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Summary

This work presents a new lattice Boltzmann model for steady and unsteady two-
dimensional shallow water flows. Compared to previous lattice Boltzmann based
shallow water models, the proposed method uses a consistent characteristic speed in
the pressure term and in the viscosity. To preserve the isotropy of viscosity, the relax-
ation rates for the different cumulants have to be decoupled. This is only possible by
using multiple relaxation rates. The recovery of the correct viscosity is investigated
by a convergence study based on the decay of a Taylor Green Vortex. Results from
shallow water models using the proposed collision operator are then compared to
those derived from standard BGK approach and from a continuous model.
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1 INTRODUCTION

The lattice Boltzmann method (LBM) is a mesoscopic method closely related to kinetic theory of gases. It is a versatile method
and it has been extensively applied in different fields, such as turbulent flow1 2, multiphase3 4, flow in complex geometries5 6,
in porous media7 and thermal flows8. However, it is not so common to use the LBM approach to simulate large scale hydraulic
problems such as flooding events9, dam breaks10 and propagation of tsunamis. The LBM applies a stream and collide algorithm
in which particles move on a Cartesian lattice and collide at lattice nodes. Once an appropriate lattice or velocity set has been
chosen, the physics have to be implemented in the collision operator (CO) which is the central part of the model. A widespread
solution is based on a single relaxation time (SRT) approach (BGK method11), characterized by a relatively simple implemen-
tation: the particle distribution relaxes towards an equilibrium function with a rate chosen to match the viscosity of the modeled
fluid. In order to maximize the number of adjustable parameters and increase both stability and accuracy, some authors suggest
to use a multiple relaxation times (MRT) CO12. Even though it was demonstrated that the MRT CO improves the stability range
of the LBM, it introduces an additional Galilean invariance violation and hyper-viscosity problems when compared to the BGK
CO13. The first problem is due to the definition of the moments. In fact, the MRT method translates the PDF into a set of raw
moments13 using a linear transformation. Each moment is orthogonal to all the others and relaxes with its own rate. However, the
orthogonality of the moments is not reference frame independent14 and orthogonality is not maintained if the reference frame
is changed. Therefore, the original MRT method further violates the Galilean invariance, compared to a BGK-SRT model. By
applying the collision in terms of cumulants instead of raw moments, the cumulant LBM15 overcomes the violation of Galilean
invariance, removing also the hyper-viscosity that can be generated using, for example, central moments in the collision opera-
tor13. Thus, in this work, we adopt the cumulant collision operator for the simulation of the shallow water equations in order to
apply the LBM kinetic approach to large scale hydraulic problems and to increase stability and accuracy in the solution of the
fluid dynamic problem.

The published version of the paper "Venturi S., Di Francesco S., Geier M., Manciola P. (2020). A new collision operator for lattice 
Boltzmann shallow water model: a convergence and stability study. Advances in Water Resources, 135, 103474." is available at: 
https://doi.org/10.1016/j.advwatres.2019.103474



2 SARA VENTURI ET AL

The shallow water equations (SWE) are obtained from the Navier-Stokes equations by integrating over the water column from
the ground to the free surface and assuming that the pressure along the vertical can be replaced by the hydrostatic pressure.
They have been extensively applied to the simulation of large scale hydraulic problems using standard numerical methods16.
The SWE were first studied with the LBM by Salmon17 and Dellar18, while Zhou provided a comprehensive revision of the
method19. Thought some works presenting simulations of large scale problems20,21,22 are available in literature, the issue of the
effective applicability of a shallow water lattice Boltzmann model to complex hydraulic problems remains substantially open in
term of efficiency, stability and accuracy. Most of the applications of the LBM for shallow water flows are based on the standard
BGK approach23 and only a small number of authors24,25,26 applied multiple relaxation time collision operators to the problem.
The objective of this work is to test the shallow water model using a non-conventional MRT collision operator and compare
it to the standard BGK approach. In this work, a new model, based on cumulants, is originally described and its principal and
innovative features and the main theoretical differences to the standard BGK are underlined. In order to retain the characteristics
of the isotropy of the model, the equilibrium cumulants and corresponding relaxation rates are here defined and mathematically
derived, taking into account the dependence of the characteristic speed on the water depth.
The paper is organized as follows: section 2 is a short introduction to the governing shallow water equations and lattice Boltz-
mann shallow water models; in particular, section 2.1 provides information on the LB models solving shallow water equations,
with the description of the different COs and section 2.3 gives an extensive description of the cumulant model and its imple-
mentation procedure. Numerical results and model performance are presented in section 3. In particular, a comparison between
the BGK model and the cumulant model is performed and the main differences are investigated. Especially, in section 3.4 and
section 3.5, the test case of the Stoker dam break and the Fennema-Chaudhry dam break are used to show the different stability
characteristics of the BGK and the innovative approach. Finally, section 4 presents conclusions.

2 METHODS

The SWE are derived from the three dimensional incompressible Navier-Stokes equations. They are valid for problems in which
the vertical dynamics of the fluid can be neglected27. In particular, the SWE are derived using an integration over the depth
in order to obtain vertically averaged quantities. The pressure distribution in the vertical direction z, p′(z), is supposed to be
hydrostatic:

)p′

)z
= −�′g′ (1)

where �′ is the fluid (water) density and g′ is the gravity acceleration. The superscript ′ indicates physical variables, to distinguish
them from variables in lattice units (l.u.). A system of 2D shallow water equations as in19 can be written in the following form:
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where i and j indicate the coordinate axis direction in 2D space, ℎ′ is the water depth, u′ is the velocity, �′ is the kinematic
viscosity, zb is the bed elevation, F

′

i is the external force in the i direction. The external force term can be written as follows:

F ′

i = F
′

P i + F
′

si + F
′

wi + F
′

Ci (5)

where F ′

P i is the force due to gravity and is equal to −g
′ℎ′ )zb

)xi
; F ′

si is the bed shear stress defined as:

