On monomial complete permutation polynomials

Daniele Bartoli, Massimo Giulietti and Giovanni Zini *

This is a post-peer-review, pre-copyedit version of an article published in Finite Fields and Their Applications. The final authenticated version is available online at https://doi.org/10.1016/j.ffa. 2016.06.005

Copyright © 2016. This manuscript version is made available under the CC BY-NC-ND 4.0 license http://creativecommons.org/ licenses/by-nc-nd/4.0

Abstract

We investigate monomials $a x^{d}$ over the finite field with q elements \mathbb{F}_{q}, in the case where the degree d is equal to $\frac{q-1}{q^{\prime}-1}+1$ with $q=\left(q^{\prime}\right)^{n}$ for some n. For $n=6$ we explicitly list all a 's for which $a x^{d}$ is a complete permutation polynomial (CPP) over \mathbb{F}_{q}. Some previous characterization results by Wu et al. for $n=4$ are also made more explicit by providing a complete list of a 's such that $a x^{d}$ is a CPP. For odd n, we show that if q is large enough with respect to n then $a x^{d}$ cannot be a CPP over \mathbb{F}_{q}, unless q is even, $n \equiv 3(\bmod 4)$, and the trace $\operatorname{Tr}_{\mathbb{F}_{q} / \mathbb{F}_{q^{\prime}}}\left(a^{-1}\right)$ is equal to 0 .

Keywords: Permutation polynomials; Complete permutation polynomials; Bent-negabent boolean functions.

1 Introduction

Let $\mathbb{F}_{\ell}, \ell=p^{h}, p$ prime, denote the finite field of order ℓ. A permutation polynomial (or PP) $f(x) \in \mathbb{F}_{\ell}[x]$ is a bijection of \mathbb{F}_{ℓ} onto itself. A polynomial $f(x) \in \mathbb{F}_{\ell}[x]$ is a complete permutation polynomial (or CPP), if both $f(x)$ and $f(x)+x$ are permutation polynomials of \mathbb{F}_{ℓ}. Both permutation polynomials and complete permutation polynomials have been

[^0]extensively studied also because of their applications to cryptography and combinatorics; see for instance $[6,8,11,12,16,20]$ and the references therein. In particular, CPPs over fields of characteristic 2 give rise to bent-negabent boolean functions, which are a useful tool in cryptography; see [14].

Some families of CPPs are obtained in $[6,8,11,13,18,20]$. Nevertheless, CPPs seem to be very rare objects, even if we restrict to the monomial case. It is easily seen that a monomial $a x^{d}$ is a CPP if and only if $(d, \ell-1)=1$ and $x^{d}+\frac{x}{a}$ is a PP. This motivates the investigation of permutation binomials of type $x^{d}+b x$ for $d=(\ell-1) / m+1$ with m a divisor of $\ell-1$.

In $[3-5,20,21]$ PPs of type $f_{b}(x)=x^{\frac{q^{n}-1}{q-1}+1}+b x$ over $\mathbb{F}_{q^{n}}$ are thoroughly investigated for $n=2, n=3$, and $n=4$. For $n=6$, sufficient conditions for f_{b} to be a PP of $\mathbb{F}_{q^{6}}$ are provided in $[20,21]$ in the special cases of characteristic $p \in\{2,3,5\}$. The case $p=n+1$ is dealt with in [10].

In this paper, we provide a complete classification of permutation polynomials f_{b} in the case $n=6$, for arbitrary q. Theorems 1.1 and 1.2 list explicitely for $q \geq 421$ all elements $b \in \mathbb{F}_{q^{6}} \backslash \mathbb{F}_{q}$ such that f_{b} is a PP. For smaller values of q, Theorems 1.1 and 1.2 provide families of PPs of type f_{b}. We also determine the number of PPs of type f_{b} for $q \geq 421$; see Corollary 3.3. It should be noted that for $p=7$, the sufficient condition in [10] for f_{b} to be a PP is that $b^{q-1}=-1$; our results show that this is not a necessary condition.

Our methods also work for $n=4$. This allows us to list PPs of type f_{b} for $n=4$; see Remark 3.4. In this way, a more explicit description of the necessary and sufficient conditions of [21, Theorem 4.1] is given.

In the paper the case n odd is dealt with as well. Note that for n odd f_{b} being a PP implies that $b^{-1} x^{\frac{q^{n}-1}{q-1}+1}$ is a CPP only for $p=2$. We show that if p does not divide $(n+1) / 2$ or $\operatorname{Tr}_{\mathbb{T}_{q} / \mathbb{F}_{q^{\prime}}}(b) \neq 0$, then for q large enough with respect to n the polynomial f_{b} is never a PP; see Theorem 4.2. This shows that for n odd the monomial $b^{-1} x^{\frac{q^{n}-1}{q-1}+1}$ is never a CPP unless $n \equiv 3(\bmod 4)$. For $n=3$ Theorem 4.2 provides a shorter proof of the results of [5, Section $3]$.

A key tool in our investigation is the following criterion from [13], which relates the existence of a suitable \mathbb{F}_{q}-rational point of some algebraic curve to f_{b} being a PP or not.

Niederreiter-Robinson Criterion. The polynomial

$$
\begin{equation*}
f_{b}(x)=x^{\frac{q^{n}-1}{q-1}+1}+b x \tag{1}
\end{equation*}
$$

is a PP of $\mathbb{F}_{q^{n}}$ if and only if $b \in \mathbb{F}_{q^{n}} \backslash \mathbb{F}_{q}$ and the following inequality

$$
\begin{equation*}
x(x+b)^{\frac{q^{n}-1}{q-1}} \neq y(y+b)^{\frac{q^{n}-1}{q-1}} \tag{2}
\end{equation*}
$$

holds for all $x, y \in \mathbb{F}_{q}$ such that $x \neq 0, y \neq 0$, and $x \neq y$.

The well-known Hasse-Weil bound will be applied to an algebraic curve related to Condition (2).

Hasse-Weil Bound. [17, Theorem 5.2.3] Let \mathcal{X} be an absolutely irreducible curve defined over \mathbb{F}_{q} with genus g. The number N of \mathbb{F}_{q}-rational places of \mathcal{X} satisfies

$$
|N-(q+1)| \leq 2 g \sqrt{q}
$$

Our results for $n=6$ are Theorems 1.1 and 1.2 below.
Theorem 1.1. Let $q=p^{h}$ with $p \neq 7$, and let ξ be a primitive 7 -th root of unity in $\mathbb{F}_{q^{6}}$; define $\alpha=\xi^{4}-\xi^{3}$. Let ϵ be a primitive element of \mathbb{F}_{q}. If $q \geq 421$, then f_{b} is a PP if and only if one of the following cases occurs.

- $q \equiv 3,5(\bmod 7)$,

$$
\begin{equation*}
b \in\left\{\left.\frac{t\left(1-\xi^{i}\right)}{7} \right\rvert\, i=1, \ldots, 6, t \in \mathbb{F}_{q}^{*}\right\} . \tag{3}
\end{equation*}
$$

- q odd, $q \equiv 3(\bmod 7)$,

$$
\begin{equation*}
b \in\left\{\frac{-\alpha^{2 q} u+\alpha s}{14}, \frac{-\alpha^{2 q^{2}} u+\alpha^{q} s}{14}, \left.\frac{-\alpha^{2} u+\alpha^{q^{2}} s}{14} \right\rvert\, u, s \in \mathbb{F}_{q}, u \neq \pm s\right\} \tag{4}
\end{equation*}
$$

- q odd, $q \equiv 5(\bmod 7)$,

$$
\begin{equation*}
b \in\left\{\frac{-\alpha^{2 q^{2}} u+\alpha s}{14}, \frac{-\alpha^{2} u+\alpha^{q} s}{14}, \left.\frac{-\alpha^{2 q} u+\alpha^{q^{2}} s}{14} \right\rvert\, u, s \in \mathbb{F}_{q}, u \neq \pm s\right\} \tag{5}
\end{equation*}
$$

- q odd, $q \equiv 2(\bmod 7)$,

$$
\begin{equation*}
b \in\left\{\frac{-\alpha^{2 q^{2}} u+\alpha s \sqrt{\epsilon}}{14}, \frac{-\alpha^{2} u+\alpha^{q} s \sqrt{\epsilon}}{14}, \left.\frac{-\alpha^{2 q} u+\alpha^{q^{2}} s \sqrt{\epsilon}}{14} \right\rvert\,(u, s) \in \mathbb{F}_{q}^{2} \backslash\{(0,0)\}\right\} . \tag{6}
\end{equation*}
$$

- q odd, $q \equiv 4(\bmod 7)$,

$$
\begin{equation*}
b \in\left\{\frac{-\alpha^{2 q} u+\alpha s \sqrt{\epsilon}}{14}, \frac{-\alpha^{2 q^{2}} u+\alpha^{q} s \sqrt{\epsilon}}{14}, \left.\frac{-\alpha^{2} u+\alpha^{q^{2}} s \sqrt{\epsilon}}{14} \right\rvert\,(u, s) \in \mathbb{F}_{q}^{2} \backslash\{(0,0)\}\right\} . \tag{7}
\end{equation*}
$$

- q even, $q \equiv 2,4(\bmod 7)$.

$$
\begin{equation*}
b \in\left\{(\xi+1) t,(\xi+1)^{2} t,(\xi+1)^{4} t \mid t \in \mathbb{F}_{q}^{*}\right\} \tag{8}
\end{equation*}
$$

