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Abstract 

 

This paper provides empirical evidence of the effects that weather conditions exert on the 

electricity market, offering a new contribution to the understanding of hourly regional price 

formation in the day ahead market in Italy. The empirical estimation uses a new data set of 

hourly data on both market variables and temperature variables.  

There is a vast body of literature on the effect of temperature on final consumers and on 

wholesale electricity market equilibrium. However, the influence of temperature on the behavior 

of the wholesale electricity market has not been studied at the hourly level. A new econometric 

estimation shows some evidence of different effects of temperature and provides a more accurate 

estimation of the hourly prices. Forecasting out-of-sample performance of the model is 

satisfactory. 

The present results have welfare-improving policy implications, because appropriate policy 

strategies can help public decision-makers promote regulation, such as issuing public weather 

alert and designing contingent plans to face extreme weather conditions, which improves 

production efficiency, network management, and consumer saving behavior, taking specific 

weather conditions into account.  

 

JEL classification: C32, D4, Q4 

 

Key Words: Hourly electricity market; Temperature effects; Hourly temperature data; Vector 

autoregression; Non-parametric regression. 
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1 Introduction 

 

The analysis of the dynamic pattern of electricity prices has developed extensively with the 

liberalization of electricity markets, exploiting the rich data made available from the organized 

wholesale markets. In particular, the European market design, as framed by the EU Directive 

(EU, 2009) and implemented by Member States, explicitly envisions the public release of the 

relevant market data in accordance with the principles of transparency and promotion of 

efficiency. In this respect, the Italian Power Exchange market (IPEX) is no exception. Data on 

prices, quantities, and relevant structural conditions are released by the market operator, GME 

spa, at an hourly frequency, almost in real time.  

There is a large amount of empirical literature investigating several aspects of the liberalized 

electricity markets. This paper analyzes the stochastic properties of the spot prices, like mean 

reversion, seasonality, and extreme values, and assess the influence of the weather variables, 

such as temperature, on the pattern of electricity consumption. While a large amount of literature 

has addressed the issue of temperature effects by looking at the final consumer behavior at the 

structural level of monthly or annual data, as argued more in detail in the next Section, there has 

not been any explicit analysis of the nexus between market prices and temperature effects at the 

hourly level. 

The aim of this paper is to fill this gap, providing empirical evidence of the effects of 

temperature conditions on the electricity market at the hourly frequency, specifically 

investigating whether forecasting the temperature effect is a relevant additional variable in the 

day-ahead price determination at the hourly frequency. In this paper, this aim has been broken 

down to the following three new research questions: 
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First, the hourly price forecast is explicitly modeled, both taking into account and testing the 

specific effect of a function of the hourly temperature. Second, the empirical analysis considers 

simultaneously regional and hourly data for the longest period available. Data are for six regions 

and 101,520 hours from January 2005 to July 2016. There are no studies of the Italian market 

that analyze such a long range of data. Third, the estimation is carried out via a comprehensive 

model of hourly price determination using data on both market variables and weather forecast 

variables. In particular, a new hourly measure of heat degree-hours (HDH) and cooling degree-

hours (CDH) is computed and used, together with a new measure of extreme weather conditions 

for six Italian regions.  

Results can offer a more accurate forecast of electricity market prices, which can be useful for 

both private business and public policy-makers. Generation companies can use a more accurate 

price forecast to improve their profitability strategies and their short-term technical and 

operational decisions, as well as their long-term investment decisions. 

Policy-makers and public agencies (like the Energy Authority and the Renewable Incentive 

Program Agency) can use more accurate price forecasts to implement better regulation to 

promote competition and enhance consumer welfare. Consumers will have better choice 

opportunities. Specific consumer categories can be better protected, like in the case of linking, in 

a systematic way, the issuance of public weather alerts to real time measures to helping the 

elderly in extreme weather conditions. 

The paper proceeds as follows. Section 2 presents a brief literature review. Section 3 describes 

the model. Section 4 discusses the methodology applied and the data. Section 5 presents the 

results. Section 6 concludes and discusses the policy implications. 
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2 Literature review 

The introduction of weather variables in the analysis of electricity consumption and price 

patterns dates back to the pioneering works of Le Comte et al. (1981), Engle at al. (1986), and 

Peirson and Henley (1994), who estimated models with monthly data. Since then, there have 

been three main lines of research on the weather–electricity market variables’ nexus. 

The first line of research deals with the impact of temperature on residential demand and prices. 

The data are generally at a monthly frequency (Miller et al., 2017; Son et al., 2017), with a 

breakdown of monthly sectorial electricity demand and complex functions of the density of 

temperatures (Chang et al., 2016). Analysis of the sectorial firms’ electricity demand with 

temperature effects has been conducted at the daily frequency in the case of Spain (Moral-

Carcedo and Pérez-García, 2015). Also using daily temperature data, Graff Zivin and Novan 

(2016) assess the impact of temperature on the individual response to the residential 

weatherization programs designed to encourage conservation. A specific interest in the analysis 

of demand response in urban areas is provided by Papakostas and Kyriakis (2005), who use 

HDH and CDH in Greece, with daily data; Veliz et al. (2017), who estimate the effect of climate 

change on electricity prices in the US, with monthly data; Luiz and Afshari (2015), who measure 

several hourly weather variables to model and forecast the electricity load within the UAE, using 

a transfer function method, with daily data; Jovanovic et al. (2015), who analyze the impact of 

temperature conditions on the consumption of electricity in East Europe, with daily data. 