F ′

si = Cbu
′

i

√

u′iu
′
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where Cb = g′
n′ 2f
ℎ′ 1∕3

represents the friction factor with Manning’s coefficient n′f at the seabed. The terms F ′

wi and F
′

Ci are,
respectively, the wind shear stress and the force representing the Coriolis effect.
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In this work shallow water flows are modeled using a mesoscopic approach for the tracking of free surface dynamics. Flow
characteristics are described by the evolution of a particle distribution function f (x, t) (PDF) on a regularly spaced domain
(lattice pattern), using the discrete Lattice Boltzmann equation:

f�
(

x + eaΔt, t + Δt
)

= f� (x, t) + Ω� + F� � = 1, ..., m (7)

where x is the position of the particle in the discretized space at time t, f� (x, t) and e� are the particle distribution functions and
the set of discrete speeds along the m allowed lattice directions. The key steps in LBM are streaming and collision. In equation
7, f�

(

x + eaΔt, t + Δt
)

− f� (x, t)) represents the streaming process and Ω� is the collision operator; F� represents the external
forces.
The lattice pattern (DnQm - Dn stands for "n dimensions", while Qm stands for "m speeds") in LBM has the two functions to
represent the points of the grid and to determine the particle directions of the motion. In the present work we adopt the D2Q9
pattern, with the following set of velocities e� , (� = 0, ..., 8)28:

e0 =
(

0
0

)

e1 =
(

1
0

)

e2 =
(

0
1

)

e3 =
(

−1
0

)

e4 =
(

0
−1

)

e5 =
(

1
1

)

e6 =
(

−1
1

)

e7 =
(

−1
−1

)

e8 =
(

1
−1

)

In LBM, the macroscopic properties of the fluid can be expressed using the raw moments of the distribution. The generic raw
moment m�� can be expressed as:

m�� =
∑

i,j
i�j�fij i, j = −1, 0, 1 (8)

where the sum of � and � indices represents the moment order. The indices i and j represent the Miller indices and, following
a method primarily used in crystallography29, allow to express speeds directions.

2.1 Lattice Boltzmann shallow water model
In isothermal lattice Boltzmann models the characteristic speed is a parameter set to a constant that maximizes isotropy. The
characteristic speed is usually identified with the speed of sound. For the D2Q9 lattice the speed of sound is equal to cs =

√

1∕3
lattice units. This fixed characteristic speed is an important simplification of the lattice Boltzmann method as it eliminates the
need to fully resolve the energy flux tensor in velocity space30. To understand this point, we have to recall that the momentum
distribution gives rise to an infinite hierarchy of moment equations. Due to the limited number of lattice velocities, only very few
of these moment equations are independent of each other. On the D2Q9 lattice the moments m30 and m03 are not independently
adjustable quantities. Physically they are part of the heat flux tensor. The trick applied in the lattice Boltzmann method to
avoid a larger set of discrete velocities in which these moments were independent, is to chose a specific temperature (and hence
characteristic speed) for which the momentsm30 andm03 recover their correct physical value. This is only the case for cs =

√

1∕3
which explains why this constant characteristic speed is chosen. A detailed mathematical derivation is found in Appendix H of13.
In the SWE the speed of surface waves takes the place of the speed of sound (characteristic speed) in the original LBM. In
fact, in lattice Boltzmann shallow water (LB SW) models, the characteristic speed cs is not constant but a function of the fluid
elevation h and the gravity acceleration g:

c2s =
gℎ
2

(9)

This is a direct consequence of the equation of state P = 1
2
gℎ2 18, where P indicates the macroscopic value of the pressure.

This poses a problem to the applicability of the LBM to the SWE. As the characteristic speed is no longer constant, the errors in
the discretization of the third order moments do no longer cancel automatically30. This is important as the characteristic speed
influences the viscosity. In fact, the kinematic viscosity (transport coefficient) of the fluid � is linked to the relaxation rate ! and
to the characteristic speed:

� = c2s
( 1
!
− 1
2

)

(10)
The macroscopic properties (water depth h and velocity field ui) of the flow are computed from the raw moments m00, m10/m01,
respectively.

ℎ =
8
∑

�=0
f� ui =

1
ℎ

8
∑

�=0
e�if� � = 0, ..., 8 (11)
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During the collision, update rules are applied at each node, depending only on the state of the PDF on the node. The collision
has to conserve mass and momentum such that m00, m10 and m01 are quantities that do not change during this step.

2.1.1 From lattice units to physical units
In LB simulations, the grid spacing Δx and the elementary lattice time step Δt are linked through the physical value of the
characteristic speed: Cs = cs

Δx
Δt
. Then:

Δt =
cs
Cs
Δx (s)

As reported in28, the characteristic speed represents the velocity at which the waves travel.
Recalling that in SWE LBM the characteristic speed is defined as in equation (9), it follows that the value of the lattice time step
Δt (in seconds s) is given by:

Δt =
(

√

gℎ∕2∕
√

g′ℎ′∕2
)

Δx

where g and g′ are the value of the gravity acceleration in lattice and physical units, respectively. In the practical implementation,
ℎ′ can be maintained equal to ℎ, then the expression of the lattice time step Δt becomes:

Δt =
√

g
g′
Δx (s) (12)

The Froude number (Fr) of the physical model matches the lattice one:

Fr
′ = V ′

√

g′ℎ′
=

V Δx
Δt

√

g Δx
Δt2
ℎΔx

=
V Δx

Δt
Δx
Δt

√

gℎ
= Fr (13)

2.2 Single relaxation time models
SRT models solving the shallow water equations are generally based on a BGK CO17 19, assuming that collision is the process
that returns particles to the state of the local Maxwellian equilibrium:

Ω� =
f� − f

eq
�

�
(14)

where Ω� is the collision operator and � is the collision mean free time. Authors dealing with the solution of the shallow water
equations using the BGK approach31 32 suggest to express the equilibrium PDF as a power series in macroscopic velocities up
to second order, assuring mass and momentum conservation:

f eq� =

⎧

⎪

⎨

⎪

⎩

ℎ − 5gℎ2

6
− 2ℎ

3
u ⋅ u � = 0

�ℎ
(

gℎ
6
+ 1

3

(

e� ⋅ u
)

+ 1
2

(

e� ⋅ u
)2 − 1

6
u ⋅ u

)

� = 1, ..., 8
(15)

where u = [u, v] with u and v that represent the velocity components; � assumes the value 1 if � = 1, ..., 4 and 1
4
otherwise26.