- $q=2^{h}, q \equiv 2,4(\bmod 7)$. Assume without loss of generality that ξ satisfies $\xi^{3}=\xi+1$, and fix an element k such that $\operatorname{Tr}_{\mathbb{F}_{q} / \mathbb{F}_{2}}(k)=1$. Define $\delta_{i}(u, v)=\frac{v}{u^{2}}+(\xi+1)^{2^{i}}$, $i=0,1,2$, and $y_{i}=y_{i}(u, v)=k \delta_{i}^{2}(u, v)+\left(k+k^{2}\right) \delta_{i}^{4}(u, v)+\cdots+\left(k+k^{2}+\cdots+\right.$ $\left.k^{2^{6 h-2}}\right) \delta_{i}^{26 h-1}(u, v)$; then

$$
\begin{equation*}
b \in\left\{y_{i}(\xi+1)^{2^{i+1}} u,\left(y_{i}+1\right)(\xi+1)^{2^{i+1}} u \mid u \in \mathbb{F}_{q}^{*}, \operatorname{Tr}_{\mathbb{F}_{q} / \mathbb{F}_{2}}\left(\frac{v}{u^{2}}\right) \equiv(h-1)(\bmod 2)\right\} \tag{9}
\end{equation*}
$$

for some $i=0,1,2$.
If $q<421$, then the above conditions are sufficient for f_{b} to be a permutation polynomial.
Theorem 1.2. Let $q=7^{h}$. Let $\xi \in \mathbb{F}_{343}$ be such that $\xi^{18}=1$ and let z be a 6 -th root of a fixed primitive element of \mathbb{F}_{q}. If $q \geq 421$, then the polynomial f_{b} is a $P P$ in $\mathbb{F}_{q^{6}}$ if and only if one of the following cases occurs.

$$
\begin{equation*}
b \in\left\{t z, t z^{5} \mid t \in \mathbb{F}_{q}^{*}\right\} \tag{10}
\end{equation*}
$$

- h is even and

$$
\begin{equation*}
b \in\left\{\left.-2 \xi t+\epsilon \frac{3 s}{t} \right\rvert\, 3 t^{3} \text { is not a cube in } \mathbb{F}_{q}, s \in \mathbb{F}_{q}\right\} . \tag{11}
\end{equation*}
$$

- h is odd and

$$
\begin{equation*}
b \in\left\{\left.-2 \xi t+\epsilon \frac{3 s}{t} \right\rvert\, 3 t^{3} \text { is not a cube in } \mathbb{F}_{q}, s \in \mathbb{F}_{q^{2}} \backslash \mathbb{F}_{q}, s^{2} \in \mathbb{F}_{q}\right\} \tag{12}
\end{equation*}
$$

-

$$
\begin{equation*}
b \in\left\{-\xi t \mid 3 t^{3} \text { is not a cube in } \mathbb{F}_{q}\right\} . \tag{13}
\end{equation*}
$$

-

$$
\begin{equation*}
b \in\left\{3 t \mid t \in \mathbb{F}_{q^{2}} \backslash \mathbb{F}_{q}, t^{2} \in \mathbb{F}_{q}^{*}\right\} \tag{14}
\end{equation*}
$$

$$
\begin{equation*}
b \in\left\{\left.3 t+3 s+\frac{s^{2}}{t} \right\rvert\, t \in \mathbb{F}_{q^{2}} \backslash \mathbb{F}_{q}, s \in \mathbb{F}_{q^{3}} \backslash \mathbb{F}_{q}, t^{2} \in \mathbb{F}_{q}^{*}, s^{3} \in \mathbb{F}_{q}^{*}\right\} \tag{15}
\end{equation*}
$$

If $q<421$, then the above conditions are sufficient for f_{b} to be a permutation polynomial.

The paper is organized as follows. In Section 2 we provide necessary and sufficient conditions for f_{b} to be a PP of $\mathbb{F}_{q^{6}}$ when $q \geq 421$; to this aim, we study the reducibility of an algebraic curve associated to f_{b} and discuss the existence of some \mathbb{F}_{q}-rational points. In Section 3 we present the proofs of Theorems 1.1 and 1.2; as a consequence, Corollary 3.3 gives the exact number of PPs of type f_{b} for $q \geq 421$, and a lower bound for $q<421$. Remark 3.4 shows that the techniques used in Section 3 can be applied also to other types of permutation polynomials; in particular, PPs of $\mathbb{F}_{q^{4}}$ of type $x^{\frac{q^{4}-1}{q-1}+1}+b x$ are listed. In this way, the characterization given in [21, Theorem 4.1] is made more explicit. Finally, in Section 4 we deal with the odd n case.

2 Some auxiliary curves associated to f_{b} for $n=6$

Our results on polynomials f_{b}, for $b \in \mathbb{F}_{q^{6}} \backslash \mathbb{F}_{q}$, involve elementary symmetric polynomials in $b^{q^{j}}$, for $j=0, \ldots, 5$. Throughout the paper, let

$$
\begin{align*}
& A=\sum_{0 \leq j \leq 5} b^{q^{j}}, \quad B=\sum_{0 \leq j_{1}<j_{2} \leq 5} b^{q^{j_{1}}+q^{j_{2}}}, \quad C=\sum_{0 \leq j_{1}<j_{2}<j_{3} \leq 5} b^{q^{j_{1}}+q^{j_{2}}+q^{j_{3}}} \tag{16}\\
& D=\sum_{0 \leq j_{1}<\ldots<j_{4} \leq 5} b^{q^{j_{1}}+q^{j_{2}}+q^{j_{3}}+q^{j_{4}}}, \quad E=\sum_{0 \leq j_{1}<\ldots<j_{5} \leq 5} b^{q^{j_{1}}+q^{j_{2}}+q^{j_{3}}+q^{j_{4}+q^{j}}},
\end{align*}
$$

and

$$
F=b^{1+q+q^{2}+q^{3}+q^{4}+q^{5}}
$$

Note that $A, B, C, D, E, F \in \mathbb{F}_{q}$. The aim of this section is to prove the following theorems which characterize PPs of type f_{b}.

Theorem 2.1. Let $p \neq 7, b \in \mathbb{F}_{q^{6}} \backslash \mathbb{F}_{q}$. Suppose that one of the following conditions holds.

1. $q \not \equiv 1(\bmod 7)$ and

$$
B=\frac{3}{7} A^{2}, \quad C=\frac{5}{7^{2}} A^{3}, \quad D=\frac{5}{7^{3}} A^{4}, \quad E=\frac{3}{7^{4}} A^{5}, \quad F=\frac{1}{7^{5}} A^{6}
$$

2. $q \not \equiv 1(\bmod 7), 7 B-3 A^{2} \neq 0$, and

$$
\begin{gathered}
C=\frac{1}{7^{2}}\left(-10 A^{3}+35 A B\right), \quad D=\frac{1}{7^{2}}\left(14 B^{2}-A^{4}-2 A^{2} B\right) \\
E=\frac{1}{7^{4}}\left(27 A^{5}-182 A^{3} B+294 A B^{2}\right), \quad F=\frac{1}{7^{5}}\left(13 A^{6}-28 A^{4} B-147 A^{2} B^{2}+343 B^{3}\right) .
\end{gathered}
$$

Then f_{b} is a PP of $\mathbb{F}_{q^{6}}$. Viceversa, if $q \geq 421$ and f_{b} is a PP of $\mathbb{F}_{q^{6}}$, then either Condition 1 or Condition 2 holds.

Theorem 2.2. Let $p=7, b \in \mathbb{F}_{q^{6}} \backslash \mathbb{F}_{q}$. Suppose that one of the following conditions holds.
1.

$$
b \in\left\{(0, \lambda, 0,0,0,0),(0,0,0,0,0, \lambda) \mid \lambda \in \mathbb{F}_{q}^{*}\right\}
$$

2.

$$
\begin{equation*}
A=B=0, \quad C \neq 0, \quad E=\frac{3 D^{2}}{C}, \quad F=\frac{2 C^{4}+4 D^{3}}{C^{2}} \tag{17}
\end{equation*}
$$

3.

$$
\begin{equation*}
A=0, \quad \sqrt{B} \notin \mathbb{F}_{q}, \quad D=\frac{5 B^{3}+6 C^{2}}{B}, \quad E=\frac{C\left(3 B^{3}+4 C^{2}\right)}{B^{2}}, \quad F=\frac{6\left(B^{3}+6 C^{2}\right)^{2}}{B^{3}} . \tag{18}
\end{equation*}
$$

Then f_{b} is a PP of $\mathbb{F}_{q^{6}}$. Viceversa, if $q \geq 421$ and f_{b} is a PP of $\mathbb{F}_{q^{6}}$, then Condition 1 , Condition 2 or Condition 3 holds.

It is easily seen that for $x, y \in \mathbb{F}_{q}$ Condition (2) in Niederreiter-Robinson criterion reads as follows:

$$
\begin{aligned}
& (x-y)\left[x^{6}+x^{5} y+x^{4} y^{2}+x^{3} y^{3}+x^{2} y^{4}+x y^{5}+y^{6}+A\left(x^{5}+x^{4} y+x^{3} y^{2}+x^{2} y^{3}+x y^{4}+y^{5}\right)\right. \\
& \left.+B\left(x^{4}+x^{3} y+x^{2} y^{2}+x y^{3}+y^{4}\right)+C\left(x^{3}+x^{2} y+x y^{2}+y^{3}\right)+D\left(x^{2}+x y+y^{2}\right)+E(x+y)+F\right] \neq 0
\end{aligned}
$$

Let \mathcal{S}_{b} be the sextic plane curve defined over \mathbb{F}_{q} with affine equation $F_{b}(X, Y)=0$, where

$$
\begin{aligned}
& F_{b}(X, Y)=X^{6}+X^{5} Y+X^{4} Y^{2}+X^{3} Y^{3}+X^{2} Y^{4}+X Y^{5}+Y^{6} \\
& \quad+A\left(X^{5}+X^{4} Y+X^{3} Y^{2}+X^{2} Y^{3}+X Y^{4}+Y^{5}\right)+B\left(X^{4}+X^{3} Y+X^{2} Y^{2}+X Y^{3}+Y^{4}\right) \\
& \quad+C\left(X^{3}+X^{2} Y+X Y^{2}+Y^{3}\right)+D\left(X^{2}+X Y+Y^{2}\right)+E(X+Y)+F
\end{aligned}
$$

Remark 2.3. By Niederreiter-Robinson Criterion, f_{b} is a PP of $\mathbb{F}_{q^{6}}$ if and only if $b \in \mathbb{F}_{q^{6}} \backslash \mathbb{F}_{q}$ and \mathcal{S}_{b} has no \mathbb{F}_{q}-rational affine points off the lines $X=Y, X=0$, and $Y=0$.