The second line of research analyzes the supply side. Yu et al. (2009) use a data envelope 

analysis to investigate the impact of weather on the overall efficiency of network utilities, 

measured with costs and quality of service. Herrerias and Girardin (2013) use temperature to 



5 

 

analyze the seasonal character of electricity production across Chinese regions, at the monthly 

frequency.  

The third line of research deals with dynamic modeling and forecasting the electricity price with 

temperature variables at a higher frequency, generally either daily or weekly. The electricity 

price is modeled using the stochastic time change method, with the temperature being used as a 

proxy for the demand (Borovkova and Schmeck, 2017). Figueiredo et al. (2016) provide an 

updated literature review of the analysis of daily electricity prices and the weather variables, 

analyzing the Central–West European market with vector auto regressions (VARs), showing that 

there are also spillover effects across all countries. 

The day-ahead spot price dynamics in the German electricity spot market is analyzed with a 

dynamic structural VAR model by Paschen (2016), who finds that load and spot prices are 

stationary. Several price variables, peak hours, and daily averages, are analyzed by Huurman et 

al. (2012) at the daily frequency, who show that temperature information demonstrates predictive 

power in forecasting electricity prices. Evidence that electricity load and prices are temperature 

sensitive is reported also in Forbes and Zampelli (2014). Bosco et al. (2010) justify the use of 

weekly medians of the original hourly time series to avoid intra-day seasonality. A mean 

reversion of electricity prices in wholesale markets is found in Bosco et al. (2010), Huisman and 

Mahieu (2003), and Zhang and Lian (2017). The latter authors estimate a general model 

combining wavelet transformation, a kernel extreme learning machine, and an auto regressive 

moving average (ARMA), using daily data. 

A specific interest in the effects of extreme temperature events on the electricity prices in Latin 

America is provided by Santágata et al. (2017). Evidence of extreme weather with daily data is 

provided by Moral-Carcedo and Pérez-García (2015), who analyze the impact on firms’ 
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electricity demand in Spain, and by Mansanet-Bataller et al. (2007), who analyze the EUA price 

levels.  

Raviv et al. (2015) challenge the view that hourly prices are independent, because, as they point 

out, the market process is based on simultaneous bids submitted for the prices of all the hours of 

the next day in the day-ahead market. 

They posit that prices are determined simultaneously and that it is not appropriate to model the 

hourly prices as single time series. Their line of analysis is geared toward the question of 

whether hourly electricity prices can be used to predict the daily average price. 

In summary, the existing literature does not contain an explicit estimation of the hourly 

frequency of the electricity price determination with temperature effect. This paper intends to fill 

this gap. 

 

3 The Model 

The general model specification is grounded on the simple textbook supply equation, which can 

be identified (Fisher, 1966) as a price-quantity relation that excludes a priori specific demand 

determinants (such as income). In this context, the supply function is specified as follows:  price 

P is a function of quantity Q and possibly market structure M (as defined in the next section) plus 

an error term u. 

   (   )            (1) 

 

The main interest of this paper is to investigate the additional explanatory content of the 

temperature T, assuming that the supply function includes also the temperature T: 

   (     )            (2) 



7 

 

Note that eq. (2) allows us to test empirically whether temperature is an additional significant 

regressor, together with load, that explains day-ahead prices.
1
 In this paper, three specifications 

of eq. (2), both parametric and non-parametric, are used to assess the impact of temperature on 

electricity day-ahead prices in the six regions of the Italian electricity market (as explained in 

detail in the next section).. 

First, a non-parametric regression is conducted to compute a kernel estimator of the relation 

price-quantity and price: 

 ( |   )   ( )         (3) 

where X= {Q, T} and f(x) is a kernel estimator with a Gaussian function. 

Second, a simple ARMA(p,q) model is used for each regional price: 

     ∑     
 
         ∑     

   
              (4) 

 

where b0 = 1, bj = 0 for j > q, aj = 0 for j > p and the innovations ut are independent and 

identically distributed, with E[ut] = 0. 

Third, a VAR(p) model is specified for the six regional prices, or a p-th order VAR, with 

exogenous variables X: 

                                                   (5) 

 

where Pt is a vector of the six regional prices, with p lags of these variables, c Aj Bj are 

parameters, and Xt= {Qt, Tt, Mt} are exogenous variables, which include functions of 

                                                 
1
 This is an empirical question, because it cannot be taken for granted that the load incorporates all the relevant 

information at the time of the day-ahead price formulation. So, adding the temperature forecast in the equation 

allows its significance to be tested. 
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contemporaneous and lagged quantities, market structure, and temperatures. The usual 

assumption holds: 

E(  )       (     
 )     and  (     

 )         ≠  s . 

It is particularly interesting to assess the effect of forecast temperature on the electricity day-

ahead market prices. Weather forecasting is crucial to both the demand and the supply sides of 

the electricity market. On the demand side, traders and distributors are sensitive to weather 

conditions, for their customers in the retail market are affected by temperature and, therefore, 

both traders and distributors are exposed to the risk of unbalancing costs. On the supply side, 

energy companies and generating utilities obviously face operational challenges related to 

unexpected changing weather conditions. It is assumed that market operators formulate weather 

forecasts using the available temperature data at the time of decision. Therefore, this paper 

considers how temperature forecasting is incorporated in the agents’ decision process, taking into 

account the relevant works of Wilks (1995) and Campbell and Diebold (2005), who used a time 

series approach to forecast daily temperatures.  

