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Abstract

We investigate monomials axd over the finite field with q elements Fq, in the case
where the degree d is equal to q−1

q′−1 + 1 with q = (q′)n for some n. For n = 6 we

explicitly list all a’s for which axd is a complete permutation polynomial (CPP) over
Fq. Some previous characterization results by Wu et al. for n = 4 are also made more
explicit by providing a complete list of a’s such that axd is a CPP. For odd n, we show
that if q is large enough with respect to n then axd cannot be a CPP over Fq, unless
q is even, n ≡ 3 (mod 4), and the trace TrFq/Fq′

(a−1) is equal to 0.

Keywords: Permutation polynomials; Complete permutation polynomials; Bent-negabent
boolean functions.

1 Introduction

Let Fℓ, ℓ = ph, p prime, denote the finite field of order ℓ. A permutation polynomial (or
PP) f(x) ∈ Fℓ[x] is a bijection of Fℓ onto itself. A polynomial f(x) ∈ Fℓ[x] is a complete
permutation polynomial (or CPP), if both f(x) and f(x) + x are permutation polynomials
of Fℓ. Both permutation polynomials and complete permutation polynomials have been
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extensively studied also because of their applications to cryptography and combinatorics;
see for instance [6,8,11,12,16,20] and the references therein. In particular, CPPs over fields
of characteristic 2 give rise to bent-negabent boolean functions, which are a useful tool in
cryptography; see [14].

Some families of CPPs are obtained in [6,8,11,13,18,20]. Nevertheless, CPPs seem to be
very rare objects, even if we restrict to the monomial case. It is easily seen that a monomial
axd is a CPP if and only if (d, ℓ−1) = 1 and xd+ x

a
is a PP. This motivates the investigation

of permutation binomials of type xd + bx for d = (ℓ− 1)/m+ 1 with m a divisor of ℓ− 1.

In [3–5, 20, 21] PPs of type fb(x) = x
qn−1

q−1
+1 + bx over Fqn are thoroughly investigated

for n = 2, n = 3, and n = 4. For n = 6, sufficient conditions for fb to be a PP of Fq6 are
provided in [20, 21] in the special cases of characteristic p ∈ {2, 3, 5}. The case p = n + 1 is
dealt with in [10].

In this paper, we provide a complete classification of permutation polynomials fb in the
case n = 6, for arbitrary q. Theorems 1.1 and 1.2 list explicitely for q ≥ 421 all elements
b ∈ Fq6 \ Fq such that fb is a PP. For smaller values of q, Theorems 1.1 and 1.2 provide
families of PPs of type fb. We also determine the number of PPs of type fb for q ≥ 421; see
Corollary 3.3. It should be noted that for p = 7, the sufficient condition in [10] for fb to be
a PP is that bq−1 = −1; our results show that this is not a necessary condition.

Our methods also work for n = 4. This allows us to list PPs of type fb for n = 4; see
Remark 3.4. In this way, a more explicit description of the necessary and sufficient conditions
of [21, Theorem 4.1] is given.

In the paper the case n odd is dealt with as well. Note that for n odd fb being a PP

implies that b−1x
qn−1

q−1
+1 is a CPP only for p = 2. We show that if p does not divide (n+1)/2

or TrFq/Fq′
(b) 6= 0, then for q large enough with respect to n the polynomial fb is never a PP;

see Theorem 4.2. This shows that for n odd the monomial b−1x
qn−1

q−1
+1 is never a CPP unless

n ≡ 3 (mod 4). For n = 3 Theorem 4.2 provides a shorter proof of the results of [5, Section
3].

A key tool in our investigation is the following criterion from [13], which relates the
existence of a suitable Fq-rational point of some algebraic curve to fb being a PP or not.

Niederreiter-Robinson Criterion. The polynomial

fb(x) = x
qn−1

q−1
+1 + bx (1)

is a PP of Fqn if and only if b ∈ Fqn \ Fq and the following inequality

x(x+ b)
qn−1

q−1 6= y(y + b)
qn−1

q−1 (2)

holds for all x, y ∈ Fq such that x 6= 0, y 6= 0, and x 6= y.

2



The well-known Hasse-Weil bound will be applied to an algebraic curve related to Con-
dition (2).

Hasse-Weil Bound. [17, Theorem 5.2.3] Let X be an absolutely irreducible curve defined
over Fq with genus g. The number N of Fq-rational places of X satisfies

|N − (q + 1)| ≤ 2g
√
q.

Our results for n = 6 are Theorems 1.1 and 1.2 below.

Theorem 1.1. Let q = ph with p 6= 7, and let ξ be a primitive 7-th root of unity in Fq6;
define α = ξ4 − ξ3. Let ǫ be a primitive element of Fq. If q ≥ 421, then fb is a PP if and
only if one of the following cases occurs.

• q ≡ 3, 5 (mod 7),

b ∈
{

t(1− ξi)

7

∣

∣

∣
i = 1, . . . , 6, t ∈ F

∗
q

}

. (3)

• q odd, q ≡ 3 (mod 7),

b ∈
{

−α2qu+ αs

14
,
−α2q2u+ αqs

14
,
−α2u+ αq2s

14

∣

∣

∣
u, s ∈ Fq, u 6= ±s

}

. (4)

• q odd, q ≡ 5 (mod 7),

b ∈
{

−α2q2u+ αs

14
,
−α2u+ αqs

14
,
−α2qu+ αq2s

14

∣

∣

∣
u, s ∈ Fq, u 6= ±s

}

. (5)

• q odd, q ≡ 2 (mod 7),

b ∈
{

−α2q2u+ αs
√
ǫ

14
,
−α2u+ αqs

√
ǫ

14
,
−α2qu+ αq2s

√
ǫ

14

∣

∣

∣
(u, s) ∈ F

2
q \ {(0, 0)}

}

. (6)

• q odd, q ≡ 4 (mod 7),

b ∈
{

−α2qu+ αs
√
ǫ

14
,
−α2q2u+ αqs

√
ǫ

14
,
−α2u+ αq2s

√
ǫ

14

∣

∣

∣
(u, s) ∈ F

2
q \ {(0, 0)}

}

. (7)

• q even, q ≡ 2, 4 (mod 7).

b ∈
{

(ξ + 1)t, (ξ + 1)2t, (ξ + 1)4t
∣

∣ t ∈ F
∗
q

}

. (8)
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• q = 2h, q ≡ 2, 4 (mod 7). Assume without loss of generality that ξ satisfies ξ3 = ξ+1,
and fix an element k such that TrF

q6
/F2

(k) = 1. Define δi(u, v) = v
u2 + (ξ + 1)2

i

,

i = 0, 1, 2, and yi = yi(u, v) = kδ2i (u, v) + (k + k2)δ4i (u, v) + · · · + (k + k2 + · · · +
k2

6h−2

)δ2
6h−1

i (u, v); then

b ∈
{

yi(ξ + 1)2
i+1

u, (yi + 1)(ξ + 1)2
i+1

u
∣

∣u ∈ F
∗
q, TrFq/F2

( v

u2
)

≡ (h− 1) (mod 2)
}

(9)

for some i = 0, 1, 2.

If q < 421, then the above conditions are sufficient for fb to be a permutation polynomial.

Theorem 1.2. Let q = 7h. Let ξ ∈ F343 be such that ξ18 = 1 and let z be a 6-th root of a
fixed primitive element of Fq. If q ≥ 421, then the polynomial fb is a PP in Fq6 if and only
if one of the following cases occurs.