In the D2Q9 model, the relation (8) implies there are only nine independent moments and, in particular m30 = m10. In the SRT
shallow water model (BGK SW) the characteristic speed is decoupled from the third order moment m30: the model uses a c2s
different from gℎ

2
in the diffusion process. This can be evinced by observing the equilibrium equations used: the part related to

the viscosity appears equal to the one adopted in a standard two dimensional LB model, while the part related to the density is
different and takes into account the dependency of the characteristic speed c2s on the depth of the water ℎ (equation 15).
One of the properties of these models is therefore the decoupling of the viscosity from the characteristic speed to assure isotropy.
In the next paragraph we propose and derive the cumulant collision operator where the physical link between the characteristic
speed and viscosity is maintained and the isotropy of the viscosity is restored by applying different relaxation rates to different
second order cumulants.

2.3 Cumulant model
While the original MRT model performs collision on moments, the cumulant model (CumLB) performs the collision on cumu-
lants. Cumulants quantify the deviation of a distribution from a Gaussian distribution. By design cumulants are statistically



SARA VENTURI ET AL 5

independent of each other. Cumulants are conveniently obtained from central moments, defined as:

��� =
∑

i,j
(i − u)�(j − v)�fij i, j = −1, 0, 1 (16)

where the subscripts i and j indicate the corresponding components of the speed vectors of the PDF.
For the D2Q9 pattern used in this work, all but one of the available cumulants are identical to the corresponding central moments.
In particular:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

C00 = �00
C10 = �10
C01 = �01
C20 = �20
C02 = �02
C11 = �11
C12 = �12
C21 = �21

(17)

Starting from fourth order, cumulants differ from central moments13. The D2Q9 pattern, used in this work, has only one
independent fourth order cumulant:

C22 = �22 −
(

�20 �02 + 2�112
)

∕ℎ (18)
Then, equilibrium cumulants are identical to equilibrium central moments15 except for the fourth order cumulant that is zero.
The equilibrium cumulants for a D2Q9 scheme are given by:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

C00 = ℎ
C10 = 0
C01 = 0
C20 = c2sℎ
C02 = c2sℎ
C11 = 0
C12 = 0
C21 = 0
C22 = 0

(19)



6 SARA VENTURI ET AL

The CumLB method is implemented by transforming the distributions to cumulants before the collision using the following
equations:
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

�00 = f7 + f3 + f6 + f4 + f0 + f2 + f8 + f1 + f5
�10 = 0
�01 = 0
�20 = (−1 − u)2f7 + (−1 − u)2f3 + (−1 − u)2f6 + u2f4 + u2f0 + u2f2 + (1 − u)2f8 + (1 − u)2f1 + (1 − u)2f5
�02 = (−1 − v)2f7 + v2f3 + (1 − v)2f6 + (−1 − v)2f4 + v2f0 + (1 − v)2f2 + (−1 − v)2f8 + v2f1 + (1 − v)2f5
�11 = (−1 − u)(−1 − v)f7 − (−1 − u)vf3 + (−1 − u)(1 − v)f6 + −u(−1 − v)f4 + uvf0 − u(1 − v)f2 + (1 − u)(−1 − v)f8+
−(1 − u)vf1 + (1 − u)(1 − v)f5
�21 = (−1 − u)2(−1 − v)f7 − (−1 − u)2vf3 + (−1 − u)2(1 − v)f6 + +u2(−1 − v)f4 − u2vf0 + u2(1 − v)f2 + (1 − u)2(−1 − v)f8
−(1 − u)2vf1 + (1 − u)2(1 − v)f5
�12 = (−1 − u)(−1 − v)2f7 + (−1 − u)v2f3 + (−1 − u)(1 − v)2f6 − u(−1 − v)2f4 − uv2f0 − u(1 − v)2f2
+(1 − u)(−1 − v)2f8 + (1 − u)v2f1 + (1 − u)(1 − v)2f5
�22 = (−1 − u)2(−1 − v)2f7 + (−1 − u)2v2f3 + (−1 − u)2(1 − v)2f6 + u2(−1 − v)2f4 + u2v2f0
+u2(1 − v)2f2 + (1 − u)2(−1 − v)2f8 + (1 − u)2v2f1 + (1 − u)2(1 − v)2f5

(20)
In the collision step, cumulants are relaxed following the equations:

Cpc
�� = C�� − !��

(

C�� − C
eq
��

)

(21)

where Ceq
�� is the equilibrium cumulant and Cpc

�� is the post-collision one. A cumulant related to the definition of the value of the
transport coefficient � is C11, while the corresponding cumulants obtained from the rotational invariance constraint15 are C20
and C02. Then, in order to retain the isotropy of the model, the latter cumulants are relaxed together:

{

Cpc
20+02 = C20+02 − !20+02

(

C20 − C
eq
20 + C02 − C

eq
02

)

Cpc
20−02 = C20−02

(

1 − !20−02
) (22)

with C20+02 = C20 + C02 and C20−02 = C20 - C02. The relaxation rates related to the kinematic viscosity are !11 and !20−02:

!11 =
1

3� + 0.5
!20−02 = !11 (23)

with !20−02 = !20 - !02. The only relaxation rates that influence the viscosity to leading order are !11 and !20−02. The relaxation
rate !20+02 can be imposed equal to unity or related to the bulk viscosity. The remaining relaxation rates are free parameters and
can be chosen in the range {0, ..., 2} to improve stability or accuracy.
In section 3.3.5 we investigate some options for the choice of these relaxation rates. Finally, post collision cumulants are
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transformed to distributions:
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

f0 = −�20 + �22 + 2�12u + �02(−1 + u2) + 2�21v + 4�11uv + �20v2 + �00
(

−1 + u2
) (

−1 + v2
)

f1 =
1
2

(

�20 − �22 + �00u − �02u+ +�00u2 − �02u2+ −�12(1 + 2u) − 2�11v − 2�21v − 4�11uv − �20v2 − �00uv2 − �00u2v2
)

f2 =
1
2

(

�02 − �22 − 2�11u − 2�12u+ −�02u2 + �00v − �20v − 4�11uv+ −�00u2v + �00v2 − �20v2 − �00u2v2 − �21 (1 + 2v)
)

f3 =
1
2

(

�12 + �20 − �22 − �00u + �02u − 2�12u + �00u2+ −�02u2 + 2�11v − 2�21v − 4�11uv − �20v2 + �00uv2 − �00u2v2
)

f4 =
1
2

(

�02 + k21 − �22 + 2�11u − 2�12u − �02u2 − �00v + �20v − 2�21v+ −4�11uv + �00u2v + �00v2 − �20v2 − �00u2v2
)

f5 =
1
4

(

�12 + �21 + �22 + �02u + 2�12u + �02u2 + �20v + 2�21v+ +�00uv + �00u2v + �20v2 + �00uv2+
+�00u2v2 + �11 (1 + 2u) (1 + 2v)

)

f6 =
1
4

(

�21 + �22 − �02u + �02u2 + �12(−1 + 2u) + �20v + 2�21v+ −�00uv + �00u2v + �20v2 − �00uv2+
+�00u2v2 + �11 (−1 + 2u) (1 + 2v)

)

f7 =
1
4

(

−�21 + �22 − �02u + �02u2 + �12 (−1 + 2u) − �20v+ +2�21v + �00uv − �00u2v + �20v2 − �00uv2+
+�00u2v2 + �11 (−1 + 2u) (−1 + 2v)

)

f8 =
1
4

(

�12 − �21 + �22 + �02u + 2�12u + �02u2 − �20v + 2�21v+ −�00uv − �00u2v + �20v2 + �00uv2+
+�00u2v2 + �11 (1 + 2u) (−1 + 2v)

)

(24)

2.3.1 Specific characteristics of cumulant CO based model
In the D2Q9 model, relation (8) implies there are only nine independent moments and, in particular:

m30 = m10 (25)

The coincidence of higher order moments with lower order ones is known as aliasing. Referring to the theory of cumulants13
or, similarly, to the Taylor expansion of the Maxwell-Boltzmann distribution up to second order in the Mach number33, it can
be shown that the third order equilibrium moment meq30 is equal to:

meq30 =
(

3 ⋅ c2s ⋅ u + u
3)ℎ (26)

If the normalized value of meq30 is considered and the high order term u3 is neglected, the moment meq30 becomes:

meq30 = 3 ⋅ c
2
sm

eq
10 = 3 ⋅ c

2
sm

eq
30 (27)

This explains why, in an isothermal single phase lattice Boltzmann model, the characteristic speed is considered constant and
equal to

√

1
3
.

As already pointed out, the characteristic speed cs in a shallow water LB model is not constant but variable with the depth of
the water18. The relationship (25) is hence not fulfilled by a SWE LBM. All previous models solved this problem by decoupling
the viscosity from the characteristic speed. In that way the equilibrium distribution function does no longer represent an approx-
imation of the Maxwellian. In what follows we propose an alternative solution to the problem that respects the dependence of
the viscosity on the characteristic speed and captures the first nine moments of the Maxwellian equilibrium exactly. Since the
aliasing relation (25) can no longer be fulfilled, the isotropy of the viscosity has be restored by the use of different relaxation
rates for the two moments controlling viscosity. Hence, the following strategy is adopted:

• the characteristic speed is assumed variable following equation (9)

• the expression of c2s enters in the definition of cumulants of the equilibrium;

• in the collision step, the relaxation rate of 2nd order cumulants are adjusted in order to retain the isotropy during the
collision:

!11 =
(

2
3gℎ

( 1
!
− 1
2

)

+ 1
2

)−1

(28)

and

!20−02 =

⎛

⎜

⎜

⎜

⎝

2
3

(

1
!
− 1

2

)

1 − gℎ
2

+ 1
2

⎞

⎟

⎟

⎟

⎠

−1

(29)
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where the ! is related to the kinematic viscosity of the fluid (equation 10).

3 RESULTS

3.1 Convergence study in diffusive scaling
As the two possible strategies to solve the SWE with LBM differ in the way they impose an isotropic viscosity, we show here
the performance of the respective models in recovering the target viscosity. To this end we conduct a convergence study (section
3.2 and 3.3) by measuring the error in diffusive scaling: the time step scales proportionally to the square of the grid spacing
(Δt ∝ Δx2). The setting allows to maintain a constant value of Reynolds number at constant viscosity under grid refinement.
The asymptotic behavior of the measured viscosity �m is determined by fitting the logarithm of the amplitude of a decaying wave
to a linear function. The slope is related to the measured viscosity through the square of the wave vector. The normalized error
of the viscosity ER�, with respect to the theoretical viscosity � = c2s

(

� − 1
2

)

Δx2

Δt
is defined as: ER� = |�m − �|∕�.

The phase lag can be considered a measure of the level of Galilean invariance (GI) in the model. Thus the GI of the proposed
method is investigated by calculating the phase lag ERΦ every turn, when the wave comes back to its original position.