Lemma 2.4. If \mathcal{S}_{b} has no \mathbb{F}_{q}-rational affine points off the lines $X=Y, X=0$, and $Y=0$, then one of the following cases occurs.
i) The prime power q is at most 421.
ii) The curve \mathcal{S}_{b} has a linear component not defined over \mathbb{F}_{q}.
iii) The curve \mathcal{S}_{b} splits into three absolutely irreducible conics not defined over \mathbb{F}_{q} but over $\mathbb{F}_{q^{3}}$.
iv) The curve \mathcal{S}_{b} splits into two absolutely irreducible cubics not defined over \mathbb{F}_{q} but over $\mathbb{F}_{q^{2}}$.

Proof. Assume that \mathcal{S}_{b} is absolutely irreducible; then its genus is at most 10. Also, \mathcal{S}_{b} has at most 6 places centered on the ideal line ℓ_{∞}, at most 6 places centered on the line $X=Y$, and no \mathbb{F}_{q}-rational affine points (x, y) with $x=0$ or $y=0$; this is easily seen by (2). By the Hasse-Weil Bound, $q+1-20 \sqrt{q} \leq 12$, that is, $q \leq 421$. If \mathcal{S}_{b} is reducible but has an irreducible component defined over \mathbb{F}_{q}, then the same argument yields $q \leq 13$.

We can now assume that \mathcal{S}_{b} splits into absolutely irreducible components not defined over \mathbb{F}_{q}. Let $\varphi_{q}:(a, b, c) \mapsto\left(a^{q}, b^{q}, c^{q}\right)$ be the Frobenius collineation of the projective plane over the algebraic closure of \mathbb{F}_{q} and let \mathcal{C} be a component of \mathcal{S}_{b}. Then $\varphi_{q}(\mathcal{C})$ is a component of \mathcal{S}_{b} different from \mathcal{C}; hence, the degree of \mathcal{C} is smaller than 4 . If \mathcal{S}_{b} has no linear components, then either \mathcal{C} is a conic, whose orbit under φ_{q} has length 3 ; or \mathcal{C} is a cubic, whose orbit under φ_{q} has length 2 . In the former case \mathcal{C} is defined over $\mathbb{F}_{q^{3}}$, otherwise over $\mathbb{F}_{q^{2}}$.

2.1 The case $p \neq 7$

Theorem 2.1 is implied by the following result.
Proposition 2.5. Let $p \neq 7$.

1. If \mathcal{S}_{b} has a linear component not defined over \mathbb{F}_{q}, then \mathcal{S}_{b} splits into six linear components not defined over \mathbb{F}_{q}. This happens if and only if $q \not \equiv 1(\bmod 7)$ and

$$
\begin{equation*}
7 B-3 A^{2}=49 C-5 A^{3}=343 D-5 A^{4}=2401 E-3 A^{5}=16807 F-A^{6}=0 \tag{19}
\end{equation*}
$$

In this case, \mathcal{S}_{b} has no \mathbb{F}_{q}-rational affine points off the line $X=Y$.
2. The curve \mathcal{S}_{b} splits into three absolutely irreducible conics not defined over \mathbb{F}_{q} if and only if $q \not \equiv 1(\bmod 7), 7 B-3 A^{2} \neq 0$, and

$$
\begin{align*}
& A^{4}+2 A^{2} B-14 B^{2}+49 D=27 A^{5}-182 A^{3} B+294 A B^{2}-2401 E \\
& =10 A^{3}-35 A B+49 C=13 A^{6}-28 A^{4} B-147 A^{2} B^{2}+343 B^{3}-16807 F=0 . \tag{20}
\end{align*}
$$

In this case, \mathcal{S}_{b} has no \mathbb{F}_{q}-rational affine points.
3. The curve \mathcal{S}_{b} does not split into two absolutely irreducible cubics not defined over \mathbb{F}_{q}.

Proof. Let ξ denote a primitive 7 -th root of unity; the curve \mathcal{S}_{b} has 6 non-singular ideal points $P_{i}=\left(1, \xi^{i}, 0\right), i=1, \ldots, 6$. We denote by ℓ_{i} the tangent line to \mathcal{S}_{b} at P_{i}, which has affine equation $L_{i}(X, Y)=0$, where

$$
L_{i}(X, Y)=Y-\xi^{i} X-w_{i}, \quad \text { with } \quad w_{i}=\frac{A \xi^{6 i}}{6 \xi^{5 i}+5 \xi^{4 i}+4 \xi^{3 i}+3 \xi^{2 i}+2 \xi^{i}+1} .
$$

Let $\Phi_{7}(X)=\frac{X^{7}-1}{X-1} \in \mathbb{F}_{q}[X]$ be the 7 -th cyclotomic polynomial. For a polynomial $F(X) \in$ $\mathbb{F}_{q}[X]$ we denote by $R(F) \in \mathbb{F}_{q}$ the resultant of Φ_{7} and F with respect to X. Therefore, $R(F) \neq 0$ implies $F(\xi) \neq 0$.

1. A linear component s_{i} of \mathcal{S}_{b} must have affine equation $Y=\xi^{i} X+\alpha_{i}$, for some $i \in\{1, \ldots, 6\}, \alpha_{i} \in \overline{\mathbb{F}}_{q}$.
By straightforward computations, $s_{i} \subset \mathcal{S}_{b}$ reads

$$
\left\{\begin{array}{c}
\left(5 \xi^{4 i}+4 \xi^{3 i}+3 \xi^{2 i}+2 \xi^{i}+1\right) A \alpha_{i}+\left(\xi^{4 i}+\xi^{3 i}+\xi^{2 i}+\xi^{i}+1\right) B \tag{21}\\
\quad+\left(15 \xi^{4 i}+10 \xi^{3 i}+6 \xi^{2 i}+3 \xi^{i}+1\right) \alpha_{i}^{2}=0 \\
A\left(\xi^{5 i}+\xi^{4 i}+\xi^{3 i}+\xi^{2 i}+\xi^{i}+1\right)+\left(6 \xi^{5 i}+5 \xi^{4 i}+4 \xi^{3 i}+3 \xi^{2 i}+2 \xi^{i}+1\right) \alpha_{i}=0 \\
\left(10 \xi^{3 i}+6 \xi^{2 i}+3 A \xi^{i}+1\right) A \alpha_{i}^{2}+\left(4 \xi^{3 i}+3 \xi^{2 i}+2 \xi^{i}+1\right) B \alpha_{i} \\
+\left(\xi^{3 i}+\xi^{2 i}+\xi^{i}+1\right) C+\left(20 \xi^{3 i}+10 \xi^{2 i}+4 \xi^{i}+1\right) \alpha_{i}^{3}=0 \\
\left(10 \xi^{2 i}+4 \xi^{i}+1\right) A \alpha_{i}^{3}+\left(6 \xi^{2 i}+3 \xi^{i}+1\right) B \alpha_{i}^{2}+\left(3 \xi^{2 i}+2 \xi^{i}+1\right) C \alpha_{i} \\
+\left(\xi^{2 i}+\xi^{i}+1\right) D+15 \alpha_{i}^{4} \xi^{2 i}+5 \alpha_{i}^{4} \xi^{i}+\alpha_{i}^{4}=0 \\
\left(5 \xi^{i}+1\right) A \alpha_{1}^{4}+\left(4 \xi^{i}+1\right) B \alpha_{i}^{3}+\left(3 \xi^{i}+1\right) C \alpha_{i}^{2}+\left(2 \xi^{i}+1\right) D \alpha_{i} \\
+\left(\xi^{i}+1\right) E+6 \alpha_{i}^{5} \xi+\alpha_{i}^{5}=0
\end{array}\right] .
$$

From the first two equations we obtain

$$
\left(3 A^{2}-7 B\right)\left(\xi^{5 i}+4 \xi^{4 i}+9 \xi^{3 i}+9 \xi^{2 i}+4 \xi^{i}+1\right)=0
$$

For each $i \in\{1, \ldots, 6\}$ we have $R\left(X^{5 i}+4 X^{4 i}+9 X^{3 i}+9 X^{2 i}+4 X^{i}+1\right)=7^{4}$, and hence $\xi^{5 i}+4 \xi^{4 i}+9 \xi^{3 i}+9 \xi^{2 i}+4 \xi^{i}+1 \neq 0$. Combining $3 A^{2}-7 B=0$ with the second and the third equation in (21), we get

$$
\left(5 A^{3}-49 C\right)\left(2 \xi^{5 i}+7 \xi^{4 i}+12 \xi^{3 i}+14 \xi^{2 i}+10 \xi^{i}+4\right)=0
$$

For each $i \in\{1, \ldots, 6\}$, we have $R\left(2 X^{5 i}+7 X^{4 i}+12 X^{3 i}+14 X^{2 i}+10 X^{i}+4\right)=7^{3}$, and hence $5 A^{3}-49 C=0$. Similarly, from the other equations in (21), we obtain

$$
343 D-5 A^{4}=2401 E-3 A^{5}=16807 F-A^{6}=0
$$

Also,

$$
\begin{equation*}
\alpha_{i}=\frac{A \xi^{6 i}}{6 \xi^{5 i}+5 \xi^{4 i}+4 \xi^{3 i}+3 \xi^{2 i}+2 \xi^{i}+1} . \tag{22}
\end{equation*}
$$

Therefore s_{i} is not defined over \mathbb{F}_{q} if and only if $\xi^{i} \notin \mathbb{F}_{q}$. Equivalently, $q \not \equiv 1(\bmod 7)$; in fact, Φ_{7} factorizes over \mathbb{F}_{q} into $6 / d$ irreducible polynomials, where d is the multiplicative order of q modulo 7 .