•
b ∈

{

tz, tz5 | t ∈ F
∗
q

}

. (10)

• h is even and

b ∈
{

−2ξt+ ǫ
3s

t

∣

∣

∣
3t3 is not a cube in Fq, s ∈ Fq

}

. (11)

• h is odd and

b ∈
{

−2ξt + ǫ
3s

t

∣

∣

∣
3t3 is not a cube in Fq, s ∈ Fq2 \ Fq, s

2 ∈ Fq

}

. (12)

•
b ∈

{

−ξt | 3t3 is not a cube in Fq

}

. (13)

•
b ∈

{

3t | t ∈ Fq2 \ Fq, t
2 ∈ F

∗
q

}

. (14)

•

b ∈
{

3t+ 3s+
s2

t

∣

∣

∣
t ∈ Fq2 \ Fq, s ∈ Fq3 \ Fq, t

2 ∈ F
∗
q, s

3 ∈ F
∗
q

}

. (15)

If q < 421, then the above conditions are sufficient for fb to be a permutation polynomial.
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The paper is organized as follows. In Section 2 we provide necessary and sufficient
conditions for fb to be a PP of Fq6 when q ≥ 421; to this aim, we study the reducibility
of an algebraic curve associated to fb and discuss the existence of some Fq-rational points.
In Section 3 we present the proofs of Theorems 1.1 and 1.2; as a consequence, Corollary
3.3 gives the exact number of PPs of type fb for q ≥ 421, and a lower bound for q < 421.
Remark 3.4 shows that the techniques used in Section 3 can be applied also to other types

of permutation polynomials; in particular, PPs of Fq4 of type x
q4−1

q−1
+1 + bx are listed. In

this way, the characterization given in [21, Theorem 4.1] is made more explicit. Finally, in
Section 4 we deal with the odd n case.

2 Some auxiliary curves associated to fb for n = 6

Our results on polynomials fb, for b ∈ Fq6 \ Fq, involve elementary symmetric polynomials

in bq
j

, for j = 0, . . . , 5. Throughout the paper, let

A =
∑

0≤j≤5

bq
j

, B =
∑

0≤j1<j2≤5

bq
j1+qj2 , C =

∑

0≤j1<j2<j3≤5

bq
j1+qj2+qj3

D =
∑

0≤j1<...<j4≤5

bq
j1+qj2+qj3+qj4 , E =

∑

0≤j1<...<j5≤5

bq
j1+qj2+qj3+qj4+qj5 ,

(16)

and
F = b1+q+q2+q3+q4+q5 .

Note that A,B,C,D,E, F ∈ Fq. The aim of this section is to prove the following theorems
which characterize PPs of type fb.

Theorem 2.1. Let p 6= 7, b ∈ Fq6 \ Fq. Suppose that one of the following conditions holds.

1. q 6≡ 1 (mod 7) and

B =
3

7
A2, C =

5

72
A3, D =

5

73
A4, E =

3

74
A5, F =

1

75
A6;

2. q 6≡ 1 (mod 7), 7B − 3A2 6= 0, and

C =
1

72
(−10A3 + 35AB), D =

1

72
(14B2 − A4 − 2A2B),

E =
1

74
(27A5 − 182A3B +294AB2), F =

1

75
(13A6 − 28A4B − 147A2B2 + 343B3).
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Then fb is a PP of Fq6. Viceversa, if q ≥ 421 and fb is a PP of Fq6, then either Condition
1 or Condition 2 holds.

Theorem 2.2. Let p = 7, b ∈ Fq6 \ Fq. Suppose that one of the following conditions holds.

1.
b ∈

{

(0, λ, 0, 0, 0, 0), (0, 0, 0, 0, 0, λ) | λ ∈ F
∗
q

}

;

2.

A = B = 0 , C 6= 0 , E =
3D2

C
, F =

2C4 + 4D3

C2
; (17)

3.

A = 0 ,
√
B /∈ Fq , D =

5B3 + 6C2

B
, E =

C(3B3 + 4C2)

B2
, F =

6(B3 + 6C2)2

B3
.

(18)

Then fb is a PP of Fq6. Viceversa, if q ≥ 421 and fb is a PP of Fq6, then Condition 1,
Condition 2 or Condition 3 holds.

It is easily seen that for x, y ∈ Fq Condition (2) in Niederreiter-Robinson criterion reads
as follows:

(

x− y
)[

x6 + x5y + x4y2 + x3y3 + x2y4 + xy5 + y6 + A(x5 + x4y + x3y2 + x2y3 + xy4 + y5)

+B(x4+x3y+x2y2+xy3+y4)+C(x3+x2y+xy2+y3)+D(x2+xy+y2)+E(x+y)+F
]

6= 0.

Let Sb be the sextic plane curve defined over Fq with affine equation Fb(X, Y ) = 0, where

Fb(X, Y ) = X6 +X5Y +X4Y 2 +X3Y 3 +X2Y 4 +XY 5 + Y 6

+A(X5 +X4Y +X3Y 2 +X2Y 3 +XY 4 + Y 5) +B(X4 +X3Y +X2Y 2 +XY 3 + Y 4)
+C(X3 +X2Y +XY 2 + Y 3) +D(X2 +XY + Y 2) + E(X + Y ) + F.

Remark 2.3. By Niederreiter-Robinson Criterion, fb is a PP of Fq6 if and only if b ∈ Fq6\Fq

and Sb has no Fq-rational affine points off the lines X = Y , X = 0, and Y = 0.

Lemma 2.4. If Sb has no Fq-rational affine points off the lines X = Y , X = 0, and Y = 0,
then one of the following cases occurs.

i) The prime power q is at most 421.

ii) The curve Sb has a linear component not defined over Fq.

iii) The curve Sb splits into three absolutely irreducible conics not defined over Fq but over
Fq3.
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iv) The curve Sb splits into two absolutely irreducible cubics not defined over Fq but over
Fq2.

Proof. Assume that Sb is absolutely irreducible; then its genus is at most 10. Also, Sb has
at most 6 places centered on the ideal line ℓ∞, at most 6 places centered on the line X = Y ,
and no Fq-rational affine points (x, y) with x = 0 or y = 0; this is easily seen by (2). By
the Hasse-Weil Bound, q + 1 − 20

√
q ≤ 12, that is, q ≤ 421. If Sb is reducible but has an

irreducible component defined over Fq, then the same argument yields q ≤ 13.
We can now assume that Sb splits into absolutely irreducible components not defined over

Fq. Let ϕq : (a, b, c) 7→ (aq, bq, cq) be the Frobenius collineation of the projective plane over
the algebraic closure of Fq and let C be a component of Sb. Then ϕq(C) is a component of
Sb different from C; hence, the degree of C is smaller than 4. If Sb has no linear components,
then either C is a conic, whose orbit under ϕq has length 3; or C is a cubic, whose orbit under
ϕq has length 2. In the former case C is defined over Fq3 , otherwise over Fq2 .

2.1 The case p 6= 7

Theorem 2.1 is implied by the following result.

Proposition 2.5. Let p 6= 7.

1. If Sb has a linear component not defined over Fq, then Sb splits into six linear compo-
nents not defined over Fq. This happens if and only if q 6≡ 1 (mod 7) and

7B − 3A2 = 49C − 5A3 = 343D − 5A4 = 2401E − 3A5 = 16807F − A6 = 0. (19)

In this case, Sb has no Fq-rational affine points off the line X = Y .

2. The curve Sb splits into three absolutely irreducible conics not defined over Fq if and
only if q 6≡ 1 (mod 7), 7B − 3A2 6= 0, and

A4 + 2A2B − 14B2 + 49D = 27A5 − 182A3B + 294AB2 − 2401E
= 10A3 − 35AB + 49C = 13A6 − 28A4B − 147A2B2 + 343B3 − 16807F = 0.

(20)

In this case, Sb has no Fq-rational affine points.

3. The curve Sb does not split into two absolutely irreducible cubics not defined over Fq.

Proof. Let ξ denote a primitive 7-th root of unity; the curve Sb has 6 non-singular ideal
points Pi = (1, ξi, 0), i = 1, . . . , 6. We denote by ℓi the tangent line to Sb at Pi, which has
affine equation Li(X, Y ) = 0, where

Li(X, Y ) = Y − ξiX − wi, with wi =
Aξ6i

6ξ5i + 5ξ4i + 4ξ3i + 3ξ2i + 2ξi + 1
.
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Let Φ7(X) = X7−1
X−1

∈ Fq[X ] be the 7-th cyclotomic polynomial. For a polynomial F (X) ∈
Fq[X ] we denote by R(F ) ∈ Fq the resultant of Φ7 and F with respect to X . Therefore,
R(F ) 6= 0 implies F (ξ) 6= 0.