3.2 Shear wave test
In the shear wave test, the asymptotic behavior in diffusive scaling (Δt ∝ Δx2) of a one dimensional decaying shear wave is
investigated. The dimensions of the domain are L×3 nodes, with L varying from 32 to 256 nodes. Periodic boundary conditions
are used. The simulation was run for 20000

(

L∕L0
)2 time steps and the wave amplitude was measured every 1000

(

L∕L0
)2 time

steps. In order to avoid any influence of the initial conditions on the asymptotic decay, the values of viscosity and phase were
compared to the measurement obtained after 10000

(

L∕L0
)2 time steps. The velocity is scaled with:

(

L
L0

)

. The initial conditions
are given by:

u(x, t = 0) = u0
L0
L

v(x, t = 0) = v0
L0
L
sin 2�x

L
with L0=32, u0=0.01 and v0=0.1. All the quantities are expressed in lattice units (l.u.). The physical values are: L0Δx,
u0(Δx∕Δt), v0 (Δx∕Δt), with Δx = 1m and Δt given by the relation (12).
The analytical solution of the problem is given by:

v(x, t) = v0
L0
L
sin 2�x

L
e−�t

(

2�
L

)2

Hereafter, the results of the CumLB and BGK SW are shown (Fig.1). The error in viscosity in the CumLB model is comparable
with the ones of BGK SWE. For example, with � = 0.01 and ℎ = 1, in the cumulant model the normalized error in viscosity is
0.00284 for L = 32 nodes and 0.0000443 for L = 256 nodes. In the BGK SW, it is generally slightly higher, 0.0029 for L = 32
nodes and 0.0000453 for L = 256 nodes. Moreover, all the models show a second order convergence with the increase of the
resolution.
The error in phase (phase lag) is measured when the wave should have come back to its original position. The number of time
steps after which the wave should return is equal to: u0 ⋅

L0
L
. The error in phase lag shows a fourth order accuracy. It should be

clarified that a fourth order phase lag is due to the alignment of the wave with the grid and that, in general, the method is second
order accurate13. The value of the phase lag is similar in CumLB and BGK SW model.

3.3 Taylor Green Vortex test
Due to its simplicity in both initial and boundary conditions, the Taylor Green Vortex has been studied extensively and serves
as a well-established reference and benchmark test problem for numerical simulation: it allows a straightforward validation of
the code and is ideally suited for a structured grid approach34. The decay of a Taylor Green Vortex in a fully periodic domain
is investigated, to assess the accuracy of the transport coefficient (viscosity) and the phase lag. Computations are performed
considering a domain of variable length L and widthW . Different scenarios are based on values of L equal to 32, 64, 128, 256
Δx, and width W equal to 48, 96, 192 and 384 Δx, respectively. The difference in the dimensions of the domain (L ≠ W )
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allows to check for possible defects in the isotropy of the model and for the presence of preferential directions.
At the beginning of the simulation, the values of the velocity along the x-axis and y-axis, and of water depth, are:

u(x, y, t = 0) = u0
L0
L
− U

L0
L

√

ky
kx
cos

(

kxx
)

sin
(

kyy
)

(30)

v(x, y, t = 0) = U
L0
L

√

kx
ky
sin

(

kxx
)

cos
(

kyy
)

(31)

ℎ(x, y, t = 0) = ℎ0

⎛

⎜

⎜

⎜

⎝

1 −

(

U 2 L
2
0

L2

)

4c2s

(ky
kx
cos

(

2kxx
)

+
kx
ky
sin

(

2kyy
)

)

⎞

⎟

⎟

⎟

⎠

(32)

having indicated with kx and ky, the components of the wave vectors :

kx =
2�
L

ky =
4�
3L

kx
ky
= 3
2

(33)

L0 is set equal to 32, u0 and U are chosen considering two different velocity configurations, namely "slow set" and "fast set".
For the slow set : u0 = 0.01

Δx
Δt

and U = 0.00035Δx
Δt

while for the fast set u0 = 0.096
Δx
Δt

and U = 0.0035Δx
Δt

. The value of
the grid spacing is Δx = 1 m; the value of Δt is given by the equation (12).
The viscosity value is then defined as: � = c2s

(

� − 1
2

)

Δx2

Δt
. An analytical solution of the wave velocity along the y-axis is given

by:

v(x, y, t) = U
L0
L

√

kx
ky
sin

(

kxx
)

cos
(

kyy
)

e
t
tD (34)

where tD (decay time of the wave) is equal to:
tD =

1

�
(

k2x + k2y
) (35)

The aforementioned initial conditions are set as in35, with the difference that our domain is not isotropic.
Simulations are run with viscosities � = 0.01, 0.001, 0.0001 and different depths ℎ = 1, 0.5, 0.1.
The simulation setup uses the diffusive scaling. In such a way, velocities and times are always multiplied by the factor L0

L
and

(

L0
L

)2
, respectively.