On the other hand, direct calculations show that, if Conditions (19) hold and α_{i} is defined by (22) for $i=1, \ldots, 6$, then \mathcal{S}_{b} splits into the six lines $\ell_{1}, \ldots, \ell_{6}$.

If \mathcal{S}_{b} has a component not defined over \mathbb{F}_{q} containing an \mathbb{F}_{q}-rational point, then this point lies on at least another component of \mathcal{S}_{b}. As $\ell_{1} \cap \ldots \cap \ell_{6}=\left\{\left(\frac{-A}{7}, \frac{-A}{7}\right)\right\}$, the thesis follows.
2. If \mathcal{S}_{b} splits into three absolutely irreducible conics, then \mathcal{S}_{b} has equation $S(X, Y)=0$, where
$S(X, Y)=\left(L_{i_{1}}(X, Y) L_{j_{1}}(X, Y)+\beta_{1}\right) \cdot\left(L_{i_{2}}(X, Y) L_{j_{2}}(X, Y)+\beta_{2}\right) \cdot\left(L_{i_{3}}(X, Y) L_{j_{3}}(X, Y)+\beta_{3}\right)$
for some $\beta_{1}, \beta_{2}, \beta_{3} \in \overline{\mathbb{F}}_{q}^{*}$, with $\left\{i_{1}, j_{1}, i_{2}, j_{2}, i_{3}, j_{3}\right\}=\{1, \ldots, 6\}$. There are 15 possible distinct choises of the indexes $i_{1}, j_{1}, i_{2}, j_{2}, i_{3}, j_{3}$. For instance, let $\left(i_{1}, j_{1}, i_{2}, j_{2}, i_{3}, j_{3}\right)=$ $(1,2,3,4,5,6)$. Using the fact that the three conics are in the same orbit under the Frobenius collineation φ_{q}, and comparing the coefficients of $S(X, Y)$ with the coefficients of $F_{b}(X, Y)$, we get

$$
\left\{\begin{array}{c}
\left(\xi^{5}+\xi^{4}+3 \xi^{3}+\xi^{2}+\xi\right) \beta_{1}+\left(-2 \xi^{5}-2 \xi^{4}-2 \xi^{3}-2 \xi^{2}+1\right) \beta_{2}+\left(2 \xi^{4}-\xi-1\right) \beta_{3} \tag{23}\\
=21 A^{2}-49 B \\
\left(-2 \xi^{5}-2 \xi^{4}-\xi^{2}-\xi-1\right) \beta_{1}+\left(-\xi^{4}-\xi^{3}+2\right) \beta_{2}+\left(\xi^{4}-\xi^{3}-\xi^{2}+\xi\right) \beta_{3}=21 A^{2}-49 B \\
\left.\left(\xi^{4}+2 \xi^{3}+\xi^{2}+2 \xi+1\right) \beta_{1}+\left(\xi^{5}+2 \xi^{4}+2 \xi^{3}+\xi^{2}+1\right) \beta_{2}-\xi^{5}-\xi^{3}-2 \xi^{2}-2 \xi-1\right) \beta_{3} \\
=21 A^{2}-49 B \\
\left(\xi^{3}-\xi^{2}-\xi+1\right) \beta_{1}+\left(-\xi^{4}-\xi^{3}+2\right) \beta_{2}+\left(2 \xi^{4}+\xi^{3}+\xi^{2}+\xi+2\right) \beta_{3}=21 A^{2}-49 B \\
\left(\xi^{5}+\xi^{3}-\xi-1\right) \beta_{1}+\left(\xi^{5}+2 \xi^{4}+2 \xi^{3}+\xi^{2}+1\right) \beta_{2}+\left(\xi^{5}+2 \xi^{4}+\xi^{3}+2 \xi^{2}+\xi\right) \beta_{3} \\
=21 A^{2}-49 B
\end{array}\right.
$$

System (23) has a solution $\left(\beta_{1}, \beta_{2}, \beta_{3}\right)$ if and only if

$$
\left\{\begin{array}{l}
6 A^{2} \xi^{5}-15 A^{2} \xi^{4}-45 A^{2} \xi^{3}-66 A^{2} \xi^{2}-60 A^{2} \xi-30 A^{2} \\
-14 B \xi^{5}+35 B \xi^{4}+105 B \xi^{3}+154 B \xi^{2}+140 B \xi+70 B=0 \\
6 A^{2} \xi^{5}-6 A^{2} \xi^{4}-24 A^{2} \xi^{3}-36 A^{2} \xi^{2}-30 A^{2} \xi-15 A^{2} \\
-14 B \xi^{5}+14 B \xi^{4}+56 B \xi^{3}+84 B \xi^{2}+70 B \xi+35 B=0
\end{array}\right.
$$

that is

$$
\left\{\begin{array}{c}
\left(3 A^{2}-7 B\right)\left(2 \xi^{5}-5 \xi^{4}-15 \xi^{3}-22 \xi^{2}-20 \xi-10\right)=0 \\
\left(3 A^{2}-7 B\right)\left(2 \xi^{5}-2 \xi^{4}-8 \xi^{3}-12 \xi^{2}-10 \xi-5\right)=0
\end{array}\right.
$$

Since $R\left(2 X^{5}-2 X^{4}-8 X^{3}-12 X^{2}-10 X-5\right)=7^{3}$, we have $3 A^{2}-7 B=0$. Then, by
(23),

$$
\left\{\begin{array}{l}
\left(-2 \xi^{5}-2 \xi^{4}-\xi^{2}-\xi-1\right) \beta_{1}+\left(-\xi^{4}-\xi^{3}+2\right) \beta_{2}+\left(\xi^{4}-\xi^{3}-\xi^{2}+\xi\right) \beta_{3}=0 \tag{24}\\
\left.\left(\xi^{4}+2 \xi^{3}+\xi^{2}+2 \xi+1\right) \beta_{1}+\left(\xi^{5}+2 \xi^{4}+2 \xi^{3}+\xi^{2}+1\right) \beta_{2}-\xi^{5}-\xi^{3}-2 \xi^{2}-2 \xi-1\right) \beta_{3}=0 \\
\left(\xi^{5}+\xi^{3}-\xi-1\right) \beta_{1}+\left(\xi^{5}+2 \xi^{4}+2 \xi^{3}+\xi^{2}+1\right) \beta_{2}+\left(\xi^{5}+2 \xi^{4}+\xi^{3}+2 \xi^{2}+\xi\right) \beta_{3}=0
\end{array} .\right.
$$

System (24) is linear and homogeneous in the β_{i} 's. Since $R\left(X^{5}+3 X^{4}+3 X^{3}+5 X^{2}+\right.$ $6 X+3)=7^{3}$, it has a unique solution $\beta_{1}=\beta_{2}=\beta_{3}=0$, a contradiction.
When $\left\{\left\{i_{1}, j_{1}\right\},\left\{i_{2}, j_{2}\right\},\left\{i_{3}, j_{3}\right\}\right\} \neq\{\{1,6\},\{2,5\},\{3,4\}\}$, an analogous argument yields a contradiction. Now assume $\left(i_{1}, j_{1}, i_{2}, j_{2}, i_{3}, j_{3}\right)=(1,6,2,5,3,4)$. By direct calculations,

$$
\begin{align*}
& \beta_{1}=\left(\xi^{5}+\xi^{4}+\xi^{3}+\xi^{2}-1\right)\left(3 A^{2}-7 B\right), \\
& \beta_{2}=\beta_{3}=\left(-\xi^{5}-\xi^{2}-2\right)\left(3 A^{2}-7 B\right) \tag{25}
\end{align*}
$$

in particular, $3 A^{2}-7 B \neq 0$, since $R\left(X^{5}+X^{4}+X^{3}+X^{2}-1\right)=R\left(-X^{5}-X^{2}-2\right)=1$. Also, we get that Conditions (20) hold. Since the conic components of \mathcal{S}_{b} are not defined over $\mathbb{F}_{q}, \xi \notin \mathbb{F}_{q}$, i.e. $q \not \equiv 1(\bmod 7)$.
On the other hand, if $3 A^{2}-7 B \neq 0$ and Conditions (20) hold, then \mathcal{S}_{b} has equation

$$
\left(L_{1}(X, Y) L_{6}(X, Y)+\beta_{1}\right) \cdot\left(L_{2}(X, Y) L_{5}(X, Y)+\beta_{2}\right) \cdot\left(L_{3}(X, Y) L_{4}(X, Y)+\beta_{3}\right)=0,
$$

where the β_{i} 's are non-zero and defined as in (25).
In this case, it is easy to check that two conic components of \mathcal{S}_{b} intersect in an $\mathbb{F}_{q^{-}}$ rational point if and only if $q \equiv 1(\bmod 7)$ or $3 A^{2}-7 B=0$, which is not possible. Hence, \mathcal{S}_{b} has no \mathbb{F}_{q}-rational points.
3. If \mathcal{S}_{b} splits into two absolutely irreducible cubics \mathcal{C}_{1} and \mathcal{C}_{2} not defined over \mathbb{F}_{q}, then $\mathcal{C}_{1}, \mathcal{C}_{2}$ have affine equation $C_{1}(X, Y)=0, C_{2}(X, Y)=0$, where