1. A linear component si of Sb must have affine equation Y = ξiX + αi , for some
i ∈ {1, . . . , 6}, αi ∈ Fq.

By straightforward computations, si ⊂ Sb reads














































































(5ξ4i + 4ξ3i + 3ξ2i + 2ξi + 1)Aαi + (ξ4i + ξ3i + ξ2i + ξi + 1)B
+(15ξ4i + 10ξ3i + 6ξ2i + 3ξi + 1)α2

i = 0

A(ξ5i + ξ4i + ξ3i + ξ2i + ξi + 1) + (6ξ5i + 5ξ4i + 4ξ3i + 3ξ2i + 2ξi + 1)αi = 0

(10ξ3i + 6ξ2i + 3Aξi + 1)Aα2
i + (4ξ3i + 3ξ2i + 2ξi + 1)Bαi

+(ξ3i + ξ2i + ξi + 1)C + (20ξ3i + 10ξ2i + 4ξi + 1)α3
i = 0

(10ξ2i + 4ξi + 1)Aα3
i + (6ξ2i + 3ξi + 1)Bα2

i + (3ξ2i + 2ξi + 1)Cαi

+(ξ2i + ξi + 1)D + 15α4
i ξ

2i + 5α4
i ξ

i + α4
i = 0

(5ξi + 1)Aα4
1 + (4ξi + 1)Bα3

i + (3ξi + 1)Cα2
i + (2ξi + 1)Dαi

+(ξi + 1)E + 6α5
i ξ + α5

i = 0

Aα5
i +Bα4

i + Cα3
i +Dα2

i + Eαi + F + α6
i = 0

.

(21)
From the first two equations we obtain

(3A2 − 7B)(ξ5i + 4ξ4i + 9ξ3i + 9ξ2i + 4ξi + 1) = 0.

For each i ∈ {1, . . . , 6} we have R(X5i + 4X4i + 9X3i + 9X2i + 4X i + 1) = 74, and
hence ξ5i + 4ξ4i + 9ξ3i + 9ξ2i + 4ξi + 1 6= 0. Combining 3A2 − 7B = 0 with the second
and the third equation in (21), we get

(5A3 − 49C)(2ξ5i + 7ξ4i + 12ξ3i + 14ξ2i + 10ξi + 4) = 0.

For each i ∈ {1, . . . , 6}, we have R(2X5i+7X4i+12X3i+14X2i+10X i+4) = 73, and
hence 5A3 − 49C = 0. Similarly, from the other equations in (21), we obtain

343D − 5A4 = 2401E − 3A5 = 16807F − A6 = 0.

Also,

αi =
Aξ6i

6ξ5i + 5ξ4i + 4ξ3i + 3ξ2i + 2ξi + 1
. (22)

Therefore si is not defined over Fq if and only if ξi /∈ Fq. Equivalently, q 6≡ 1 (mod 7); in
fact, Φ7 factorizes over Fq into 6/d irreducible polynomials, where d is the multiplicative
order of q modulo 7.
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On the other hand, direct calculations show that, if Conditions (19) hold and αi is
defined by (22) for i = 1, . . . , 6, then Sb splits into the six lines ℓ1, . . . , ℓ6.

If Sb has a component not defined over Fq containing an Fq-rational point, then this
point lies on at least another component of Sb. As ℓ1∩ . . .∩ℓ6 = {(−A

7
, −A

7
)}, the thesis

follows.

2. If Sb splits into three absolutely irreducible conics, then Sb has equation S(X, Y ) = 0,
where

S(X,Y ) = (Li1(X,Y )Lj1(X,Y )+β1) · (Li2(X,Y )Lj2(X,Y )+β2) · (Li3(X,Y )Lj3(X,Y )+β3)

for some β1, β2, β3 ∈ F
∗
q, with {i1, j1, i2, j2, i3, j3} = {1, . . . , 6}. There are 15 possible

distinct choises of the indexes i1, j1, i2, j2, i3, j3. For instance, let (i1, j1, i2, j2, i3, j3) =
(1, 2, 3, 4, 5, 6). Using the fact that the three conics are in the same orbit under the
Frobenius collineation ϕq, and comparing the coefficients of S(X, Y ) with the coeffi-
cients of Fb(X, Y ), we get































































(ξ5 + ξ4 + 3ξ3 + ξ2 + ξ)β1 + (−2ξ5 − 2ξ4 − 2ξ3 − 2ξ2 + 1)β2 + (2ξ4 − ξ − 1)β3
= 21A2 − 49B

(−2ξ5 − 2ξ4 − ξ2 − ξ − 1)β1 + (−ξ4 − ξ3 + 2)β2 + (ξ4 − ξ3 − ξ2 + ξ)β3 = 21A2 − 49B

(ξ4 + 2ξ3 + ξ2 + 2ξ + 1)β1 + (ξ5 + 2ξ4 + 2ξ3 + ξ2 + 1)β2 − ξ5 − ξ3 − 2ξ2 − 2ξ − 1)β3
= 21A2 − 49B

(ξ3 − ξ2 − ξ + 1)β1 + (−ξ4 − ξ3 + 2)β2 + (2ξ4 + ξ3 + ξ2 + ξ + 2)β3 = 21A2 − 49B

(ξ5 + ξ3 − ξ − 1)β1 + (ξ5 + 2ξ4 + 2ξ3 + ξ2 + 1)β2 + (ξ5 + 2ξ4 + ξ3 + 2ξ2 + ξ)β3
= 21A2 − 49B

.

(23)

System (23) has a solution (β1, β2, β3) if and only if



















6A2ξ5 − 15A2ξ4 − 45A2ξ3 − 66A2ξ2 − 60A2ξ − 30A2

−14Bξ5 + 35Bξ4 + 105Bξ3 + 154Bξ2 + 140Bξ + 70B = 0

6A2ξ5 − 6A2ξ4 − 24A2ξ3 − 36A2ξ2 − 30A2ξ − 15A2

−14Bξ5 + 14Bξ4 + 56Bξ3 + 84Bξ2 + 70Bξ + 35B = 0

,

that is
{

(3A2 − 7B)(2ξ5 − 5ξ4 − 15ξ3 − 22ξ2 − 20ξ − 10) = 0
(3A2 − 7B)(2ξ5 − 2ξ4 − 8ξ3 − 12ξ2 − 10ξ − 5) = 0

.

Since R(2X5 − 2X4 − 8X3 − 12X2 − 10X − 5) = 73, we have 3A2 − 7B = 0. Then, by
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(23),







(−2ξ5 − 2ξ4 − ξ2 − ξ − 1)β1 + (−ξ4 − ξ3 + 2)β2 + (ξ4 − ξ3 − ξ2 + ξ)β3 = 0
(ξ4 + 2ξ3 + ξ2 + 2ξ + 1)β1 + (ξ5 + 2ξ4 + 2ξ3 + ξ2 + 1)β2 − ξ5 − ξ3 − 2ξ2 − 2ξ − 1)β3 = 0
(ξ5 + ξ3 − ξ − 1)β1 + (ξ5 + 2ξ4 + 2ξ3 + ξ2 + 1)β2 + (ξ5 + 2ξ4 + ξ3 + 2ξ2 + ξ)β3 = 0

.

(24)

System (24) is linear and homogeneous in the βi’s. Since R(X
5+3X4+3X3+5X2+

6X + 3) = 73, it has a unique solution β1 = β2 = β3 = 0, a contradiction.

When {{i1, j1}, {i2, j2}, {i3, j3}} 6= {{1, 6}, {2, 5}, {3, 4}}, an analogous argument yields
a contradiction. Now assume (i1, j1, i2, j2, i3, j3) = (1, 6, 2, 5, 3, 4). By direct calcula-
tions,

β1 = (ξ5 + ξ4 + ξ3 + ξ2 − 1)(3A2 − 7B) ,
β2 = β3 = (−ξ5 − ξ2 − 2)(3A2 − 7B) ;

(25)

in particular, 3A2−7B 6= 0, since R(X5+X4+X3+X2−1) = R(−X5−X2−2) = 1.
Also, we get that Conditions (20) hold. Since the conic components of Sb are not
defined over Fq, ξ /∈ Fq, i.e. q 6≡ 1 (mod 7).