3.3.1 Error in viscosity
The asymptotic behavior of the viscosity of the CumLB and BGK SWE has been compared for various values of viscosities
� and depths of the water ℎ to take the variations in the characteristic speed into account. The logarithm of the normalized
viscosity error is plotted against the logarithm of the number of nodes. For ℎ = 1, the trend of the viscosity error slope is in
between second and third order convergence for the CumLB model. In the cumulant model with slow velocity set and � = 0.01,
the slope is ≅ −2.35 (Fig. 2, case (a)) but it approaches −2 for lower values of ℎ (Fig. 2, case (b) and case (c)).
If stable, the BGK SWE are always characterized by a slope trend equal to ≅ −2.0.
First of all, it is noteworthy that the BGK SW model is characterized by a more limited range of stability. In fact, the BGK
model becomes unstable for a value of ℎ equal to 1.0 for all the considered viscosities, � = 0.01, 0.001, 0.0001 (Fig. 2 case (a),
(d) and (g)). The BGK SW results are slightly more accurate than those of the CumLB model for low depths only if the slow
velocity set is considered (i.e., Fig. 2 case (c), (h) and (i)). Conversely, for the fast velocity set, the CumLB model wins. For
ℎ=0.5, the CumLB model is more accurate with �=0.01 and � = 0.001 (Fig. 2 case (b) and (e)), BGK with � = 0.0001 (Fig. 2
case (h)). Furthermore, it should be noted that, generally, in CumLB model the error in viscosity increases with the reduction of
viscosity, as already discussed in13. On the other hand, the viscosity error in the BGK SWE changes in a limited manner with
the reduction of viscosity.
As expected, simulations performed with a fast velocity set are characterized by some cases missing because of instability (Fig.
3), cases (d), (g) and (i) are missing); furthermore, all the models show a viscosity error much higher than for the slow velocity.
For example, taking into consideration results of CumLB with � = 0.01 and ℎ = 1.0, an increment in the fast set of translational
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velocity u0 and of the amplitude of the velocity of the wave U by a factor of about tenth leads to a forty times increase of the
error (for comparison, Fig. 2 case (a) and Fig. 3 case (a)). Nevertheless, it has to be pointed out that, if the model remains stable,
errors can be considered essentially low in all the cases, taking a maximum value of 0.015% for CumLB model and 0.02% for
BGK SW, respectively.

3.3.2 Phase lag measure
In all the models examined, the error in phase is defined by a slope of the trend equal to −2, as generally expected in lattice
Boltzmann models. As already observed in the previous section 3.3.1, the instability that characterizes the BGK SW and starts
from depths higher than 0.5, does not allow to measures the phase for ℎ = 1 (cases (a), (d) and (g) of Fig. 4 and 5).
At slow velocities (Fig. 4), the error in phase of the CumLB model appears to be slightly influenced by the depth and viscosity
values. In fact, it evidently (Fig. 4, case (a), (b) and (c)) increases if the depth decreases. For example, in a 256 × 384 nodes
domain, the difference of the error for the viscosities � = 0.01 and � = 0.0001 is about 2.5% for ℎ =1 and about 40% for ℎ =
0.1. On the other hand, the BGK model is characterized by an error in phase less variable with depth and viscosity, as it was
already observed in the section regarding the viscosity error (section 3.3.1).
For ℎ = 0.1, viscosity � = 0.0001, L = 32 and L = 32, the cumulant model is not stable.
In all the models, the phase lag increases with the velocity (Fig. 5). For example, in the cumulant model, the error for the fast
velocities set is about 0.5% (ℎ = 1), 0.4% (ℎ = 0.5) and 0.3% (ℎ = 0.1) higher than for the slow set. The error was calculated
considering the medium value for all the viscosities. In the BGK SW this difference is not seen and the phase lag grows by
0.5% for all the depths. It has to be pointed out that in BGK SW the error does not change significantly with the change in the
viscosity value (for example, Fig. 5 case (b), (e) and (h)). If ℎ = 1 and � = 0.001 (Fig. 5, case (d)), CumLB exhibits an higher
accuracy in phase.

3.3.3 Results for high viscosities
Results from the previous sections clearly exhibit the unstable behavior of BGK for ℎ between 0.5 and 1, with all the viscosities
taken into consideration. BGK returns to stable solutions for � = 0.1 and ℎ ≥ 1 (Fig. 7), maintaining the trend already observed
in sections 3.3.1 and 3.3.2. In such a case, the cumulant model continues to display a stable behavior for a viscosity value � = 0.1
and ℎ≥1 (Fig. 6). Analyzing the simulation results (not shown in this work), it was noted that the trend illustrated in the previous
cases (Fig. 2, 3, 4, 5) was maintained; in fact, an accuracy decrease, both for BGK and CumLB, can be put in evidence adopting
high viscosities. In the evaluation of the errors for viscosities higher than � = 0.01, a shorter time sampling of measurements
has to be taken into consideration than for the lower viscosities, as the decay time drops exponentially with the viscosity. For a
viscosity equal to �=0.1, the sampling interval chosen is 100

(

L
L0

)2
.