$$
\begin{align*}
C_{1}(X, Y)= & \left(Y-\xi^{i_{1}} X\right)\left(Y-\xi^{i_{2}} X\right)\left(Y-\xi^{i_{3}} X\right)+\left(w_{i_{1}} \xi^{i_{2}} \xi^{i_{3}}+w_{i_{2}} \xi^{i_{1}} \xi^{i_{3}}+w_{i_{3}} \xi^{i_{1}} \xi^{i_{2}}\right) X^{2} \\
& +\left(w_{i_{1}}\left(\xi^{i_{2}}+\xi^{i_{3}}\right)+w_{i_{2}}\left(\xi^{i_{1}}+\xi^{i_{3}}\right)+w_{i_{3}}\left(\xi^{i_{1}}+\xi^{i_{2}}\right)\right) X Y \\
& -\left(w_{i_{1}}+w_{i_{2}}+w_{i_{3}}\right) Y^{2}+\alpha X+\beta Y+\gamma, \\
C_{2}(X, Y)= & \left(Y-\xi^{i_{4}} X\right)\left(Y-\xi^{i_{5}} X\right)\left(Y-\xi^{i_{6}} X\right)+\left(w_{i_{4}} \xi^{i_{5}} \xi^{i_{6}}+w_{i_{5}} \xi^{i_{4}} \xi^{i_{6}}+w_{i_{6}} \xi^{i_{4}} \xi^{i_{5}}\right) X^{2} \\
& +\left(w_{i_{4}}\left(\xi^{i_{5}}+\xi^{i_{6}}\right)+w_{i_{5}}\left(\xi^{i_{4}}+\xi^{i_{6}}\right)+w_{i_{6}}\left(\xi^{i_{4}}+\xi^{i_{5}}\right)\right) X Y \\
& -\left(w_{i_{4}}+w_{i_{5}}+w_{i_{6}}\right) Y^{2}+\alpha^{\prime} X+\beta^{\prime} Y+\gamma^{\prime} . \tag{26}
\end{align*}
$$

Since \mathcal{C}_{1} and \mathcal{C}_{2} are switched by the Frobenius collineation φ_{q}, there exists $\lambda \in \overline{\mathbb{F}}_{q}^{*}$ such that $C_{1}^{q}(X, Y)=\lambda C_{2}(X, Y)$. Let $u \in\{1, \ldots, 6\}$ be such that $q \equiv u(\bmod 7)$; then
$\left(\xi^{i}\right)^{q}=\xi^{i u}$. By comparing the coefficients of $C_{1}(X, Y) \cdot C_{2}(X, Y)$ with the coefficients of $F_{b}(X, Y)$, we have that the indexes $\left\{\left\{i_{1}, i_{2}, i_{3}\right\},\left\{i_{4}, i_{5}, i_{6}\right\}, u\right\}$ belong to

$$
\begin{align*}
& \{\{\{1,2,3\},\{4,5,6\}, 6\}, \quad\{\{1,2,4\},\{3,5,6\}, 3\}, \quad\{\{1,2,4\},\{3,5,6\}, 5\}, \tag{27}\\
& \{\{1,2,4\},\{3,5,6\}, 6\}, \quad\{\{1,3,5\},\{2,4,6\}, 6\}, \quad\{\{1,4,5\},\{2,3,6\}, 6\}\} .
\end{align*}
$$

Also, in these cases we have $\lambda=1$. Hence $\alpha^{\prime}=\alpha^{q}, \beta^{\prime}=\beta^{q}$, and $\gamma^{\prime}=\gamma^{q}$.
The projectivity $\psi:(X, Y, T) \mapsto(Y, X, T)$ is an isomorphism of \mathcal{S}_{b} and ψ either fixes or switches the components \mathcal{C}_{1} and \mathcal{C}_{2}. It is easy to check that the former case cannot occur, for any case in (27). Together with $\mathcal{C}_{1} \mathcal{C}_{2}=\mathcal{S}_{b}$, this yields
$\gamma^{q}=\mu \gamma, \quad \alpha^{q}=\mu \beta, \quad \beta^{q}=\mu \alpha, \quad \gamma^{q+1}=16807 F, \quad \alpha \gamma^{q}+\alpha^{q} \gamma=\beta \gamma^{q}+\beta^{q} \gamma=16807 E$,
for some $\mu \in \overline{\mathbb{F}}_{q}$. Consider the case $\left(i_{1}, i_{2}, i_{3}, i_{4}, i_{5}, i_{6}, u\right)=(1,2,4,3,5,6,3)$; by direct computation $\mu=1$, and $\mathcal{C}_{1} \mathcal{C}_{2}=\mathcal{S}_{b}$ is equivalent to

$$
\left\{\begin{array}{l}
\alpha \gamma+\beta \gamma=16807 E \\
A(\alpha-\beta)\left(\xi^{4}+\xi^{2}+\xi-2\right)-5 A \beta-343 C-7 \gamma=0 \\
\gamma^{2}=16807 F \\
A(\beta-\alpha)\left(\xi^{4}+\xi^{2}+\xi\right)-A \alpha-343 C=0 \\
98 A^{2}-343 B+(\alpha-\beta)\left(\xi^{4}+\xi^{2}+\xi-3\right)-7 \beta=0 \\
-196 A \gamma-16807 D+\alpha^{2}+\beta^{2}=0 \\
-49 A \gamma-16807 D+\alpha \beta=0 \\
98 A^{2}-343 B+(\beta-\alpha)\left(2 \xi^{4}+2 \xi^{2}+2 \xi+1\right)=0 \\
49 A^{2}-343 B+(\alpha-\beta)\left(2 \xi^{4}+2 \xi^{2}+2 \xi-6\right)-14 \beta=0
\end{array} .\right.
$$

By eliminating α, β, and γ, the system yields

$$
\left\{\begin{array}{l}
\left(3 A^{2}-7 B\right)\left(2 \xi^{4}+2 \xi^{2}+2 \xi+1\right)=0 \\
\left(2 A^{3}+7 A B-49 C\right)\left(2 \xi^{4}+2 \xi^{2}+2 \xi+1\right)=0 \\
-15 A^{4}+56 A^{2} B-49 A C-49 B^{2}+343 D=0 \\
\left(-33 A^{5}+259 A^{3} B-147 A^{2} C-490 A B^{2}+686 B C-2401 E\right)\left(2 \xi^{4}+2 \xi^{2}+2 \xi+1\right)=0 \\
-121 A^{6}+770 A^{4} B-1078 A^{3} C-1225 A^{2} B^{2}+3430 A B C-2401 C^{2}+16807 F=0 \\
-45 A^{4}+182 A^{2} B-196 A C-98 B^{2}+343 D=0
\end{array}\right.
$$

Since $R\left(2 X^{4}+2 X^{2}+2 X+1\right)=7^{3}$, we obtain

$$
7 B-3 A^{2}=49 C-5 A^{3}=343 D-5 A^{4}=2401 E-3 A^{5}=16807 F-A^{6}=0
$$

Then \mathcal{S}_{b} splits into lines as shown above, contradiction.

If $\left(\left\{i_{1}, i_{2}, i_{3}\right\},\left\{i_{4}, i_{5}, i_{6}\right\}, u\right) \in\{(\{1,2,4\},\{3,5,6\}, 6),(\{1,2,4\},\{3,5,6\}, 6)\}$, then $\mu=1$ and analogous arguments yield a contradiction.

Now consider the case $\left(\left\{i_{1}, i_{2}, i_{3}\right\},\left\{i_{4}, i_{5}, i_{6}\right\}, u\right)=(\{1,2,3\},\{4,5,6\}, 6)$. We get $\mu=\xi^{5}$, and $\mathcal{C}_{1} \mathcal{C}_{2}=\mathcal{S}_{b}$ implies

$$
\left\{\begin{array}{l}
A^{2}\left(22 \xi^{5}-5 \xi^{4}-4 \xi^{3}+11 \xi^{2}+26 \xi+27\right)-49 B\left(2 \xi^{5}+\xi^{2}+2 \xi+2\right)+\alpha \xi^{5}-\beta \xi=0 \\
A^{2}\left(22 \xi^{5}-5 \xi^{4}-4 \xi^{3}+11 \xi^{2}+26 \xi+27\right)-49 B\left(2 \xi^{5}+\xi^{2}+2 \xi+2\right)+\alpha \xi^{2}-\beta \xi^{4}=0 \\
-A^{2}\left(70 \xi^{4}+14 \xi+14\right)+343 B \xi^{4}+\alpha\left(8 \xi^{5}+6 \xi^{4}+9 \xi^{3}+4 \xi^{2}-\xi+2\right)=0 \\
-A^{2}\left(70 \xi^{4}+14 \xi+14\right)+343 B \xi^{4}-\alpha\left(6 \xi^{5}+8 \xi^{4}+5 \xi^{3}+3 \xi^{2}+\xi-2\right)=0 \\
343 C \xi^{4}+\gamma\left(2 \xi^{5}+\xi^{3}-2 \xi^{2}-2 \xi+1\right)=0 \\
343 C \xi^{4}+\gamma\left(-\xi^{5}+3 \xi^{3}+\xi^{2}+\xi+3\right)=0
\end{array},\right.
$$

whence

$$
\left\{\begin{array}{l}
\left(\xi^{4}-\xi\right)(\alpha \xi+\beta)=0 \\
\left(14 \xi^{5}+14 \xi^{4}+14 \xi^{3}+7 \xi^{2}\right) \alpha=0 \\
\left(3 \xi^{5}-2 \xi^{3}-3 \xi^{2}-3 \xi-2\right) \gamma=0
\end{array}\right.
$$

Therefore $\gamma=0$ and $F=\gamma^{2} / 16807=0$, a contradiction.
Finally, for $\left(\left\{i_{1}, i_{2}, i_{3}\right\},\left\{i_{4}, i_{5}, i_{6}\right\}, u\right) \in\{(\{1,3,5\},\{2,4,6\}, 6),(\{1,4,5\},\{2,3,6\}, 6)\}$, analogous arguments yield a contradiction.