On the other hand, if 3A2 − 7B 6= 0 and Conditions (20) hold, then Sb has equation

(L1(X, Y )L6(X, Y ) + β1) · (L2(X, Y )L5(X, Y ) + β2) · (L3(X, Y )L4(X, Y ) + β3) = 0 ,

where the βi’s are non-zero and defined as in (25).

In this case, it is easy to check that two conic components of Sb intersect in an Fq-
rational point if and only if q ≡ 1 (mod 7) or 3A2 − 7B = 0, which is not possible.
Hence, Sb has no Fq-rational points.

3. If Sb splits into two absolutely irreducible cubics C1 and C2 not defined over Fq, then
C1, C2 have affine equation C1(X, Y ) = 0, C2(X, Y ) = 0, where

C1(X,Y ) = (Y − ξi1X)(Y − ξi2X)(Y − ξi3X) + (wi1ξ
i2ξi3 + wi2ξ

i1ξi3 + wi3ξ
i1ξi2)X2

+(wi1(ξ
i2 + ξi3) + wi2(ξ

i1 + ξi3) + wi3(ξ
i1 + ξi2))XY

−(wi1 + wi2 + wi3)Y
2 + αX + βY + γ ,

C2(X,Y ) = (Y − ξi4X)(Y − ξi5X)(Y − ξi6X) + (wi4ξ
i5ξi6 + wi5ξ

i4ξi6 + wi6ξ
i4ξi5)X2

+(wi4(ξ
i5 + ξi6) + wi5(ξ

i4 + ξi6) + wi6(ξ
i4 + ξi5))XY

−(wi4 + wi5 + wi6)Y
2 + α′X + β′Y + γ′ .

(26)

Since C1 and C2 are switched by the Frobenius collineation ϕq, there exists λ ∈ F
∗
q such

that Cq
1(X, Y ) = λC2(X, Y ). Let u ∈ {1, . . . , 6} be such that q ≡ u (mod 7); then
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(ξi)q = ξiu. By comparing the coefficients of C1(X, Y ) · C2(X, Y ) with the coefficients
of Fb(X, Y ), we have that the indexes {{i1, i2, i3}, {i4, i5, i6}, u} belong to

{

{{1, 2, 3}, {4, 5, 6}, 6}, {{1, 2, 4}, {3, 5, 6}, 3}, {{1, 2, 4}, {3, 5, 6}, 5},
{{1, 2, 4}, {3, 5, 6}, 6}, {{1, 3, 5}, {2, 4, 6}, 6}, {{1, 4, 5}, {2, 3, 6}, 6}

}

.
(27)

Also, in these cases we have λ = 1. Hence α′ = αq, β ′ = βq, and γ′ = γq.

The projectivity ψ : (X, Y, T ) 7→ (Y,X, T ) is an isomorphism of Sb and ψ either fixes
or switches the components C1 and C2. It is easy to check that the former case cannot
occur, for any case in (27). Together with C1C2 = Sb, this yields

γq = µγ , αq = µβ , βq = µα , γq+1 = 16807F , αγq+αqγ = βγq+βqγ = 16807E ,

for some µ ∈ Fq. Consider the case (i1, i2, i3, i4, i5, i6, u) = (1, 2, 4, 3, 5, 6, 3); by direct
computation µ = 1, and C1C2 = Sb is equivalent to























































αγ + βγ = 16807E
A(α− β)(ξ4 + ξ2 + ξ − 2)− 5Aβ − 343C − 7γ = 0
γ2 = 16807F
A(β − α)(ξ4 + ξ2 + ξ)− Aα− 343C = 0
98A2 − 343B + (α− β)(ξ4 + ξ2 + ξ − 3)− 7β = 0
−196Aγ − 16807D + α2 + β2 = 0
−49Aγ − 16807D + αβ = 0
98A2 − 343B + (β − α)(2ξ4 + 2ξ2 + 2ξ + 1) = 0
49A2 − 343B + (α− β)(2ξ4 + 2ξ2 + 2ξ − 6)− 14β = 0

.

By eliminating α, β, and γ, the system yields































(3A2 − 7B)(2ξ4 + 2ξ2 + 2ξ + 1) = 0
(2A3 + 7AB − 49C)(2ξ4 + 2ξ2 + 2ξ + 1) = 0
−15A4 + 56A2B − 49AC − 49B2 + 343D = 0
(−33A5 + 259A3B − 147A2C − 490AB2 + 686BC − 2401E)(2ξ4 + 2ξ2 + 2ξ + 1) = 0
−121A6 + 770A4B − 1078A3C − 1225A2B2 + 3430ABC − 2401C2 + 16807F = 0
−45A4 + 182A2B − 196AC − 98B2 + 343D = 0

.

Since R(2X4 + 2X2 + 2X + 1) = 73, we obtain

7B − 3A2 = 49C − 5A3 = 343D − 5A4 = 2401E − 3A5 = 16807F − A6 = 0.

Then Sb splits into lines as shown above, contradiction.
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If ({i1, i2, i3}, {i4, i5, i6}, u) ∈ {({1, 2, 4}, {3, 5, 6}, 6), ({1, 2, 4}, {3, 5, 6}, 6)}, then µ = 1
and analogous arguments yield a contradiction.

Now consider the case ({i1, i2, i3}, {i4, i5, i6}, u) = ({1, 2, 3}, {4, 5, 6}, 6). We get µ = ξ5,
and C1C2 = Sb implies































A2(22ξ5 − 5ξ4 − 4ξ3 + 11ξ2 + 26ξ + 27)− 49B(2ξ5 + ξ2 + 2ξ + 2) + αξ5 − βξ = 0
A2(22ξ5 − 5ξ4 − 4ξ3 + 11ξ2 + 26ξ + 27)− 49B(2ξ5 + ξ2 + 2ξ + 2) + αξ2 − βξ4 = 0
−A2(70ξ4 + 14ξ + 14) + 343Bξ4 + α(8ξ5 + 6ξ4 + 9ξ3 + 4ξ2 − ξ + 2) = 0
−A2(70ξ4 + 14ξ + 14) + 343Bξ4 − α(6ξ5 + 8ξ4 + 5ξ3 + 3ξ2 + ξ − 2) = 0
343Cξ4 + γ(2ξ5 + ξ3 − 2ξ2 − 2ξ + 1) = 0
343Cξ4 + γ(−ξ5 + 3ξ3 + ξ2 + ξ + 3) = 0

,

whence






(ξ4 − ξ)(αξ + β) = 0
(14ξ5 + 14ξ4 + 14ξ3 + 7ξ2)α = 0
(3ξ5 − 2ξ3 − 3ξ2 − 3ξ − 2)γ = 0.

.

Therefore γ = 0 and F = γ2/16807 = 0, a contradiction.

Finally, for ({i1, i2, i3}, {i4, i5, i6}, u) ∈ {({1, 3, 5}, {2, 4, 6}, 6), ({1, 4, 5}, {2, 3, 6}, 6)},
analogous arguments yield a contradiction.

2.2 The case p = 7

Theorem 2.2 is implied by the following result.

Proposition 2.6. Let p = 7.

1. If Sb has a linear component not defined over Fq, then Sb splits into six linear compo-
nents not defined over Fq. This happens if and only if

b ∈
{

(0, λ, 0, 0, 0, 0), (0, 0, 0, 0, 0, λ) | λ ∈ F
∗
q

}

. (28)

In this case, Sb has no Fq-rational affine points.

2. The curve Sb splits into three absolutely irreducible conics not defined over Fq if and
only if

A = B = 0 , C 6= 0 , E =
3D2

C
, F =

2C4 + 4D3

C2
. (29)

In this case, Sb has no Fq-rational affine points off the line X = Y .
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3. The curve Sb splits into two absolutely irreducible cubics not defined over Fq if and
only if

A = 0 ,
√
B /∈ Fq , D =

5B3 + 6C2

B
, E =

C(3B3 + 4C2)

B2
, F =

6(B3 + 6C2)2

B3
.

(30)
In this case Sb has no Fq-rational affine points off the line X = Y .