3.3.4 Observations about stability range
In this work, a newMRT collision operator is presented and applied to the solution of shallowwater equations. As a first result and
validation, a study on accuracy and stability of the CumLB model against the standard BGK model is proposed and discussed.
In particular, the Taylor Green Vortex test in a rectangular domain has been considered significant to evaluate the behavior of
the models also from the point of view of isotropy as this flow has velocity components not aligned with any of the primary
axes. In Fig. 6 and 7, the stability range of the models is shown. The stability range changes for the different values of depths of
the water ℎ and translational velocity u0. To define the range of stability, an intermediate velocities value (between the fast and
slow set) was considered with u0 = 0.05 and wave amplitude U = 0.00175. Circles indicate the points where the simulation was
performed. When stable, all models show a second order convergence in viscosity error and in phase error. The ℎ characterized
by the most stable behavior is 0.5. Here the simulations are stable for all the value of the viscosities taken into consideration. If
the value of the depth moves towards lower or higher values, the stability properties change. In particular, for low depths (ℎ =
0.1), both models are stable for the lowest viscosities (� = 0.001 and � = 0.0001) only if using low translational velocities. For
depths going towards the value of 1.0, the CumLB model is always stable for the slow set of translational velocities. For the fast
set, we have to arrive to a viscosity value equal to � = 0.01 to have a stable behavior.
It is clear from Fig. 6 and 7 that the CumLBmodel is characterized by a wider stability range. In fact, the BGK becomes unstable
for ℎ values between 0.5 and 1. Several areas are totally missing in the BGK stability range - graph. BGK starts to become stable
again only for high viscosities (� ≥ 0.1) and depths (ℎ ≥ 1).
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3.3.5 Choices of relaxation rates parameters
It needs to be clarified that all the results presented so far were obtained with the relaxation rates for the bulk mode, the third
order and fourth order cumulant set to one. This choice is known to be particularly stable but it is also known that this is not the
most accurate choice. Some particular combinations of relaxation rates can lead to drastic improvement of accuracy36,37. To
investigate the effect of using different values of relaxation rates, two approaches were taken into consideration: under relaxation
and over relaxation of third order cumulants. The under-relaxation of third order cumulants can be obtained by means of the
Ginzburg coefficient. Ginzburg showed that by selecting an appropriate combination of the odd and even rates it was possible
to obtain the correct solution for the Poiseuille and Couette flow test cases38. For the D2Q9 model, the Ginzburg coefficient
becomes: Λ = (1∕!11 − 1∕2) ⋅ (1∕!21 − 1∕2). We selected the simple values Λ=1/4 and Λ=1/6. In the case of the Taylor
Green Vortex test both values of Λ lead to a significant accuracy decrease in viscosity and in phase. Different results were
achieved with the over-relaxation of third order cumulants. It can be obtained imposing !21 = !11. In some cases, this choice
of parameters gave better results than under-relaxation. For example, taking into account the error in phase (section 3.3.2), we
have observed an improvement in accuracy. The best results are obtained for the highest viscosity (�=0.01) and the lowest height
(h=0.1). Considering the low velocity set, the improvement of the over-relaxation with respect to the case!21 = 1 is about 39 %.
Considering the high velocity set, the improvement is about 32 %. However, the over-relaxed cumulant does not always enhance
the accuracy in viscosity. A decisive improvement is only observed in a limited number of cases. Moreover, it was found that
the effects of over-relaxation on stability are not always positive. In fact, despite a few cases where the stability improves for
low heights, it becomes worse in particular for a range of heights between 0.5 and 1.

3.4 Stoker dam break
One of the test cases of a dam break flow was given from Stoker39 and it has become a standard benchmark for the shallow water
equations40. Hereafter, the one - dimensional Stoker dam break is presented, in order to compare the BGK model with the new
MRT model. The numerical results of the CumLB model are compared with the non - stationary analytical solution at a certain
time. A fluid domain of 200 m × 200 m was taken into account. At the boundaries, no-slip is imposed (Figure 8, simulation
setup). The bed is flat and frictionless. At t=0 the flow is at rest and characterized by two different water levels, ℎl= 10 m and
ℎr= 5 m, with the presence of a step-wise discontinuity at x=100 m. The initial conditions are set to:

⎧

⎪

⎨

⎪

⎩

u(x) = 0 m∕s everywℎere
ℎl = 10 m 200m > x ≥ 100m
ℎr = 5 m 100m > x ≥ 0m

The instantaneous breach of the dam leads to a transient flow consisting of two waves. The one reflects from the discontinuity to
the region with the higher water level. The other is a shock wave moving in the opposite direction. At time t = 6 s a sensitivity
analysis for different grid spacings was carried out for the CumLB model. The relaxation rate � was set to 0.85 and various
Δx = 1, 0.5, 0.25 m were considered. In the flat regions a good agreement between the simulation and the analytical solution
is observed. Due to numerical diffusion, the slopes are less well recovered but the agreement improves with higher resolution
(Figure 8). It is also possible to note a slight oscillation at the shock front. This phenomenon, common in discrete approximations
and analogous to Gibbs oscillations41, is an obstacle to the stability of the LB schemes. The oscillation becomes stronger with
lower viscosity. The Gibbs effect is highlighted in the following graphs where the trend of ℎ and u is shown for different times:
2, 4, 6 and 8 s (Figure 9 and 10). The value of the relaxation rate is set to 0.6 which is lower than in previous case. Δx is set to 1
m. The oscillations are especially evident in the case of the BGK model. Due to the strong Gibbs oscillations, the BGK model
becomes unstable before the end of the simulation at time t=15 s after the bounce back of the wave at the wall. We point out that
the value of the grid spacing does not influence the extent of the oscillations. To further investigate the stability properties of the
cumulant CO at different viscosities, we gradually decrease the value of � and Δx. Results shows that, using a Δx =0.125 m,
the simulation is still stable for �=0.5001, corresponding to a physical viscosity � = 5.05 ⋅10−6 m2∕s which is close to the value
of water. The threshold value of � for BGK CO is 0.65 corresponding to � = 7.5 ⋅ 10−3 m2∕s which is three orders of magnitude
higher than the one reached for the cumulant CO. Moreover, a lower value of � corresponds to simulation results closer to the
analytical solution with regard to the knees (Fig. 11).
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3.5 Asymmetrical dam break of Fennema-Chaudhry
The Fennema-Chaudhry dam break has been used extensively in literature as a test case for the shallow water equations42. The
spatial domain is a 200 m × 200 m flat region without friction at the bed and a dam in the middle16. The numerical parameters
of the simulation are Δx=0.1 m, Δt=0.0082 s and �=0.7. At t=0, the level of the water surface is set 10 m for the upstream
region and 5 m for the downstream region (Figure 12, simulation setup). The asymmetrical dam-break was simulated using the
cumulant CO and the BGK SW model. The value of viscosity in this example is artificially increased and differs from that of
water. This is due to the fact that the BGK CO is unstable for lower value of � and a comparison of results is feasible only in
the stability range of both investigated models. Moreover, outcomes were compared to results from a finite volume numerical
model, RiverFlow 2D43, that implements non-linear shallow water equations and is based on adaptive triangular meshes. The
model solves mass and momentum conservation equations in a plane obtained by depth-averaging Navier-Stokes equations. As
most of 2Dmodels available in literature this model neglects the diffusion of momentum due to viscosity: � )

2(ℎui)
)xj)xj

. A comparison
with the continuous model will be therefore only qualitative. As observed from figures 13 and 14, the BGK-SW model and the
CumLB model show similar results and the agreement between these solutions and the RiverFlo 2D solution is satisfactory. The
simulations with the cumulant and the BGK CO start to differ significantly from each other after the impact of the wave with
the east wall. In fact, the CumLB model continues to exhibit a stable behavior at the impact (t=11.5 s), after the reflection of
the wave (t=14 s) and at the impact with the dam (t=23.3 s) (figure 15), while the BGK-SW model becomes unstable. This is
a further evidence of the stability improvement in lattice shallow water schemes due to the introduction of the cumulant CO.
Figure 16 shows the good agreement between the water depth hydrographs of RiverFlow 2D model and CumLB model, at the
two point P1 and P2 (figure 12) located at the middle of the breach.