To this end, three different temperature forecasting behaviors in the electricity market are 

considered: (i) A short-term memory, i.e., using past temperatures of previous hours—this model 

is intended to capture an autoregressive expectation formation about the temperatures during the 

next day, at the time of the day-ahead market formation; (ii) A long-term memory with perfect 

foresight using contemporaneous and lagged temperature values—this model implies perfect 

foresight at the time of the day-ahead market formation and incorporates the realized value of the 

temperature in the observed hour; and (iii) A long-term memory plus a specific alert mechanism 

for extreme weather conditions. This model includes a specific determinant for the periods of 
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extreme values of the temperatures, which are very low in the winter in the Northern regions and 

very high in the summer over the entire country.
2
 

 

4 Data and Methodology  

The dataset used is constituted by the hourly day-ahead market outcomes in Italy, taken from the 

Italian market operator, GME spa, and spans the longest period available since the start of the 

Italian Power Electricity Exchange market (IPEX). The 2004 data are discarded, because the 

market was not completely operational in the initial period, with only the generator allowed to 

bid in the market. Thus, the data on hourly prices and quantities are collected for the period 

January 2005 to July 2016, for a total of 101,520 hourly records. 

The Italian day-ahead market determines the hourly equilibrium price and quantity as the balance 

of the supply and demand bids, aggregated according to the ascending and descending merit 

order, respectively. Bids can be freely revised until the closure deadline, which is 12:00; i.e., the 

market closes on average 24 hours before operations start. In case of line congestion, a market 

segmentation solution with different regional prices is implemented. Notice that Italy is a narrow 

country stretching from North to South, with the two largest islands (Sicily and Sardinia) in the 

Mediterranean Sea; so the zones of possible congestion are pre-defined in six regions—North, 

Center-North, Center-South, South, Sicily, and Sardinia—by the system operator, TERNA spa.
3
 

This means that different prices can occur only across the six regions and not within a region. 

The regional prices occurring in the 6 regions are labeled PNORD, PCNOR, PCSUD, PSUD, 

PSICI, and PSARD, respectively. Note that different market segmentation resulting in different 

                                                 
2
 Exceptional weather conditions in Italy can occur in the winter as a result of exceptional North-east wind storms 

originating from a Siberian anticyclone (Makrogiannis et al., 1980) and in the summer as a result of African heat 

waves originating from the African anticyclone hitting the Mediterranean Sea. 
3
 Sicily is connected to the South, and Sardinia is connected by two HVDC lines to Center-North and Center-South, 

respectively. 
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prices can occur across the adjacent regions due to different patterns of line congestion. The most 

frequent occurrence is the two-market segmentation between Continental Italy + Sardinia and 

Sicily [for a detailed analysis, see Bigerna et al. (2016a)]. Therefore, there are six regional price 

series in every hour.   

The market structure variable is captured by the Herfindahl index, as published by the Market 

operator for each hour and region (GME, 2017). This variable summarizes the market conditions 

in terms of concentration and congestion.
4
 

Hourly temperature data are provided by the Italian Military Airforce General Office for 

Meteorology for six airports located in the center of the six regions analyzed. Data are registered 

at a frequency of 20+ minutes within the hour; thus, they have been preliminarily averaged the 

data at the hourly level. Hourly temperature data have been used to compute two other variables: 

the HDH and CDH values, with the reference temperature at 18° Celsius, defined as the 

differences between hourly average temperatures and the base temperature:  

     (      )
           (6) 

     (      )
          (7) 

where Th is the average hourly temperature and Tr=18 is the reference temperature, as defined 

above. The “ 
+ 

“ superscript shows that only positive values are considered in each formula.  

In summary, the data used are the hourly prices, quantities, temperature, HDH, CDH, and market 

structure for the six regions, for a total of 609,120 elementary observations for each variable 

(101,520 hours x 6 regions). 

A preliminary data analysis with a simple scatter plot analysis reveals that prices move with 

temperatures in different seasons and regions. In winter, prices move upward with lower 

                                                 
4
 Similar considerations on the Italian market can be found in Gianfreda and Grossi (2012) and Bigerna et. al. 

(2016b).  
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temperatures, and more so in the North, while prices move upward with higher temperatures in 

the summer, and more so in the South (Figure 1). Focusing on the time series properties, there is 

a vast body of literature on unit root tests applied to energy data, as reviewed by Smyth and 

Narayan (2015). There is evidence of both stationary and non-stationary pattern of quantities at 

both the country and the sector level. For the electricity markets the evidence shows typically 

that market series exhibit mean reversion and are stationary [an example for Italy is reported in 

Gianfreda and Grossi (2012)]. Another debated issue is the power of the unit root test in the 

presence of time series of spatial data. For instance, the analysis of large multi-country panels 

shows both stationary and non-stationary patterns, with a Seemingly Unrelated Regressions 

(SUR) Augmented Dickey–Fuller (ADF), or SURADF, test.
5
 Along these lines, it is reasonable 

to consider that the regional prices are undoubtedly affected by some common decision process 

in the market, and, thus, may have to be considered as a regional panel of time series; the 

situation is similar with multi-country energy data. In addition, there is the issue of non-linearity, 

certainly grounded on the basic features of convexity of the underlying supply functions and 

demand functions that determine the equilibrium outcomes. Non-linearity has been analyzed, in 

the case of exchange rate data, with the non-linear test by Kapetanios et al. (2003), who pose, as 

an alternative to the unit root hypothesis, the hypothesis of non-linear but globally stationary 

ESTAR (exponential smooth transition autoregressive). This may be a relevant case if the speed 

of mean reversion is not invariant to the distance from the equilibrium. In this case, non-

linearities can arise, perhaps due to market frictions, like transmission line congestions, agents’ 

heterogeneity, and the influence of regulatory interventions in the market (Taylor, 2010). 