Proof. The unique ideal point of Sb is P∞ = (1, 1, 0). The point P∞ is singular if and only
if A = 0. Suppose A 6= 0. The tangent line to Sb at P∞ is the ideal line ℓ∞. Since ℓ∞ is
not a component of Sb, there is no linear component of Sb passing through P∞. Hence, Sb is
absolutely irreducible by a criterion due to Segre; see [15] and [2, Lemma 8].

Therefore, a necessary condition for Sb to be reducible is A = 0.

1. Let s1 be a linear component of the curve Sb, then it has affine equation Y = X + α
and the system































A = 0
Aα + 5B = 0
6Aα2 + 3Bα + 4C = 0
Aα3 + 3Bα2 + 6Cα+ 3D = 0
6Aα4 + 5Bα3 + 4Cα2 + 3Dα + 2E = 0
Aα5 +Bα4 + Cα3 +Dα2 + Eα + F + α6 = 0

holds. This happens if and only if A = B = C = D = E = 0 and α6 = −F . On the
other hand, these conditions imply that Sb splits into the six lines si : Y = X + iα,
i = 1, . . . , 6.

Let k be such that q = 6k + 1. Recall that ζ is a primitive element of Fq and z is a
root of the polynomial T 6 − ζ . In particular z6(q−1) = 1 and {1, z, z2, z3, z4, z5} is a
basis of Fq6 over Fq.

If b = (b0, b1, b2, b3, b4, b5), c = (c0, c1, c2, c3, c4, c5) ∈ Fq6 , then

bq = (b0, b1ζ
k, b2ζ

k − b2,−b3,−b4ζ
k,−b5ζk + b5),

bq
2

= (b0, b1ζ
k − b1,−b2ζ

k, b3, b4ζ
k − b4,−b5ζk),

bq
3

= (b0,−b1, b2,−b3, b4,−b5),

bq
4

= (b0,−b1ζ
k, b2ζ

k − b2, b3,−b4ζ
k, b5ζk − b5),

bq
5

= (−b0,−b1ζ
k + b1,−b2ζ

k,−b3, b4ζ
k − b4, b

5ζk),
bc =

(

b0c0 + b1c5ζ + b2c4ζ + b3c3ζ + b4c2ζ + b5c1ζ, b0c1 + b1c0 + b2c5ζ + b3c4ζ + b4c3ζ + b5c2ζ,

b0c2 + b1c1 + b2c0 + b3c5ζ + b4c4ζ + b5c3ζ, b0c3 + b1c2 + b2c1 + b3c0 + b4c5ζ + b5c4ζ,

b0c4 + b1c3 + b2c2 + b3c1 + b4c0 + b5c5ζ, b0c5 + b1c4 + b2c3 + b3c2 + b4c1 + b5c0
)

,
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hence

A = −b0, B = b20 + b1b5ζ + b2b4ζ + 4b23ζ,

C = 6b30 + 4b0b1b5ζ + 4b0b2b4ζ + 2b0b
2
3ζ + 6b21b4ζ

+5b1b2b3ζ + 2b32ζ + 6b2b
2
5ζ

2 + 5b3b4b5ζ
2 + 2b34ζ

2,

D = b40 + 6b20b1b5ζ + 6b20b2b4ζ + 3b20b
2
3ζ + 4b0b

2
1b4ζ + b0b1b2b3ζ + 6b0b

3
2ζ

+4b0b2b
2
5ζ

2 + b0b3b4b5ζ
2 + 6b0b

3
4ζ

2 + b31b3ζ + 5b21b
2
2ζ + 2b21b

2
5ζ

2

+3b1b3b
2
4ζ

2 + 3b22b3b5ζ
2 + 2b22b

2
4ζ

2 + 3b43ζ
2 + b3b

3
5ζ

3 + 5b24b
2
5ζ

3,

E = 6b50 + 4b30b1b5ζ + 4b30b2b4ζ + 2b30b
2
3ζ + 4b20b

2
1b4ζ + b20b1b2b3ζ + 6b20b

3
2ζ + 4b20b2b

2
5ζ

2

+b20b3b4b5ζ
2 + 6b20b

3
4ζ

2 + 2b0b
3
1b3ζ + 3b0b

2
1b

2
2ζ + 4b0b

2
1b

2
5ζ

2 + 6b0b1b3b
2
4ζ

2 + 6b0b
2
2b3b5ζ

2

+4b0b
2
2b

2
4ζ

2 + 6b0b
4
3ζ

2 + 2b0b3b
3
5ζ

3 + 3b0b
2
4b

2
5ζ

3 + 6b41b2ζ + 2b31b4b5ζ
2 + 4b21b

2
3b4ζ

2

+5b1b
3
2b5ζ

2 + 2b1b2b
3
3ζ

2 + 2b1b2b
3
5ζ

3 + 5b1b
3
4b5ζ

3 + b42b4ζ
2 + 6b32b

2
3ζ

2 + 4b2b
2
3b

2
5ζ

3

+b2b
4
4ζ

3 + 2b33b4b5ζ
3 + 6b23b

3
4ζ

3 + 6b4b
4
5ζ

4.

It is easy to check that A = B = C = D = E = 0 is equivalent to Condition (28).
Since b = λz or b = λz5, with λ ∈ F

∗
q, the condition α6 = −bq5+q4+q3+q2+q+1, i.e.

α6 = −F , implies α ∈ Fq6 \ Fq. Therefore, the six lines si, i = 1, . . . , 6, have no
Fq-rational affine points.

2. Suppose that Sb splits into three absolutely irreducible conics C1, C2, and C3. Since
ψ : (X, Y, T ) 7→ (Y,X, T ) is an automorphism of Sb, either ψ fixes each Ci, or (up to
reordering the indexes) ψ fixes C1 and switches C2 and C3.
In the latter case, the conics Ci’s have affine equation

C1 : (X − Y )2 + αX + αY + β = 0 ,
C2 : (X − Y )2 + γX + δY + ǫ = 0 ,
C3 : (X − Y )2 + δX + γY + ζ = 0 ,

for some α, β, γ, δ, ǫ, ζ ∈ Fq. The conditions C1C2C3 = Sb and A = 0 yield

A = B = C = D = E = 0 .

Hence, as above, Sb splits into six lines, a contradiction.

In the former case, the conics Ci’s have affine equation

C1 : (X − Y )2 + αX + αY + β = 0 ,
C2 : (X − Y )2 + γX + γY + δ = 0 ,
C3 : (X − Y )2 + ǫX + ǫY + ζ = 0 ,

(31)

for some α, β, γ, δ, ǫ, ζ ∈ Fq. Since the Ci’s form a single orbit under the Frobenius
collineation ϕq, the coefficients lie in Fq3 and γ = αq, ǫ = αq2, δ = βq, ζ = βq2. By
direct computation, C1C2C3 = Sb and A = 0 imply

B = 0 , CE + 4D2 = 0 , C2D + 3DF + E2 = 0 , C3 + 3CF + 3DE = 0 .
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Hence Conditions (29) follow, beacause C = 0 would imply that Sb splits into lines, a
contradiction. Conversely, if Conditions (29) hold, then Sb splits into irreducible conics
defined by (31), where the Ci’s form an orbit under ϕq, and α, β are defined by

α3 = 4C , β =
Cα + 2D

α2
.

The conics Ci’s are not defined over Fq. Assume by contradiction that one of them

is defined over Fq. Then Sb = (C1)3, and the polynomial
(

(X − Y )2 + α(X + Y ) + β
)3

has no terms of degree either 5 or 4. Hence, by direct checking, α = β = 0, which is
impossible since F 6= 0.

Conditions (29), together with the condition (x, y) ∈ C1 ∩ C2 ∩ C3, yield x = y. This
means that Sb has no Fq-rational affine points off the line X = Y .

3. Suppose that Sb splits into two absolutely irreducible cubics C1 and C2. The automor-
phism ψ : (X, Y, T ) 7→ (Y,X, T ) either fixes or switches C1 and C2.
In the former case, the cubics Ci’s have affine equation

C1 : (X − Y )3 + α(X2 + Y 2) + βXY + γ(X + Y ) + δ = 0 ,
C2 : (X − Y )3 + α′(X2 + Y 2) + β ′XY + γ′(X + Y ) + δ′ = 0 .

