with k = 6 hidden states.

α̂11 -1.836 α̂26 -3.955 α̂66 -1.608 β̂34 12.207 ρ̂15 3.708 ρ̂36 4.284

α̂12 -5.163 α̂33 -9.388 β̂12 -0.775 β̂35 1.854 ρ̂16 3.116 ρ̂44 1.971

α̂13 -6.652 α̂34 -19.373 β̂13 -1.128 β̂36 12.949 ρ̂22 3.86 ρ̂45 3.442

α̂14 -6.509 α̂35 -7.839 β̂14 0.007 β̂45 0.932 ρ̂23 6.43 ρ̂46 6.546

α̂15 -4.501 α̂36 -17.269 β̂15 0.628 β̂46 2.431 ρ̂24 11.32 ρ̂55 1.661

α̂16 -4.056 α̂44 -1.588 β̂16 0.366 β̂56 0.136 ρ̂25 5.157 ρ̂56 2.399

α̂22 -4.124 α̂45 -4.962 β̂23 -2.627 ρ̂11 2.476 ρ̂26 2.584 ρ̂66 2.611

α̂23 -6.323 α̂46 -6.934 β̂24 -1.730 ρ̂12 4.834 ρ̂33 4.007

α̂24 -20.06 α̂55 -1.945 β̂25 0.135 ρ̂13 -2.671 ρ̂34 17.07

α̂25 -5.910 α̂56 -2.500 β̂26 2.180 ρ̂14 5.414 ρ̂35 5.580

Table 15: Enron data. Estimates for the latent Markov model parameters of the dynamic SBM with k = 6
hidden states.

u λ̂u π̂1|u π̂2|u π̂3|u π̂4|u π̂5|u π̂6|u

1 0.106 0.842 0.000 0.117 0.000 0.041 0.000
2 0.300 0.003 0.836 0.122 0.000 0.005 0.034
3 0.384 0.004 0.075 0.886 0.008 0.026 0.000
4 0.056 0.000 0.000 0.020 0.973 0.007 0.000
5 0.111 0.018 0.000 0.193 0.005 0.738 0.045
6 0.043 0.000 0.291 0.081 0.000 0.163 0.464

An interesting evolution of the approach here illustrated may be in a exponential ran-
dom graph (Wang et al., 2009) perspective. This parameterization would allow us to further
improve model flexibility, explicitly accounting for triangulations and higher order depen-
dencies between nodes, while providing a clustering of nodes in terms of their social behavior.
It would be also possible to allow for categorical responses and for the inclusion of individual
covariates with the aim at identifying clustering determinants.
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