2.2 The case $p=7$

Theorem 2.2 is implied by the following result.
Proposition 2.6. Let $p=7$.

1. If \mathcal{S}_{b} has a linear component not defined over \mathbb{F}_{q}, then \mathcal{S}_{b} splits into six linear components not defined over \mathbb{F}_{q}. This happens if and only if

$$
\begin{equation*}
b \in\left\{(0, \lambda, 0,0,0,0),(0,0,0,0,0, \lambda) \mid \lambda \in \mathbb{F}_{q}^{*}\right\} \tag{28}
\end{equation*}
$$

In this case, \mathcal{S}_{b} has no \mathbb{F}_{q}-rational affine points.
2. The curve \mathcal{S}_{b} splits into three absolutely irreducible conics not defined over \mathbb{F}_{q} if and only if

$$
\begin{equation*}
A=B=0, \quad C \neq 0, \quad E=\frac{3 D^{2}}{C}, \quad F=\frac{2 C^{4}+4 D^{3}}{C^{2}} . \tag{29}
\end{equation*}
$$

In this case, \mathcal{S}_{b} has no \mathbb{F}_{q}-rational affine points off the line $X=Y$.
3. The curve \mathcal{S}_{b} splits into two absolutely irreducible cubics not defined over \mathbb{F}_{q} if and only if

$$
\begin{equation*}
A=0, \quad \sqrt{B} \notin \mathbb{F}_{q}, \quad D=\frac{5 B^{3}+6 C^{2}}{B}, \quad E=\frac{C\left(3 B^{3}+4 C^{2}\right)}{B^{2}}, \quad F=\frac{6\left(B^{3}+6 C^{2}\right)^{2}}{B^{3}} . \tag{30}
\end{equation*}
$$

In this case \mathcal{S}_{b} has no \mathbb{F}_{q}-rational affine points off the line $X=Y$.
Proof. The unique ideal point of \mathcal{S}_{b} is $P_{\infty}=(1,1,0)$. The point P_{∞} is singular if and only if $A=0$. Suppose $A \neq 0$. The tangent line to \mathcal{S}_{b} at P_{∞} is the ideal line ℓ_{∞}. Since ℓ_{∞} is not a component of \mathcal{S}_{b}, there is no linear component of \mathcal{S}_{b} passing through P_{∞}. Hence, \mathcal{S}_{b} is absolutely irreducible by a criterion due to Segre; see [15] and [2, Lemma 8].

Therefore, a necessary condition for \mathcal{S}_{b} to be reducible is $A=0$.

1. Let s_{1} be a linear component of the curve \mathcal{S}_{b}, then it has affine equation $Y=X+\alpha$ and the system

$$
\left\{\begin{array}{l}
A=0 \\
A \alpha+5 B=0 \\
6 A \alpha^{2}+3 B \alpha+4 C=0 \\
A \alpha^{3}+3 B \alpha^{2}+6 C \alpha+3 D=0 \\
6 A \alpha^{4}+5 B \alpha^{3}+4 C \alpha^{2}+3 D \alpha+2 E=0 \\
A \alpha^{5}+B \alpha^{4}+C \alpha^{3}+D \alpha^{2}+E \alpha+F+\alpha^{6}=0
\end{array}\right.
$$

holds. This happens if and only if $A=B=C=D=E=0$ and $\alpha^{6}=-F$. On the other hand, these conditions imply that \mathcal{S}_{b} splits into the six lines $s_{i}: Y=X+i \alpha$, $i=1, \ldots, 6$.
Let k be such that $q=6 k+1$. Recall that ζ is a primitive element of \mathbb{F}_{q} and z is a root of the polynomial $T^{6}-\zeta$. In particular $z^{6(q-1)}=1$ and $\left\{1, z, z^{2}, z^{3}, z^{4}, z^{5}\right\}$ is a basis of $\mathbb{F}_{q^{6}}$ over \mathbb{F}_{q}.
If $b=\left(b_{0}, b_{1}, b_{2}, b_{3}, b_{4}, b_{5}\right), c=\left(c_{0}, c_{1}, c_{2}, c_{3}, c_{4}, c_{5}\right) \in \mathbb{F}_{q^{6}}$, then

$$
\begin{aligned}
& b^{q}=\left(b_{0}, b_{1} \zeta^{k}, b_{2} \zeta^{k}-b_{2},-b_{3},-b_{4} \zeta^{k},-b^{5} \zeta^{k}+b_{5}\right), \\
& b^{q^{2}}=\left(b_{0}, b_{1} \zeta^{k}-b_{1},-b_{2} \zeta^{k}, b_{3}, b_{4} \zeta^{k}-b_{4},-b^{5} \zeta^{k}\right), \\
& b^{q^{3}}=\left(b_{0},-b_{1}, b_{2},-b_{3}, b_{4},-b_{5}\right), \\
& b^{q^{4}}=\left(b_{0},-b_{1} \zeta^{k}, b_{2} \zeta^{k}-b_{2}, b_{3},-b_{4} \zeta^{k}, b^{5} \zeta^{k}-b_{5}\right), \\
& b^{q^{5}}=\left(-b_{0},-b_{1} \zeta^{k}+b_{1},-b_{2} \zeta^{k},-b_{3}, b_{4} \zeta^{k}-b_{4}, b^{5} \zeta^{k}\right), \\
& b c=\left(b_{0} c_{0}+b_{1} c_{5} \zeta+b_{2} c_{4} \zeta+b_{3} c_{3} \zeta+b_{4} c_{2} \zeta+b_{5} c_{1} \zeta, b_{0} c_{1}+b_{1} c_{0}+b_{2} c_{5} \zeta+b_{3} c_{4} \zeta+b_{4} c_{3} \zeta+b_{5} c_{2} \zeta,\right. \\
& b_{0} c_{2}+b_{1} c_{1}+b_{2} c_{0}+b_{3} c_{5} \zeta+b_{4} c_{4} \zeta+b_{5} c_{3} \zeta, b_{0} c_{3}+b_{1} c_{2}+b_{2} c_{1}+b_{3} c_{0}+b_{4} c_{5} \zeta+b_{5} c_{4} \zeta, \\
& \left.\quad b_{0} c_{4}+b_{1} c_{3}+b_{2} c_{2}+b_{3} c_{1}+b_{4} c_{0}+b_{5} c_{5} \zeta, b_{0} c_{5}+b_{1} c_{4}+b_{2} c_{3}+b_{3} c_{2}+b_{4} c_{1}+b_{5} c_{0}\right),
\end{aligned}
$$

hence

$$
\begin{aligned}
A & =-b_{0}, \quad B=b_{0}^{2}+b_{1} b_{5} \zeta+b_{2} b_{4} \zeta+4 b_{3}^{2} \zeta, \\
C & =6 b_{0}^{3}+4 b_{0} b_{1} b_{5} \zeta+4 b_{0} b_{2} b_{4} \zeta+2 b_{0} b_{3}^{2} \zeta+6 b_{1}^{2} b_{4} \zeta \\
& +5 b_{1} b_{2} b_{3} \zeta+2 b_{2}^{3} \zeta+6 b_{2} b_{5}^{2} \zeta^{2}+5 b_{3} b_{4} b_{5} \zeta^{2}+2 b_{4}^{3} \zeta^{2}, \\
D & =b_{0}^{4}+6 b_{0}^{2} b_{1} b_{5} \zeta+6 b_{0}^{2} b_{2} b_{4} \zeta+3 b_{0}^{2} b_{3}^{2} \zeta+4 b_{0} b_{1}^{2} b_{4} \zeta+b_{0} b_{1} b_{2} b_{3} \zeta+6 b_{0} b_{2}^{3} \zeta \\
& +4 b_{0} b_{2} b_{5}^{2} \zeta^{2}+b_{0} b_{3} b_{4} b_{5} \zeta^{2}+6 b_{0} b_{4}^{3} \zeta^{2}+b_{1}^{3} b_{3} \zeta+5 b_{1}^{2} b_{2}^{2} \zeta+2 b_{1}^{2} b_{5}^{2} \zeta^{2} \\
& +3 b_{1} b_{3} b_{4}^{2} \zeta^{2}+3 b_{2}^{2} b_{3} b_{5} \zeta^{2}+2 b_{2}^{2} b_{4}^{2} \zeta^{2}+3 b_{3}^{4} \zeta^{2}+b_{3} b_{5}^{3} \zeta^{3}+5 b_{4}^{2} b_{5}^{2} \zeta^{3}, \\
E & =6 b_{0}^{5}+4 b_{0}^{3} b_{1} b_{5} \zeta+4 b_{0}^{3} b_{2} b_{4} \zeta+2 b_{0}^{3} b_{3}^{2} \zeta+4 b_{0}^{2} b_{1}^{2} b_{4} \zeta+b_{0}^{2} b_{1} b_{2} b_{3} \zeta+6 b_{0}^{2} b_{2}^{3} \zeta+4 b_{0}^{2} b_{2} b_{5}^{2} \zeta^{2} \\
& +b_{0}^{2} b_{3} b_{4} b_{5} \zeta^{2}+6 b_{0}^{2} b_{4}^{3} \zeta^{2}+2 b_{0} b_{1}^{3} b_{3} \zeta+3 b_{0} b_{1}^{2} b_{2}^{2} \zeta+4 b_{0} b_{1}^{2} b_{5}^{2} \zeta^{2}+6 b_{0} b_{1} b_{3} b_{4}^{2} \zeta^{2}+6 b_{0}^{2} b_{2}^{2} b_{3} b_{5} \zeta^{2} \\
& +4 b_{0} b_{2}^{2} b_{4}^{2} \zeta^{2}+6 b_{0} b_{3}^{4} \zeta^{2}+2 b_{0} b_{3} b_{5}^{3} \zeta^{3}+3 b_{0} b_{4}^{2} b_{5}^{2} \zeta^{3}+6 b_{1}^{4} b_{2} \zeta+2 b_{1}^{3} b_{4} b_{5} \zeta^{2}+4 b_{1}^{2} b_{3} b_{4} \zeta^{2} \\
& +5 b_{1} b_{2}^{3} b_{5} \zeta^{2}+2 b_{1} b_{2} b_{3}^{3} \zeta^{2}+2 b_{1} b_{2} b_{5}^{3} \zeta^{3}+5 b_{1} b_{4}^{3} b_{5} \zeta^{3}+b_{2}^{4} b_{4} \zeta^{2}+6 b_{2}^{3} b_{3}^{2} \zeta^{2}+4 b_{2}^{2} b_{3}^{2} b_{5}^{2} \zeta^{3} \\
& +b_{2} b_{4}^{4} \zeta^{3}+2 b_{3}^{3} b_{4} b_{5} \zeta^{3}+6 b_{3}^{2} b_{4}^{3} \zeta^{3}+6 b_{4} b_{5}^{4} \zeta^{4} .
\end{aligned}
$$