The conditions C1C2 = Sb and A = 0 yield B = C = D = E = 0; hence, as above, Sb

splits into lines, a contradiction.

In the latter case, the conditions C1C2 = Sb, A = 0, and ψ(C1) = C2 yield in particular























CF 2 +DEF + 2E3 = 0
BC2 + 5BF + 4CE + 3D2 = 0
B2E + CF + 5DE = 0
B2C + 3BE + 5CD = 0
B3 + 4BD + 4C2 = 0

.

Hence B 6= 0, otherwise Sb splits into lines; also,

A = 0 , D =
5B3 + 6C2

B
, E =

C(3B3 + 4C2)

B2
, F =

6(B3 + 6C2)2

B3
. (32)

If Conditions (32) are satisfied, then C1 and C2 have equation

C1 : α [(X − Y )3 − B(X − Y )] + 4B(X + Y )2 + 3C(X + Y ) + 3B3+5BC2+C2

B
= 0 ,

C2 : −α [(X − Y )3 − B(X − Y )] + 4B(X + Y )2 + 3C(X + Y ) + 3B3+5BC2+C2

B
= 0 ,
(33)
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where α2 = 4B; therefore, Sb is not defined over Fq if and only if
√
B /∈ Fq.

Viceversa, if Conditions (30) are satisfied, then Sb = C1C2, with C1, C2 defined as in
(33).

If
√
B /∈ Fq, then C1 and C2 in (33) have no Fq-rational affine points off the line X = Y .

In fact, if an Fq-rational point (x, y) lies on C1, then the coefficient (X−Y )3−B(X−Y )
of α must vanish at (x, y); this implies either B = (x − y)2, which is impossible, or
x = y.

3 Proof of Theorems 1.1 and 1.2

Using the characterization results contained in Theorems 2.1 and 2.2 we are now in a position
to prove our main Theorems.

Assume first that p 6= 7 and let ξ ∈ Fq6 denote a primitive 7-th root of unity.
Consider the following family of polynomials over Fq.

F =
{

Fu,v = X6 − uX5 + vX4 − (−10u3 + 35uv)

72
X3 +

(14v2 − u4 − 2u2v)

72
X2

−(27u5 − 182u3v + 294uv2)

74
X +

(13u6 − 28u4v − 147u2v2 + 343v3)

75
| u, v ∈ Fq

}

.

Since by definition of A,B,C,D,E, and F , the elements b, bq, . . . , bq
5

are the zeros of the
following polynomial over Fq

X6 − AX5 +BX4 − CX3 +DX2 − EX + F,

we have that fb is a PP if and only if and only if b, bq, . . . , bq
5

are the only zeros of Fub,vb ∈ F ,
for some ub, vb depending on b. More precisely, Condition 1 in Theorem 2.1 holds if and only
if b, bq, . . . , bq

5

are the zeros of FA, 3
7
A2, whereas Condition 2 in Theorem 2.1 is equivalent to

7B − 3A2 6= 0 and b, bq, . . . , bq
5

being the zeros of FA,B.
We consider Condition 1 first. By direct computation,

Fu, 3
7
u2 =

6
∏

i=1

(

X − u
1− ξi

7

)

.

Since the trace map is surjective, for each u ∈ Fq there exists b ∈ Fq6 \ Fq such that u = A.
Moreover, for each i = 1, . . . , 6, the minimal polynomial of ξi over Fq has degree congruent
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to q modulo 7. Hence, Fu, 3
7
u2 is irreducible over Fq if and only if q ≡ 3, 5 (mod 7); in this

case, the roots b of Fu, 3
7
u2 provide 6 permutation polynomials fb. If Fu, 3

7
u2 is reducible over

Fq, then the zeros of Fu, 3
7
u2 do not form a single orbit under the Frobenius map, since they

are all distinct; in this case, if b is a root of Fu, 3
7
u2 , then fb is not a PP.

As to Condition 2 in Theorem 2.1, it is satisfied by b if and only if b is a root of some
Fu,v, where u, v ∈ Fq are such that 7v − 3u2 6= 0 and either Fu,v is irreducible over Fq, or
Fu,v is the square of an irreducible polynomial over Fq, or Fu,v is the cube of an irreducible
polynomial over Fq.

By direct computation, Fu,v =
1
76

·G(1)
u,v ·G(2)

u,v ·G(3)
u,v, with

G(1)
u,v(X) = 49X2+7(ξ4+ ξ3−2)uX− (3ξ5+4ξ4+4ξ3+3ξ2+7)u2+7(ξ5+ ξ4+ ξ3+ ξ2+3)v,

G(2)
u,v(X) = 49X2− 7(ξ5+ ξ4+ ξ3+ ξ2+3)uX + (4ξ5+ ξ4+ ξ3+4ξ2− 3)u2− 7(ξ5+ ξ2− 2)v,

G(3)
u,v(X) = 49X2 + 7(ξ5 + ξ2 − 2)uX − (ξ5 − 3ξ4 − 3ξ3 + ξ2 + 4)u2 − 7(ξ4 + ξ3 − 2)v.

Also, the G
(i)
u,v’s are defined over Fq3 and form a single orbit under ϕq. The discriminant of

Fu,v(X) is ∆ = 13u6− 28u4v− 147u2v2+343v3 and it vanishes if and only if u2 = δ · v, with
13δ3 − 28δ2 − 147δ + 343 = 0. For p 6= 13, δ is in

{

21ξ5 + 35ξ4 + 35ξ3 + 21ξ2 + 28

13
,
14ξ5 − 21ξ4 − 21ξ3 + 14ξ2 + 7

13
,
−35ξ5 − 14ξ4 − 14ξ3 − 35ξ2 − 7

13

}

,

and it is easily seen that δ /∈ Fq; hence ∆ 6= 0, since u, v ∈ F
∗
q . For p = 13, δ ∈ {8, 11}. In

this case, a direct computation shows that Fu,v is not a power of an irreducible polynomial
over Fq, for any (u, v) ∈ F

2
q \ {(0, 0)}; hence, fb is not a PP for any root b of Fu,v.

Therefore, we can assume that G
(i)
u,v and G

(j)
u,v have no roots in common for i 6= j.

If q ≡ 1, 6 (mod 7), then G
(i)
u,v’s are defined over Fq. Hence, fb is not a PP of Fq6 , for any

root b of Fu,v.

Suppose now q odd and q ≡ r ∈ {2, 3, 4, 5} (mod 7). For i = 1, 2, 3, the roots of G
(i)
u,v are

x
(i)
1,2 = (αiu± ρi) /14 , with ρ2i = βi(28v − 11u2) , (34)

where

α2 = β1 = (ξ4 − ξ3)2 , α3 = β2 = (ξ5 + ξ4 + ξ3 + ξ2 + 2ξ + 1)2 , α1 = β3 = (ξ5 − ξ2)2 .

Note that ξ4−ξ3, ξ5+ ξ4+ ξ3+ ξ2+2ξ+1, and ξ5−ξ2 belong to Fq3 if and only if r ∈ {2, 4}.
Therefore, for any i = 1, 2, 3, βq3

i = βi when r ∈ {2, 4}, and βq3

i = −βi when r ∈ {3, 5},
whereas αq3

i = αi.
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Suppose 28v − 11u2 = 0. Then x
(i)
1 = x

(i)
2 , and Fu,v is the square of an irreducible

polynomial over Fq. Hence, the three distinct roots b of Fu,v provide PPs fb.
Suppose 28v − 11u2 6= 0, hence ρi 6= 0 for any i = 1, 2, 3. Then

ρq
3

i = (−1)r · (28v − 11u2)
q3−1

2 · ρi .

Note that (28v − 11u2)
q3−1

2 = 1 if 28v − 11u2 is a square in Fq (and hence in Fq3), while

(28v − 11u2)
q3−1

2 = −1 if 28v − 11u2 is a non-square in Fq.
If r ∈ {2, 4} and 28v − 11u2 is a non-zero square in Fq, then ρ

q3 = ρ; the same holds if

r ∈ {3, 5} and 28v − 11u2 is a non-square in Fq. Therefore, (x
(i)
1 )q

3

= x1, and Fu,v factors
over Fq into two distinct irreducible polynomials. Hence, for any root b of Fu,v, fb is not a
PP.