                                                 
5
 The SURADF test is advanced by Breuer et al. (2001), which incorporates the efficient SUR estimator and is 

reported to be potentially more powerful than the ADF test alone (Hsu et al. 2008). 
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Based on previous considerations, the six regional prices and the six regional quantities are first 

tested for stationarity with the ADF test and then for cointegration with the Engle–Granger test. 

Each hour is considered separately. Given that the regional variables for prices and quantities 

may be correlated, the SURADF test (Hsu et al. 2008) is performed, considering a panel of 6 

regional variables through time. Finally, the Kapetanios test is used for non-linearity but global 

stationarity. All tests are reported in Tables 1 and 2. The first three columns of Table 1 report the 

ADF tests for prices, quantities, and temperature in the 6 regions. The fourth column reports the 

Engle–Granger test for the cointegration vector price-quantity-temperature. The four columns of 

Table 2 report the same tests for each hour separately; there are 4,230 observations in the sample. 

To save space, results are reported only for 4 hours of the day (00.00; 6:00; 12:00; 18:00); the 

others are available upon request. In addition, columns five and six of Table 1 report the non-

linear Kapetanios tests for price and quantities, and the last two columns, seven and eight, report 

the SURADF test for the six regional price and quantity variables. 

Findings show that, for all variables, ADF and SURADF tests reject the null hypothesis; thus, the 

conclusion is in favor of stationarity, even taking into account the panel feature of the regional 

variables. This is in line with a similar analysis by Kyritsis et al. (2017). There is also a rejection 

of unit root and some indication in favor of non-linear stationarity, less so in the case of log 

transformation. On the basis of these results, logs of the six regional price variables are taken. 

 

5 Estimation results 

The data set described in the previous section is used to estimate different models, both to assess 

their relative performance in estimating prices and to choose the most appropriate empirical 

representation of the price generation process. 
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First, a non-parametric kernel regression is estimated, with relative bandwidth data driven 

[chosen according to the classic rule of thumb of Silverman (1986)] for each regional price 

(Table 3). For a recent non-parametric analysis of energy variables see Mohammadi and Ram 

(2017). 

Study of the density functions of the six regional prices allows us to check for the time patterns, 

as shown in Figure 2. The shape of the distribution has not changed significantly between 2006 

and 2016, for all regions with a tendency to higher peaks in the most recent period, with the 

exception of the Sicily distribution, which is definitely less dispersed in 2016 than in the 

previous periods. The accuracy of the estimation is somehow poor, as shown by the RMPSE 

values in Table 3, especially in tracking the spikes and the pattern in the Island, see Figure 3.
6
  

Second, a simple ARMA(24,12) model is estimated for each regional price (Table 3). In 

principle a Seasonal ARMA(P,Q)s, considering s=24, i.e., considering the influence of the same 

hour of the day before, can be also investigated. As examples, note that Janczura et al. (2013) 

and Nowotarski and Weron (2016) discuss the daily seasonality of the electricity day-ahead 

prices. As the focus in this paper is not on the de-seasonalized properties of the series, this issue 

is not pursued further. The maximum order lag for autocorrelation was chosen as one full day, p 

= 24 (and q=12), determined using the usual Schwarz Information Criterion tests for the null 

hypothesis of absence of autocorrelation until order 48 (essentially, two days). The estimated 

series are plotted against the historical values for 2 representative hours of the day: 00:00 and 

12:00 (Figure 4). The goodness of fit is somewhat better than with the non-parametric kernel 

estimation, but it is quite low, as shown by the r-square and root mean square percent error 

(RMSPE) values reported in the last column of Table 3. 

                                                 
6
 Note that, in Figure 3 (and following), each box shows the regional price pattern. As price variability is different in 

each region, the scale of each box is automatically adjusted to enhance the visual impact of the line. 
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Third, focusing on the VAR models of the six regional (log) prices, five variants of the 

theoretical models (1) and (2) are estimated, labeled VAR0, VAR1, VAR2A, VAR2B, and 

VAR2C (Table 4). The first estimation, VAR0, is a basic model with contemporaneous and 

lagged quantities as exogenous variables. The order of lag chosen to set a parsimonious 

parameter specification is: 0, 1, 2, and 24. The second estimation, VAR1, corresponds to 

equation (1), which includes the market structure variable (as in Gianfreda and Grossi, 2012).  

Fourth, the temperature effect is added to the model, as in eq. (2), considering a short run 

forecast of temperature, model VAR2A. In this case, the temperature variable lags reflect the 

current information presumably available at the time of closure of the day-ahead market (at 

midday) and are chosen as 12, 24, 25, and 30. Fifth, a long memory forecast with perfect 

foresight is considered in model VAR2B. In this case, the temperature lag structure is more 

complex, ranging from the contemporaneous temperature to a maximum lag of 30. Therefore, the 

lags are 0, 1, 6, 12, 18, 24, 25, and 30. Values of the temperature variables every six hours have 

been used to mimic the typical frequency of the meteorological forecast issued by the Italian 

Military Navy meteorological service. This has been done because, and this has to be stressed, 

the day-ahead market data are determined the day before the actual recorded date, so the 

contemporaneous temperature is not known at that time. In other words, the realized temperature 

value in each hour can be assumed to be the perfect foresight value determined the day before. 