It is easy to check that $A=B=C=D=E=0$ is equivalent to Condition (28). Since $b=\lambda z$ or $b=\lambda z^{5}$, with $\lambda \in \mathbb{F}_{q}^{*}$, the condition $\alpha^{6}=-b^{q^{5}+q^{4}+q^{3}+q^{2}+q+1}$, i.e. $\alpha^{6}=-F$, implies $\alpha \in \mathbb{F}_{q^{6}} \backslash \mathbb{F}_{q}$. Therefore, the six lines $s_{i}, i=1, \ldots, 6$, have no \mathbb{F}_{q}-rational affine points.
2. Suppose that \mathcal{S}_{b} splits into three absolutely irreducible conics $\mathcal{C}_{1}, \mathcal{C}_{2}$, and \mathcal{C}_{3}. Since $\psi:(X, Y, T) \mapsto(Y, X, T)$ is an automorphism of \mathcal{S}_{b}, either ψ fixes each \mathcal{C}_{i}, or (up to reordering the indexes) ψ fixes \mathcal{C}_{1} and switches \mathcal{C}_{2} and \mathcal{C}_{3}.
In the latter case, the conics \mathcal{C}_{i} 's have affine equation

$$
\begin{array}{ll}
\mathcal{C}_{1}: & (X-Y)^{2}+\alpha X+\alpha Y+\beta=0, \\
\mathcal{C}_{2}: & (X-Y)^{2}+\gamma X+\delta Y+\epsilon=0, \\
\mathcal{C}_{3}: & (X-Y)^{2}+\delta X+\gamma Y+\zeta=0,
\end{array}
$$

for some $\alpha, \beta, \gamma, \delta, \epsilon, \zeta \in \overline{\mathbb{F}}_{q}$. The conditions $\mathcal{C}_{1} \mathcal{C}_{2} \mathcal{C}_{3}=\mathcal{S}_{b}$ and $A=0$ yield

$$
A=B=C=D=E=0 .
$$

Hence, as above, \mathcal{S}_{b} splits into six lines, a contradiction.
In the former case, the conics \mathcal{C}_{i} 's have affine equation

$$
\begin{array}{ll}
\mathcal{C}_{1}: & (X-Y)^{2}+\alpha X+\alpha Y+\beta=0, \\
\mathcal{C}_{2}: & (X-Y)^{2}+\gamma X+\gamma Y+\delta=0 \tag{31}\\
\mathcal{C}_{3}: & (X-Y)^{2}+\epsilon X+\epsilon Y+\zeta=0
\end{array}
$$

for some $\alpha, \beta, \gamma, \delta, \epsilon, \zeta \in \overline{\mathbb{F}}_{q}$. Since the \mathcal{C}_{i} 's form a single orbit under the Frobenius collineation φ_{q}, the coefficients lie in $\mathbb{F}_{q^{3}}$ and $\gamma=\alpha^{q}, \epsilon=\alpha^{q^{2}}, \delta=\beta^{q}, \zeta=\beta^{q^{2}}$. By direct computation, $\mathcal{C}_{1} \mathcal{C}_{2} \mathcal{C}_{3}=\mathcal{S}_{b}$ and $A=0$ imply

$$
B=0, \quad C E+4 D^{2}=0, \quad C^{2} D+3 D F+E^{2}=0, \quad C^{3}+3 C F+3 D E=0 .
$$

Hence Conditions (29) follow, beacause $C=0$ would imply that \mathcal{S}_{b} splits into lines, a contradiction. Conversely, if Conditions (29) hold, then \mathcal{S}_{b} splits into irreducible conics defined by (31), where the \mathcal{C}_{i} 's form an orbit under φ_{q}, and α, β are defined by

$$
\alpha^{3}=4 C, \quad \beta=\frac{C \alpha+2 D}{\alpha^{2}}
$$

The conics \mathcal{C}_{i} 's are not defined over \mathbb{F}_{q}. Assume by contradiction that one of them is defined over \mathbb{F}_{q}. Then $\mathcal{S}_{b}=\left(\mathcal{C}_{1}\right)^{3}$, and the polynomial $\left((X-Y)^{2}+\alpha(X+Y)+\beta\right)^{3}$ has no terms of degree either 5 or 4 . Hence, by direct checking, $\alpha=\beta=0$, which is impossible since $F \neq 0$.
Conditions (29), together with the condition $(x, y) \in \mathcal{C}_{1} \cap \mathcal{C}_{2} \cap \mathcal{C}_{3}$, yield $x=y$. This means that \mathcal{S}_{b} has no \mathbb{F}_{q}-rational affine points off the line $X=Y$.
3. Suppose that \mathcal{S}_{b} splits into two absolutely irreducible cubics \mathcal{C}_{1} and \mathcal{C}_{2}. The automorphism $\psi:(X, Y, T) \mapsto(Y, X, T)$ either fixes or switches \mathcal{C}_{1} and \mathcal{C}_{2}.
In the former case, the cubics \mathcal{C}_{i} 's have affine equation

$$
\begin{array}{ll}
\mathcal{C}_{1}: & (X-Y)^{3}+\alpha\left(X^{2}+Y^{2}\right)+\beta X Y+\gamma(X+Y)+\delta=0, \\
\mathcal{C}_{2}: & (X-Y)^{3}+\alpha^{\prime}\left(X^{2}+Y^{2}\right)+\beta^{\prime} X Y+\gamma^{\prime}(X+Y)+\delta^{\prime}=0 .
\end{array}
$$

The conditions $\mathcal{C}_{1} \mathcal{C}_{2}=\mathcal{S}_{b}$ and $A=0$ yield $B=C=D=E=0$; hence, as above, \mathcal{S}_{b} splits into lines, a contradiction.
In the latter case, the conditions $\mathcal{C}_{1} \mathcal{C}_{2}=\mathcal{S}_{b}, A=0$, and $\psi\left(\mathcal{C}_{1}\right)=\mathcal{C}_{2}$ yield in particular

$$
\left\{\begin{array}{l}
C F^{2}+D E F+2 E^{3}=0 \\
B C^{2}+5 B F+4 C E+3 D^{2}=0 \\
B^{2} E+C F+5 D E=0 \\
B^{2} C+3 B E+5 C D=0 \\
B^{3}+4 B D+4 C^{2}=0
\end{array}\right.
$$

Hence $B \neq 0$, otherwise \mathcal{S}_{b} splits into lines; also,

$$
\begin{equation*}
A=0, \quad D=\frac{5 B^{3}+6 C^{2}}{B}, \quad E=\frac{C\left(3 B^{3}+4 C^{2}\right)}{B^{2}}, \quad F=\frac{6\left(B^{3}+6 C^{2}\right)^{2}}{B^{3}} \tag{32}
\end{equation*}
$$

If Conditions (32) are satisfied, then \mathcal{C}_{1} and \mathcal{C}_{2} have equation

$$
\begin{array}{ll}
\mathcal{C}_{1}: & \alpha\left[(X-Y)^{3}-B(X-Y)\right]+4 B(X+Y)^{2}+3 C(X+Y)+\frac{3 B^{3}+5 B C^{2}+C^{2}}{B}=0 \\
\mathcal{C}_{2}: & -\alpha\left[(X-Y)^{3}-B(X-Y)\right]+4 B(X+Y)^{2}+3 C(X+Y)+\frac{3 B^{3}+5 B C^{2}+C^{2}}{B}=0 \tag{33}
\end{array}
$$

where $\alpha^{2}=4 B$; therefore, \mathcal{S}_{b} is not defined over \mathbb{F}_{q} if and only if $\sqrt{B} \notin \mathbb{F}_{q}$.
Viceversa, if Conditions (30) are satisfied, then $\mathcal{S}_{b}=\mathcal{C}_{1} \mathcal{C}_{2}$, with $\mathcal{C}_{1}, \mathcal{C}_{2}$ defined as in (33).

If $\sqrt{B} \notin \mathbb{F}_{q}$, then \mathcal{C}_{1} and \mathcal{C}_{2} in (33) have no \mathbb{F}_{q}-rational affine points off the line $X=Y$. In fact, if an \mathbb{F}_{q}-rational point (x, y) lies on \mathcal{C}_{1}, then the coefficient $(X-Y)^{3}-B(X-Y)$ of α must vanish at (x, y); this implies either $B=(x-y)^{2}$, which is impossible, or $x=y$.

3 Proof of Theorems 1.1 and 1.2

Using the characterization results contained in Theorems 2.1 and 2.2 we are now in a position to prove our main Theorems.