If r ∈ {2, 4} and 28v − 11u2 is a non-square in Fq, then ρq
3

= −ρ; the same holds if

r ∈ {3, 5} and 28v − 11u2 is a non-zero square in Fq. Therefore, (x
(i)
1 )q

3

= x2, and Fu,v is
irreducible over Fq. Hence, the roots b of Fu,v provide PPs fb.

Let s, ǫ ∈ Fq with ǫ a primitive element of Fq, such that 28v−11u2 = s2 when 28v−11u2

is a square in Fq, and 28v − 11u2 = s2ǫ when 28v − 11u2 is a non-square in Fq. Then
the condition 7v − 3u2 6= 0 reads u 6= ±s in the former case, while it is satisfied for all
(u, s) 6= (0, 0) in the latter case.

Suppose now q = 2h. Then, q ≡ 2, 4 (mod 7). The minimal polynomial of ξ is either
X3 +X + 1 or X3 +X2 + 1; assume without loss of generality that ξ3 = ξ + 1. The factors
of Fu,v over Fq3 in this case are

X2 + (ξ + 1)Xu+ (ξ + 1)2v + (ξ2 + ξ)u2,

X2 + (ξ + 1)2Xu+ (ξ + 1)4v + ξu2,

X2 + (ξ + 1)4Xu+ (ξ + 1)v + ξ2u2.

There exist roots of Fu,v of multiplicity larger than one if and only if u6(u2 + ξv)4(u2 +
ξ2v)4(u2 + (ξ2 + ξ)v)4 = 0. Since ξ /∈ Fq, the only possibility is u = 0. In this case

Fu,v =
[(

X + (ξ + 1)
√
v
)

·
(

X + (ξ2 + 1)
√
v
)

·
(

X + (ξ2 + ξ + 1)
√
v
)]2

.

Hence, Fu,v has three distinct zeros with multiplicity 2 and defined over Fq3, for any v ∈ F
∗
q ,

namely
(ξ + 1)

√
v, (ξ2 + 1)

√
v, (ξ2 + ξ + 1)

√
v

which form a unique orbit under the Frobenius map.
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Suppose now u 6= 0, that is Fu,v has six distinct zeros belonging to Fq6. They belong to

Fq3 if and only if TrF
q3

/F2

(

v
u2 + (ξ + 1)2

i
)

= 0, i = 0, 1, 2, that is

TrF
q3

/F2

( v

u2
+ (ξ + 1)2

i
)

= TrF
q3

/F2

( v

u2

)

+ TrF
q3

/F2

(

(ξ + 1)2
i
)

= 0,

where TrF
q3

/F2
(α) denotes the trace function from Fq3 to F2. It is not hard to see that

TrF
q3

/F2

(

(ξ + 1)2
i
)

= 1 if and only if h is odd. Therefore the zeros of Fu,v(X) correspond

to PPs fb if and only if one of the following cases occurs:

• h is odd and TrF
q3

/F2

(

v
u2

)

= TrFq/F2

(

v
u2

)

= 0;

• h is even and TrF
q3

/F2

(

v
u2

)

= TrFq/F2

(

v
u2

)

= 1.

In these cases, let δi =
v
u2 +(ξ+1)2

i

, i = 0, 1, 2, and let k be an element with TrF
q6

/F2
(k) = 1.

Denote by yi the quantity kδ
2
i +(k+ k2)δ4i + · · ·+(k+ k2+ · · ·+ k2

h−2

)δ2
h−1

i , i = 0, 1, 2. The
six roots are

b ∈
{

yi(ξ + 1)2
i+1

u, (yi + 1)(ξ + 1)2
i+1

u
∣

∣

∣
i = 0, 1, 2, TrFq/F2

( v

u2

)

= 0
}

if h is odd,

b ∈
{

yi(ξ + 1)2
i+1

u, (yi + 1)(ξ + 1)2
i+1

u
∣

∣

∣
i = 0, 1, 2, TrFq/F2

( v

u2

)

= 1
}

otherwise.
Therefore we have proved Theorem 1.1.
For the case p = 7, Propositions 3.1 and 3.2 imply Theorem 1.2.

Proposition 3.1. Let q = 7h ≥ 421 and let ξ ∈ F73 be such that ξ18 = 1 and let ǫ ∈ F73

be such that ǫ2 = ξ. The polynomial fb is a PP in Fq6 of type (17) if and only if one of the
following cases occurs.

• h is even and

b ∈
{

−2ξC + ǫ
3D

C

∣

∣

∣
3C

3
is not a cube in Fq, D ∈ Fq

}

.

• h is odd and

b ∈
{

−2ξC + ǫ
3D

C

∣

∣

∣
3C

3
is not a cube in Fq, D ∈ Fq2 \ Fq, D

2 ∈ Fq

}

.
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•
b ∈

{

−ξC | 3C3
is not a cube in Fq

}

.

Proof. We have that fb is a PP if and only if b, bq, . . . , bq
5

are the unique zeros of some
polynomial FC,D(x), with C,D ∈ Fq, C 6= 0, where

FC,D(x) := C2x6 − C3x3 + C2Dx2 − 3D2Cx+ (2C4 + 4D3).

A polynomial of this type factorizes over Fq3 as

(C
2
x2+ξC

3
x+ξ8C

4
+ξ4D)(4C

2
x2+ξ7C

3
x+2ξ2C

4
+ξ10D)(2C

2
x2+ξ13C

3
x+4ξ14C

4
+ξ16D),

where C, 2C, 4C ∈ Fq3 are the cubic roots of C. It is easily seen that the three factors
above are defined over Fq if and only if ξC belongs to Fq, that is if and only if 3C is a cube
in Fq. Also, the polynomial FD,C(x) has roots of multiplicity greater than 1 if and only if
C3D10(C4 + 2D3)4 = 0. Since C 6= 0, the only possibilities are D = 0 and C4 + 2D3 = 0.

• D = 0. In this case FC,D(x) = C2(x3 + 3C)2, which has three roots not defined over
Fq if and only if 3C is not a cube in Fq.

• C4 + 2D3 = 0. This is equivalent to D3/C3 = 3C, which is not possible since 3C is
not a cube in Fq.

Suppose now that FC,D(x) has no roots of multiplicity greater than 1. Then, the six roots
are

{

−ξC3 ± Cξ3
√
Dξ

2C
2 ,

−ξ7C3 ± Cξ3
√
Dξ

C
2 ,

−ξ13C3 ± Cξ3
√
Dξ

4C
2

}

.

These six solutions belong to a unique orbit under Frobenius if and only if ξD is a square in
Fq3 . This happens if and only if h is even and D is a non-zero square in Fq, or h is odd and
D is a non-square in Fq.

Proposition 3.2. Let q = 7h. The polynomial fb is a PP in Fq6 of type (18) if and only if
one of the following cases occurs:

•
b ∈

{

3B | B ∈ Fq2 \ Fq, B
2 ∈ F

∗
q

}

;

•

b ∈
{

3D + 3C +
C

2

D

∣

∣

∣
D ∈ Fq2 \ Fq, C ∈ Fq3 \ Fq, D

2 ∈ F
∗
q , C

3 ∈ F
∗
q

}

.
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Proof. We need to determine if the roots in Fq6 of the polynomials

FB,C(x) := B3x6 +B4x4 −B3Cx3 + (5B3 + 6C2)B2x2 − BC(3B3 + 4C2)x+ 6(B3 + 6C2)2,

with B,C ∈ Fq, B 6= 0, are contained in a unique orbit under the Frobenius map. Such
roots are

{

4B + 6C + 3C
2
/B, 4B + 5C + 5C

2
/B, 4B + 3C + 6C

2
/B,

3B + 6C + 4C
2
/B, 3B + 5C + 2C

2
/B, 3B + 3C + C

2
/B

}

,

where B ∈ Fq2 \ Fq and C ∈ Fq3 are such that B
2
= B and C

3
= C, respectively. There

are roots of multiplicity larger than one if and only if C4B15(B3 + 6C2)8 = 0. Note that
B 6= 0 by hypothesis and B3 = C2 would imply C = ±BB /∈ Fq, impossible. Also, C = 0
implies that the two distinct solutions of FB,0(x) = 0 are ±3B /∈ Fq and the corresponding
polynomial fb is a PP.