Sixth, regional dummy variables have been computed for extreme critical conditions of very low 

temperature in the Northern regions (below -5° Celsius) and very high temperatures in the whole 

country (above 30° Celsius). These occurrences are seen in approximately 5% of the whole 

sample. The model that includes of the extreme weather condition is model VAR2C. 
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The relevant diagnostics for these five VAR models are shown in Table 4. Note that VAR0 is 

theoretically unfounded and that VAR2A is a significant generalization of the basic model 

VAR1 (which includes the market structure variable), on the basis of the LR test. In other words, 

temperature has a significant additional effect on price determination. 

The empirical results of models VAR2A, VA2B, and VAR2C are new in the analysis of the 

Italian electricity day-ahead price. These results undoubtedly show that temperature is 

significantly determining prices. The LR ratio tests are all in favor of the highest level of 

generalization. This confirms the relevance of extreme weather conditions in shaping the market 

outcome. 

In addition, the single equation diagnostics of the VAR1 and VAR2C estimations are reported to 

appreciate better the improvement in the price estimation provided by the inclusion of the 

temperature effect (Table 5). The VAR2C model exhibits lower r-square and RMSPE values and 

better DW. Note the high significance of the block exogeneity test for the inclusion of lagged 

values of the other prices. The accuracy of estimation of VAR2C is good, as shown in Figure 5, 

for two hours of the day for the six regions. 

It should be noted that the dynamic specification of the VAR2C model involves the estimation of 

145 parameters for each region, given the complex lag structure. Detailed parameter results 

(which are jointly statistically significant, as shown by the LR tests of Table 4) are available 

upon request. The simulations of shocks on the exogeneous variables are shown in Table 6, 

which provides averages (and standard errors) of the effects of the market structure, CDH and 

HDH to prices (simulated values are averages for the last year of the sample). These values are 

marginal effects, ceteris paribus, taking as given the quantity effects. The relative contribution of 

the market structure is reported in col. 1 of Table 6, and it shows that an increase of 10% in the 
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Herfindahl index, which can be interpreted as a lowering of competition, brings about an 

increase of 1%–1.5% in the electricity price in the Central and Northern regions of the country. 

Thus, an increase in concentration has a positive effect on prices. In the South, which is a region 

where the gas and electricity distributor Enel has a relevant position there is a small negative 

effect on prices. Differently from the other regions, the highest values of the Herfindhal index 

occur in the South during the night hours. Therefore, in these hours it happens that Enel bids its 

relatively more efficient generation units, pushing down the equilibrium price down, but at the 

same time pushing up the Herfindhal index. The relative contributions of an increase of 1 degree 

Celsius of CDH and HDH are reported in cols. 2 and 3 of Table 6. Note that in general, the 

effects are relatively higher for the CDH than HDH. This is in line with expectations, for in Italy 

air conditioning uses electricity more than heating (which uses also natural gas). Note that the 

effect of CDH and HDH is relatively lower in the central part of the country (C-north and C-

south), showing that the need for comfort requires a relatively more moderate increase in price. 

In particular, the HDH effect in the South is negligible. In addition, note that in the islands, 

Sicily and Sardinia, an increase in the heating requirement, even if the winter season is short, 

spurs a relatively higher price increase. This can be triggered by the increased need for local 

generation, which may costlier. In addition, in Sicily the HDH effect is relatively greater than the 

CDH effect, possibly because higher temperature in the summer is concomitant of a larger share 

of solar generation, which partly moderates prices. 

It is appropriate to evaluate the relative influence among the six regional electricity prices in the 

long-run using the impulse response and the forecast error variance decomposition (FEVD) of 

the estimated VAR2C. The former is useful to trace the effect that either an exogenous shock or 

an innovation in one of the variables has on the others. The latter shows the proportion of the 
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forecast error variance of each variable that can be explained by some exogenous shocks to 

another variable. The impulse response and the FEVD for the six regional prices of model 

VAR2C are reported in Figure 6 and Table 7, respectively. 

Analysis of these impulse responses highlights that a shock to the price in the North fades away 

rather quickly, while it is more persistent in the other regions. This is plausible, because the 

North is highly interconnected with other foreign markets. Prices in Sicily and Sardinia do not 

significantly react to a permanent 1% shock in the price of their adjacent regions; South and 

Center-South, respectively. All shocks fade away within the day. 

To assess the forecasting performance, the model has been re-estimated, excluding the last six 

months of the sample and rolling one month ahead in each trial. Operationally, model estimation 

has been carried up to December 2015, then up to January 2016, and so on up to May 2016. 

Then, the model has been dynamically simulated to forecast zonal prices one month ahead, i.e., 

the forecasting horizon is 720 hours ahead, using historical values of the structural and 

temperature variables. The RMSPE values are higher than is the in-sample error (values range 

from .04 to .10 for all zones, except for Sicily, which is .20). Analyzing the decomposition of the 

mean square error, the fraction due to bias is approximately .5 for all series, while almost all the 

rest of the fraction is due to difference covariation. Correcting for the bias, the RMSPE is halved. 