4 CONCLUSIONS

In this work an alternative approach to solve the shallow water equations with the Lattice Boltzmann model was proposed and
investigated. All previous LBM SWEmodels used a decoupling of the viscosity from the characteristic speed to assure isotropy.
In this work the physical link between the characteristic speed and viscosity has been maintained. The isotropy of the viscosity
has been restored by applying different relaxation rates to different second order cumulants. It was confirmed that the method
maintained a correct viscosity with second order convergence. The proposed methodology overcomes the stability problems of
BGK CO for low values of viscosity, allowing for the correct simulation of natural phenomena (such as propagation of floods,
dam breaks) that involve the propagation of water. Studying the breaking dam example, it was also confirmed that the new
approach compares favorable to the classical BGK approach. It is possible to conclude that the cumulant CO is a promising tool
to overcome issues of the BGK model: its higher stability properties make it more suitable for numerical simulation of shallow
water equations. Since our approach is based on different relaxation rates for different cumulants it cannot be implemented
within a single relaxation time BGK framework. However, the mechanism to sustain isotropy used in the BGK method can be
implemented also in a MRT cascaded framework, based on central moments, as has recently be done by De Rosis26. His method
is consistent with the BGK operator, as the latter is recovered exactly if all the moments relax with a common frequency. In
the cumulant framework the two methods can even be combined44 which provides an additional degree of freedom to further
improve stability and/or accuracy.

List of acronyms
LBM: Lattice Boltzmann Method
SWE: Shallow Water Equations
LB SW: Lattice Boltzmann Shallow Water
CO: Collision Operator
SRT: Single Relaxation Time
MRT: Multi Relaxation Time
BGK: Bhatnagar- Gross- Krook
CumLB model: Cumulant Lattice Boltzmann Model
BGK SW model: BGK Shallow Water Model
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PDF: Particle Distribution Function
D2Q9: Two-dimensional lattice pattern with 9 speed directions
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FIGURE 1 Shear wave test. Comparison of normalized error in viscosity ER� and phase lag ERΦ, for the three viscosities:
�=(a) 0.01, 0.001 (b), 0.0001 (c), ℎ=1. Values in l.u.

FIGURE 2 Taylor Green Vortex test. Slow velocity set - comparison of normalized error in viscosity ER� , for the three depths:
ℎ=1.0 , 0.5 , 0.1 and viscosities: �=0.01, 0.001, 0.0001. The label shows the different values of the domain width L. Values in
l.u.
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FIGURE 3 Taylor Green Vortex test. Fast velocity set - comparison of normalized error in viscosity ER� , for the three depths:
ℎ=1 (a), 0.5 (b), 0.1 (c) and viscosities: �=0.01, 0.001, 0.0001. The label shows the different values of the domain width L.
Values in l.u.

FIGURE 4 Taylor Green Vortex test. Slow velocity set - phase lag ERΦ, for the three depths: ℎ=1.0 , ℎ=0.5 , ℎ=0.1 - �=0.01,
0.001, 0.0001. The label shows the different values of the domain width L. Values in l.u.
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FIGURE 5 Taylor Green Vortex test. Fast velocity set - phase lag ERΦ, for the three depths: ℎ=1.0 , ℎ=0.5 , ℎ=0.1 - �=0.01,
0.001, 0.0001. The label shows the different values of the domain width L. Values in l.u.

FIGURE 6 Stability range - cumulant model with the variation of viscosity and translational velocity (l.u.).
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FIGURE 7 Stability range - BGK SW model with the variation of viscosity and translational velocity (l.u.).

FIGURE 8 Stoker Dam Break test case. Top: simulation setup. Bottom: CumLBmodel - water depth ℎ (m) and velocity u (m/s)
at section A - A for different grid spacing.
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FIGURE 9 Stoker Dam Break - water depth ℎ (m): comparison for CumLB and BGK SWmodels at time t=2, 4, 6, 8 s.Δx=1m.

FIGURE 10 Stoker Dam Break - water depth u (m/s): comparison for CumLB and BGK SW models at time t=2, 4, 6, 8 s.
Δx=1m.
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FIGURE 11 Stoker Dam Break - water depth ℎ (m) and velocity u (m/s) for �=0.5001 and �=0.8 (CumLB) and analytical
solution at time t=6 s. Δx=0.125 m.

FIGURE 12 Simulation setup. On the left, the water depth ℎ in the domain. On the right, the position of the sections A-A and
B-B and of the P1 and P2 points. Measures in meters.
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FIGURE 13 Longitudinal (A-A) and transversal (B-B) sections in dam-break domain. Comparison of the water depth (ℎ) values
at 7.2 s for different models: CumLB, BGK-SW and RiverFlow 2D.

FIGURE 14Water depth (ℎ) contours level for different models: RiverFlow 2D, BGK-SW and CumLB model.
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FIGURE 15 CumLB model: water depth (ℎ) level for different times: 11.5 s (a); 14 s (b); 23.3 s (c).

FIGURE 16 Comparison of water depth hydrographs at points P1 and P2, CumLB model and RiverFlow 2D model.
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