If C4B15(B3 + 6C2)8 6= 0, all the roots of FB,C(x) are distinct. If C ∈ Fq then there are
three orbits under Frobenius, namely

{

4B + 6C + 3C
2
/B, 3B + 6C + 4C

2
/B

}

,

{

4B + 5C + 5C
2
/B, 3B + 5C + 2C

2
/B

}

,

{

4B + 3C + 6C
2
/B, 3B + 3C + C

2
/B

}

.

The corresponding fb are not PPs.
If C /∈ Fq then the six roots are contained in a unique orbit and therefore the correspond-

ing fb are PPs.

Note that if q is even, then q ≡ 2, 4, 8, 16 (mod 28), whereas 7 | q implies q ≡ 7, 14
(mod 28).

Corollary 3.3. Let q ≥ 421 and let nq be the number of PPs of Fq6 of type fb.

• If q ≡ 0, 1, 6, 8, 13, 14, 15, 27 (mod 28), then nq = 0.

• If q ≡ 2, 3, 4, 5, 9, 11, 16, 17, 18, 19, 23, 25 (mod 28), then nq = 3(q2 − 1).

• If q ≡ 7, 21 (mod 28), then nq = 4q2 − 3q − 1.

Proof. Note first that the values of b listed in Theorems 1.1 and 1.2 are all distinct for a
fixed q.
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1. The solutions of type (4) - (7) are

{

3(q − 1)(q − 2) + 3(q − 1) = 3(q − 1)2, q ≡ 3, 5, 17, 19 (mod 28),
3(q − 1)q + 3(q − 1) = 3(q2 − 1), q ≡ 9, 11, 23, 25 (mod 28),

If q ≡ 3, 5, 17, 19 (mod 28) the number of solutions of type (3) is 6(q − 1).

2. If q is even and q ≡ 2, 4 (mod 7), that is q ≡ 2, 4, 16, 18 (mod 28), there are q/2
elements with trace 1 and q/2 elements with trace 0. For a fixed element t ∈ Fq there
are q − 1 pairs (u, v), u 6= 0, such that v/u2 = t. For each of them there exist 6
corresponding b’s. If u = 0, there are 3 values of b for each choice of v ∈ F

∗
q. The

solutions of type (9) are 6 q
2
(q − 1), whereas the number of solutions of type (8) is

3(q − 1).

3. If 7 | q, that is q ≡ 7, 21 (mod 28), then the solutions of types (10), (11), (12), (13),
(14), (15) are respectively 2(q − 1), 2(q − 1)2, 2(q − 1)2, 2(q − 1), (q − 1), 2(q − 1)2.
Therefore the total number of solutions is

2(q−1)+2(q−1)2+2(q−1)+(q−1)+2(q−1)2 = 4(q−1)2+5(q−1) = 4q2−3q−1.

Remark 3.4. By using the same methods, it is possible to obtain similar descriptions of the
values b ∈ Fq4 \Fq which provide permutation polynomials of Fq4 of the type xq

3+q2+q+2+ bx.
By straightforward computations, if q ≡ 2, 3 (mod 5), then the values b satisfying the first
condition in [21, Theorem 4.1] are as follows. Let a ∈ Fq2 \Fq be such that a2+ a+1/5 = 0;
for each pair (A,B) ∈ F

2
q distinct from (0, 0), if 7A2 − 20B 6= 0, then

b ∈
{

−(2a + 1)aA± 5
√

(a+ 1)(7A2 − 20B)

2(2a+ 1)
,
(2a+ 1)(a+ 1)A± 5

√

−a(7A2 − 20B)

2(2a+ 1)

}

,

otherwise

b ∈
{−aA

2
,
(a+ 1)A

2

}

.

As to the second condition in [21, Theorem 4.1], no b ∈ Fq4 \ Fq can satisfy it when q ≡ 4
(mod 5). If q ≡ 2, 3 (mod 5), then for each A ∈ F

∗
q we have

b ∈
{

−(2a + 1)aA± 5A
√

−(a + 1)

2(2a+ 1)
,
(2a+ 1)(a+ 1)A± 5A

√
a

2(2a+ 1)

}

,

where a ∈ Fq2 \ Fq is such that a2 + a+ 1/5 = 0.
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4 Necessary conditions for PPs of type x
qn−1
q−1 +1

+ bx, n

odd

The Niederreiter-Robinson Criterion can be applied to any binomial of type fq,b,n = x
qn−1

q−1
+1+

bx for some n ∈ N. The algebraic curve Cq,b,n associated to fq,b,n is given by

n
∑

i=0

An−i
xi+1 − yi+1

x− y
= 0,

where A0 = 1 and Ai =
∑

0≤j1<j2<···<ji≤(n−1) b
qj1+qj2+···+qji . Note that

A1 = TrFqn/Fq
(b).

When n is odd, it is easily seen that the point (1,−1, 0) belongs to Cq,b,n for every q and
b ∈ Fqn \ Fq.

Proposition 4.1. Let C be an algebraic curve defined over Fq having a simple Fq-rational
point P . Then there exists an absolutely irreducible Fq-rational component passing through
P .

Proof. Let C′ be an absolutely irreducible Fq-rational component of C containing P . The
image C′′ of C′ under the Frobenius map ϕq contains P , since ϕq(P ) = P . Also, P being
a simple point implies the existence of a unique component of C through it. Therefore
C′′ = ϕq(C′) = C′, that is C′ is defined over Fq.

The above criterion is useful to deduce necessary conditions for a polynomial fq,b,n to be
a PP. Let p be the characteristic of Fq.

Theorem 4.2. Let n be odd. Suppose q >
((n−1)(n−2)+

√
n2+13n−2)

2

4
. If fq,b,n is a PP then

p | n+1
2

and TrFqn/Fq
(b) = 0.

Proof. We already observed that the point P = (1,−1, 0) always belongs to the curve Cq,b,n.
We now show that if fq,b,n is a PP then the point P is a singular point of Cq,b,n. Assume on the
contrary that P is simple. Then by Proposition 4.1 the curve Cq,b,n contains an absolutely

irreducible component defined over Fq. Since q >
((n−1)(n−2)+

√
n2+13n−2)

2

4
this component

contains an affine Fq-rational point not lying on X = 0, Y = 0, or X = Y . Therefore by the
Niederreiter-Robinson Criterion fq,b,n cannot be a PP, a contradiction.

Let F (X, Y, T ) =
∑n

i=0An−i
Xi+1−Y i+1

X−Y
T n−i the homogenization of the polynomial defining

Cq,b,n. As P is singular, we have

∂F (X, Y, T )

∂X
(1,−1, 0) =

∂F (X, Y, T )

∂Y
(1,−1, 0) =

∂F (X, Y, T )

∂T
(1,−1, 0) = 0.
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This is equivalent to

p | n + 1

2
and A1 = 0.

A consequence of Theorem 4.2 is that for a given n odd there are just a finite number of
characteristics p for which there exists a PP of type fq,b,n.

For n = 3, Theorem 4.2 implies that for q ≥ 23 odd there cannot be a PP of type
xq

2+q+2 + bx. This is the main result in [5, Section 3].
For n = 7, p = 2, it has been shown in [7] that for q large enough the values b for which

f2h,b,7 is a PP are exactly the roots of irreducible polynomials of type x7 + ax3 + bx + c for

some a, b, c ∈ Fq. Note that for such b’s, the monomial b−1x
q7−1

q−1
+1 is a CPP. In particular,

for q = 2 the values of b are {η2i : i = 0 . . . 6} ∪ {(η11)2
i

: i = 0 . . . 6}, where η is a primitive
element of F27 .

The cases n = 5, 9, 11, 13, 15 are currently under investigation in [1].
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