The actual and forecasted corrected values for the 720 hours forecast for January 2016 are shown 

in Figure 7. The estimations for the other periods are quite similar. In general, the forecast 

appears to be satisfactory, (except for two isolated spikes) confirming the relative accuracy of the 

estimated model. 
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6 Conclusions and policy implications 

In this paper, an hourly model of price determination in the Italian electricity market has been 

estimated for six regions. The main novelty of this work has been the incorporation of hourly 

temperature variables as a measure of the weather forecasting behavior of agents into the 

determination of the day-ahead price in the electricity market. This differs from previous studies, 

which have analyzed the impact of temperature on the market at either daily or weekly 

frequencies. Given that relevant temperature fluctuations occur within the course of one day, 

while daily averages show less pronounced changes, this result sheds new light on the 

understanding of hourly price formation. 

In this paper, the hourly price determination is modeled simultaneously for the six regions in the 

Italian electricity market, considering the approach of Ravin et al. (2015), and it is related to the 

interesting work of Papakostas and Kyriakis (2005), who use heating and cooling degree hours to 

analyze residential behavior. 

The empirical estimation of electricity prices has taken into account not only the main 

characteristics relative to the cointegration but also the parametric relationships between the 

electricity market and temperature variables, as recognized in the literature at daily and monthly 

frequency. The new results at hourly frequency show that temperature has a significant 

explanatory power alongside traditional load variables and other structural variables. The 

marginal effects of the temperature on prices are on average in the order of one percentage point, 

higher for cooling-degree hours and lower for heating-degree hours. The forecasting 

performance of the model out-of-sample is, in general, satisfactory. 

Thus, possible future lines of extension of this work could be to develop further models of 

temperature forecasting, and also to simulate a kind of stress-test for extreme weather conditions. 
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If the forecast temperature affects the day-ahead price and this feeds back to the reaction of the 

policy-maker, a rational expectations framework could be devised, whereby market agents react 

to the policy response triggered by the private agent forecasts.  

These results are relevant to formulating suggestions to policy-makers based on a better 

understanding of the relevant impact of temperature variables on the process of price 

determination, for four reasons. 

First, a more accurate model of price forecast not only helps to design better deregulation 

policies and price setting enacted by the Government and/or the Energy Authority but also 

improves the acceptance of consumers, who can see a better and more transparent impact on 

their electricity bills. It should be remembered that a mission of the Italian Energy Authority is to 

promote competition. This can also be accomplished with more accurate information. If Italian 

consumers learn and understand that temperature is a relevant determinant of their electric bill, 

i.e., that, for example, high temperatures mean higher generation costs, this can be conducive to 

a more favorable attitude toward the transition challenges of the electric market, including a 

favorable response to real time pricing (Allcott, 2011). Indeed, any improvement in the 

credibility of the regulatory action is expected to have a positive impact on efficiency and 

welfare in the marketplace. 

Second, better knowledge of market price models can help managers of generators and utilities 

refine their pricing strategies and, ultimately, improve their profitability. In other words, these 

results suggest that there is valuable information in the temperature variables to formulate 

business decisions, paving the way for further development of modeling other weather-related 

variables, such as humidity, insolation, wind speed, and so on. 
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Third, and closely related to the previous issue, it is reasonable to assume that weather-related 

variables, such as temperature in this study, will become increasingly relevant with the further 

development of renewable sources on the supply side of the market. This is rather obvious, for 

the availability of renewable sources depends on natural forces on Earth. Thus, the previous 

paradigm of complete human control of conventional generation technology may be increasingly 

challenged by the shift toward more reliance on renewable sources. Hence, there is a need to 

develop the analysis of the relationship between temperature and both the level and the 

composition of the electricity generation to design adequate risk control measures, to cope with 

increased volatility, and to face undesired consequences of policy actions. In this context, it is 

important to strengthen the relationship between short-term temperature effect and long-term 

investment decisions. Even if this argument may give rise to skepticism at first sight, we must 

recall that market prices, and especially the day-ahead prices, have been considered, within the 

liberalization of the electricity markets, as the signaling variable to spur future investment. 

Consequently, a better understanding of the driving factor of price formation is bound to have an 

effect on investment decisions. 

Fourth, a more accurate understanding of the impact of extreme weather conditions can help 

public decision-makers enact better regulation to improve consumer welfare. As the Italian 

Energy Authority is involved in the definition of the policies in favor of specific groups, such as 

poor and weak consumers, it can help accomplish its mission by taking care of sensitive issues 

related to either the elderly or those affected by long-term illness, who may suffer in critical 

weather conditions, and enacting specific tariff structures and rebates related to weather 

conditions. 
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In conclusion, this paper has provided new empirical evidence of the significant impact of 

temperature in the hourly price determination in the electricity market. The results quantify the 

additional explanatory power of temperature with respect to the traditional load variable and 

other structural variables and demonstrate the possibility of obtaining more accurate short-term 

price forecasts at an hourly frequency. Better information and better forecasts is the basic way 

for the regulator to encourage supply competition and enhance consumer welfare. This work 

opens a fruitful line of future research to analyze further the link between the day-ahead 

electricity price formation and temperature forecasting at an hourly frequency. 
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Figure 1 Price and temperatures in Winter and Summer at 12:00 – North and South -2005-2016 

(*) (*) Price on the horizontal axis in Eur/MWh and temperature on the vertical axis in Celsius 

 

 

Figure 2 - Kernel estimation of regional prices 

 

 

 

Figure 3 - Regional price estimation with kernel regression – period 2006-2016 (*) (*) price in 

Eur/Mwh on the vertical axis 

 

 

 

Figure 4 - Regional price estimation with ARMA model – period 2006-2016 (*) (*) price in 

Eur/Mwh on the vertical axis. 

 

 

 

Figure 5 - Regional price estimation with VAR2C model – period 2006-2016 (*) (*) price in 

Eur/Mwh on the vertical axis 

 

 

Figure 6 - Impulse response of VAR2C model  

 

 

 

Figure 7 – Zonal prices - out-of-sample dynamic forecast Jan 2016 - one month ahead (*) (*) 

price in Eur/Mwh on the vertical axi 
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Table 1- Cointegration and Non-linearity tests – regional series  

 
Test 
value 

ADF 
price 

ADF 
quant 

ADF 
temp 

EG 
P-Q-T 

KAP 
price 

KAP 
quant 

SURADF 
price 

SURADF 
quant 

24 lags         

North -21 -64 -5 -16 -18.9 -3.0 -62.1 -152.1 

C-North -21 -54 -9 -17 -19.3 -3.9 -80.1 -165.1 

C-South -21 -31 -10 -16 -19.5 -3.8 -84.2 -114.8 

South -20 -18 -10 -16 -26.2 -3.8 -100.8 -117.1 

Sicily -15 -26 -11 -17 -23.9 -4.2 -66.9 -107.6 

Sardinia -20 -10 -10 -21 -23.9 -3.2 -89.8 -120.7 

  
Note: all values are significant at 1% level  

Cols.1-3: ADF, augmented Dickey Fuller on price, quantity and temperature, no constant, (critical level= -

3.4). Col. 4: EG, Engle Granger cointegration test on price, quantity and temperature vector. Cols. 5-6: 

Kapetanios test on price and quantity, significance level at 1% = -2.8. Cols. 7-8:  SURADF test on system 

of regional price and quantity. 
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Table 2 - Cointegration tests – hourly regional series 

 
Test 
value 

ADF 
price 

ADF 
quant 

ADF 
temp 

EG 
P-Q-T 

7 lags     

Hour 1:00     

North -5.1 -13.4 -5.2 -5.2 

C-North -5.3 -10.2 -6.2 -5.5 

C-South -5.5 -8.0 -6.1 -5.9 

South -6.5 -4.5 -5.5 -6.8 

Sicily -9.7 -7.8 -5.2 -10.9 

Sardinia -11.0 -4.9 -5.9 -12.7 

     

Hour 6:00     

North -6.6 -12.2 -5.2 -6.9 

C-North -6.9 -9.9 -6.2 -7.0 

C-South -7.3 -7.9 -6.0 -7.4 

South -7.9 -4.9 -5.1 -7.9 

Sicily -10.8 -7.9 -4.9 -11.3 

Sardinia -11.6 -4.6 -6.4 -13.0 

     

Hour 12:00     

North -8.6 -9.9 -5.3 -8.5 

C-North -8.1 -8.9 -5.3 -8.8 

C-South -7.8 -6.3 -5.4 -7.8 

South -8.1 -5.3 -5.9 -8.2 

Sicily -7.8 -7.9 -5.0 -9.5 

Sardinia -9.2 -5.1 -5.2 -9.5 

     

Hour 18:00     

North -6.1 -10.5 -4.7 -7.1 

C-North -5.6 -8.9 -5.4 -6.9 

C-South -5.5         -6.7     -5.1 -5.7 

South -6.0 -5.1 -5.3 -6.7 

Sicily -7.0 -7.1 -4.8 -9.4 

Sardinia -8.8 -4.9 -5.1 -9.6 

     

 
Note: all values are significant at 1% level  

Cols.1-3: ADF, augmented Dickey Fuller on price, quantity and temperature (no constant). Col. 4: EG, 

Engle Granger cointegration test on price, quantity and temperature vector 
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Table 3 - Estimation diagnostics - Single regional equations 

 
Test 
value 

logL 
 

r-square 
 

No. 
Coeff. 

DW 
 

rmspe 
 

North      
Kernel .. .57 .. .. 6.9 
ARMA -360965 .89 36 1.9 0.9 
      
C-North      
Kernel .. .64 .. .. 6.2 
ARMA -367636 .89 36 2.0 1.5 
      
C-South      
Kernel .. .35 .. .. 32.0 
ARMA -369306 .89 36 2.0 7.3 
      
South      
Kernel .. .49 .. .. 72.2 
ARMA -371526 .89 36 1.9 2.0 
      
Sicily      
Kernel .. .58 .. .. 65.2 
ARMA -443316 .82 36 2.0 28.1 
      
Sardinia      
Kernel .. .42 .. .. 26.7 
ARMA -425720 .1 36 2.0 8.9 
      

 

Note: Kernel Gaussian regression, data determined bandwidth. AR (24,12) single equation estimation. Col.1: Log 

likelihood values. Col. 2: r-square. Col. 3: number of parameters. Col. 4: Durbin-Watson test. Col. 5: root mean 

square percentage error. 
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Table 4 - Estimation diagnostics - VAR system of regional equations 

 
Test 
Value 

logL 
 

LR test 
 

No. Coeff. 
 

Schwarz 
B.I.C. 

VAR0: simple p,q 
 

477126  222 -475649 

VAR1: add mkt structure 
 

478847 3442(72) 294 -476891 

VAR2A: add short run 
temperature effects 

479402 1110 (276) 576 -475570 

VAR2B: add long run 
temperature effects 

479999 1194  (282) 858 -474291 

VAR2C: add extreme 
temperature effects 

480055 112  (54) 912 -473987 

     

 

Note: VAR specifications: VAR1 from eq. (1); VAR2A, VAR2B, VAR2C, from eq. (2), 24 lags with quantities and 

temperature. 

Col.1: Log likelihood values. Col. 2: LR test with degrees of freedom (d.f.) in parenthesis; all tests are Chi-square 

and significant at 1% (critical values are: 81.1for d.f.=54; 102.8 for d.f.=72; 359.9 for d.f.=300. Col. 3: number of 

parameters. Col. 4: Schwarz B.I.C. 
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Table 5 - Estimation diagnostics of VAR models - Single regional equations 

 
Test 
value 

R2 
 

No. 
Coeff. 

DW 
 

Block 
exog F 

rmspe 
 

North      
VAR1 .91 49 1.82 15.4 0.02 
VAR2C .92 152 1.84 14.9 0.01 
      
C-North      
VAR1 .90 49 1.84 51.8 0.038 
VAR2C .91 152 1.86 54.5 0.037 
      
C-South      
VAR1 .90 49 1.86 53.1 0.039 
VAR2C .90 152 1.87 51.7 0.038 
      
South      
VAR1 .87 49 1.89 70.9 0.055 
VAR2C .87 152 1.89 70.9 0.054 
      
Sicily      
VAR1 .85 49 1.97 105.1 .12 
VAR2C .86 152 1.97 99.4 .11 
      
Sardinia      
VAR1 .86 49 1.92 161.3 0.039 
VAR2C .86 152 1.92 169.7 0.038 

      
 

Note: VAR1 and VAR2C: VAR specifications as in table 4. Col.1: R square. Col. 2: number of parameters. Col. 

3:Durbin-watson test. Col. 4: block exogeneity F test for significance of lagged values of other dependent variables. 

Col. 6:  mean square percentage error. 
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Table 6 – Estimate of the effect of market structure and temperature in model VAR2C 

 

 

Increase of 10% in 
Herfindhal index 
 
 

Increase of 10 C in 
Cooling-degree-days 
 

Increase of 1
0
 C in 

Heating-degree-days 
  
 

 Percentage effect on price 
North 1.2 (0.09) 1.36  (0.01) 0.22 (0.02) 
C-North 0.3 (0.02) 0.64 ( 0.08) 0.10 (0.08) 
C-South 1.5 (0.05) 0.73 (0.09) 0.17 (0.02) 
South -0.3 (0.04) 2.44  (0.02) 0.07 (0.01) 
Sicily 0.1 (0.002) 0.62 (0.02) 2.39 (0.01) 

Sardinia 1.1  (0.02) 1.05 (0.01) 0.93 (0.01) 
    

 

Note: simulation of the single regional equation of theVAR2C model, with shocks on the 

regressors shown in columns. Values are averages (with standard errors in parenthesis) of the 

percentage difference between actual and simulated values for the last year of the sample.   
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Table 7 - Single regional equations forecast error variance decomposition from model VAR2C 

 

Variation in the row variable explained by column variable 

 

 

North 
 

C-North 
 

C-South 
 

South 
 

Sicily 
 

Sardinia 
 

North 0.2 99.6 0.1 0.0 0.0 0.1 
C-North 0.2 72.1 27.5 0.0 0.1 0.1 
C-South 0.2 54.1 17.4 28.3 0.1 0.0 
South 0.3 33.0 10.3 18.3 38.4 0.0 
Sicily 0.3 7.3 1.6 2.9 5.1 83.0 
Sardinia 0.3 25.3 9.4 13.7 0.5 0.0 
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Figure 1 Price and temperatures in Winter and Summer at 12:00 – North and South -2005-2016 

(*) 

 

    
 

        
 

(*) Price on the horizontal axis in Eur/MWh and temperature on the vertical axis in Celsius 
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Figure 2 - Kernel estimation of regional prices 
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Figure 3 - Regional price estimation with kernel regression – period 2006-2016 (*) 

 

Panel A – hour 00:00   
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Panel B – hour 12:00   

 

     
 

     
 

    
 

(*) price in Eur/Mwh on the vertical axis 
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Figure 4 - Regional price estimation with ARMA model – period 2006-2016 (*) 
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Panel B – hour 12:00 

 

    
 

    
 

    
 

(*) price in Eur/Mwh on the vertical axis 
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Figure 5 - Regional price estimation with VAR2C model – period 2006-2016 (*) 
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Panel B – hour 12:00 

 

    
 

    
 

    
 

(*) price in Eur/Mwh on the vertical axis 
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Figure 6 - Impulse response of VAR2C model  
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Figure 7 – Zonal prices - out-of-sample dynamic forecast Jan 2016 - one month ahead (*) 

 

    
 

    
 

    
 

(*) price in Eur/Mwh on the vertical axis 
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Highlight 

 

Price formation in the hourly electricity day ahead market is function of temperature  

 

Accurate estimation of the hourly prices allows good forecasting out-of-sample  

 

Results can help policy makers to improve production and network efficiency  

 

Model can help in issuing public weather alert and design contingent plans for emergency  

 

 