Assume first that $p \neq 7$ and let $\xi \in \mathbb{F}_{q^{6}}$ denote a primitive 7 -th root of unity.
Consider the following family of polynomials over \mathbb{F}_{q}.

$$
\begin{aligned}
& \mathcal{F}=\left\{F_{u, v}=X^{6}-u X^{5}+v X^{4}-\frac{\left(-10 u^{3}+35 u v\right)}{7^{2}} X^{3}+\frac{\left(14 v^{2}-u^{4}-2 u^{2} v\right)}{7^{2}} X^{2}\right. \\
& \left.\left.-\frac{\left(27 u^{5}-182 u^{3} v+294 u v^{2}\right)}{7^{4}} X+\frac{\left(13 u^{6}-28 u^{4} v-147 u^{2} v^{2}+343 v^{3}\right)}{7^{5}} \right\rvert\, u, v \in \mathbb{F}_{q}\right\} .
\end{aligned}
$$

Since by definition of A, B, C, D, E, and F, the elements $b, b^{q}, \ldots, b^{q^{5}}$ are the zeros of the following polynomial over \mathbb{F}_{q}

$$
X^{6}-A X^{5}+B X^{4}-C X^{3}+D X^{2}-E X+F
$$

we have that f_{b} is a PP if and only if and only if $b, b^{q}, \ldots, b^{q^{5}}$ are the only zeros of $F_{u_{b}, v_{b}} \in \mathcal{F}$, for some u_{b}, v_{b} depending on b. More precisely, Condition 1 in Theorem 2.1 holds if and only if $b, b^{q}, \ldots, b^{q^{5}}$ are the zeros of $F_{A, \frac{3}{7} A^{2}}$, whereas Condition 2 in Theorem 2.1 is equivalent to $7 B-3 A^{2} \neq 0$ and $b, b^{q}, \ldots, b^{q^{5}}$ being the zeros of $F_{A, B}$.

We consider Condition 1 first. By direct computation,

$$
F_{u, \frac{3}{7} u^{2}}=\prod_{i=1}^{6}\left(X-u \frac{1-\xi^{i}}{7}\right) .
$$

Since the trace map is surjective, for each $u \in \mathbb{F}_{q}$ there exists $b \in \mathbb{F}_{q^{6}} \backslash \mathbb{F}_{q}$ such that $u=A$. Moreover, for each $i=1, \ldots, 6$, the minimal polynomial of ξ^{i} over \mathbb{F}_{q} has degree congruent
to q modulo 7. Hence, $F_{u, \frac{3}{7} u^{2}}$ is irreducible over \mathbb{F}_{q} if and only if $q \equiv 3,5(\bmod 7)$; in this case, the roots b of $F_{u, \frac{3}{7} u^{2}}$ provide 6 permutation polynomials f_{b}. If $F_{u, \frac{3}{7} u^{2}}$ is reducible over \mathbb{F}_{q}, then the zeros of $F_{u, \frac{3}{7} u^{2}}$ do not form a single orbit under the Frobenius map, since they are all distinct; in this case, if b is a root of $F_{u, \frac{3}{7} u^{2}}$, then f_{b} is not a PP.

As to Condition 2 in Theorem 2.1, it is satisfied by b if and only if b is a root of some $F_{u, v}$, where $u, v \in \mathbb{F}_{q}$ are such that $7 v-3 u^{2} \neq 0$ and either $F_{u, v}$ is irreducible over \mathbb{F}_{q}, or $F_{u, v}$ is the square of an irreducible polynomial over \mathbb{F}_{q}, or $F_{u, v}$ is the cube of an irreducible polynomial over \mathbb{F}_{q}.

By direct computation, $F_{u, v}=\frac{1}{7^{6}} \cdot G_{u, v}^{(1)} \cdot G_{u, v}^{(2)} \cdot G_{u, v}^{(3)}$, with

$$
\begin{aligned}
& G_{u, v}^{(1)}(X)=49 X^{2}+7\left(\xi^{4}+\xi^{3}-2\right) u X-\left(3 \xi^{5}+4 \xi^{4}+4 \xi^{3}+3 \xi^{2}+7\right) u^{2}+7\left(\xi^{5}+\xi^{4}+\xi^{3}+\xi^{2}+3\right) v, \\
& G_{u, v}^{(2)}(X)=49 X^{2}-7\left(\xi^{5}+\xi^{4}+\xi^{3}+\xi^{2}+3\right) u X+\left(4 \xi^{5}+\xi^{4}+\xi^{3}+4 \xi^{2}-3\right) u^{2}-7\left(\xi^{5}+\xi^{2}-2\right) v, \\
& \quad G_{u, v}^{(3)}(X)=49 X^{2}+7\left(\xi^{5}+\xi^{2}-2\right) u X-\left(\xi^{5}-3 \xi^{4}-3 \xi^{3}+\xi^{2}+4\right) u^{2}-7\left(\xi^{4}+\xi^{3}-2\right) v
\end{aligned}
$$

Also, the $G_{u, v}^{(i)}$'s are defined over $\mathbb{F}_{q^{3}}$ and form a single orbit under φ_{q}. The discriminant of $F_{u, v}(X)$ is $\Delta=13 u^{6}-28 u^{4} v-147 u^{2} v^{2}+343 v^{3}$ and it vanishes if and only if $u^{2}=\delta \cdot v$, with $13 \delta^{3}-28 \delta^{2}-147 \delta+343=0$. For $p \neq 13, \delta$ is in
$\left\{\frac{21 \xi^{5}+35 \xi^{4}+35 \xi^{3}+21 \xi^{2}+28}{13}, \frac{14 \xi^{5}-21 \xi^{4}-21 \xi^{3}+14 \xi^{2}+7}{13}, \frac{-35 \xi^{5}-14 \xi^{4}-14 \xi^{3}-35 \xi^{2}-7}{13}\right\}$,
and it is easily seen that $\delta \notin \mathbb{F}_{q}$; hence $\Delta \neq 0$, since $u, v \in \mathbb{F}_{q}^{*}$. For $p=13, \delta \in\{8,11\}$. In this case, a direct computation shows that $F_{u, v}$ is not a power of an irreducible polynomial over \mathbb{F}_{q}, for any $(u, v) \in \mathbb{F}_{q}^{2} \backslash\{(0,0)\}$; hence, f_{b} is not a PP for any root b of $F_{u, v}$.

Therefore, we can assume that $G_{u, v}^{(i)}$ and $G_{u, v}^{(j)}$ have no roots in common for $i \neq j$.
If $q \equiv 1,6(\bmod 7)$, then $G_{u, v}^{(i)}$'s are defined over \mathbb{F}_{q}. Hence, f_{b} is not a PP of $\mathbb{F}_{q^{6}}$, for any root b of $F_{u, v}$.

Suppose now q odd and $q \equiv r \in\{2,3,4,5\}(\bmod 7)$. For $i=1,2,3$, the roots of $G_{u, v}^{(i)}$ are

$$
\begin{equation*}
x_{1,2}^{(i)}=\left(\alpha_{i} u \pm \rho_{i}\right) / 14, \quad \text { with } \quad \rho_{i}^{2}=\beta_{i}\left(28 v-11 u^{2}\right), \tag{34}
\end{equation*}
$$

where

$$
\alpha_{2}=\beta_{1}=\left(\xi^{4}-\xi^{3}\right)^{2}, \alpha_{3}=\beta_{2}=\left(\xi^{5}+\xi^{4}+\xi^{3}+\xi^{2}+2 \xi+1\right)^{2}, \alpha_{1}=\beta_{3}=\left(\xi^{5}-\xi^{2}\right)^{2} .
$$

Note that $\xi^{4}-\xi^{3}, \xi^{5}+\xi^{4}+\xi^{3}+\xi^{2}+2 \xi+1$, and $\xi^{5}-\xi^{2}$ belong to $\mathbb{F}_{q^{3}}$ if and only if $r \in\{2,4\}$. Therefore, for any $i=1,2,3, \beta_{i}^{q^{3}}=\beta_{i}$ when $r \in\{2,4\}$, and $\beta_{i}^{q^{3}}=-\beta_{i}$ when $r \in\{3,5\}$, whereas $\alpha_{i}^{q^{3}}=\alpha_{i}$.

Suppose $28 v-11 u^{2}=0$. Then $x_{1}^{(i)}=x_{2}^{(i)}$, and $F_{u, v}$ is the square of an irreducible polynomial over \mathbb{F}_{q}. Hence, the three distinct roots b of $F_{u, v}$ provide PPs f_{b}.

Suppose $28 v-11 u^{2} \neq 0$, hence $\rho_{i} \neq 0$ for any $i=1,2,3$. Then

$$
\rho_{i}^{q^{3}}=(-1)^{r} \cdot\left(28 v-11 u^{2}\right)^{\frac{q^{3}-1}{2}} \cdot \rho_{i} .
$$

Note that $\left(28 v-11 u^{2}\right)^{\frac{q^{3}-1}{2}}=1$ if $28 v-11 u^{2}$ is a square in $\mathbb{F}_{q}\left(\right.$ and hence in $\left.\mathbb{F}_{q^{3}}\right)$, while $\left(28 v-11 u^{2}\right)^{\frac{q^{3}-1}{2}}=-1$ if $28 v-11 u^{2}$ is a non-square in \mathbb{F}_{q}.

If $r \in\{2,4\}$ and $28 v-11 u^{2}$ is a non-zero square in \mathbb{F}_{q}, then $\rho^{q^{3}}=\rho$; the same holds if $r \in\{3,5\}$ and $28 v-11 u^{2}$ is a non-square in \mathbb{F}_{q}. Therefore, $\left(x_{1}^{(i)}\right)^{q^{3}}=x_{1}$, and $F_{u, v}$ factors over \mathbb{F}_{q} into two distinct irreducible polynomials. Hence, for any root b of $F_{u, v}, f_{b}$ is not a PP.

If $r \in\{2,4\}$ and $28 v-11 u^{2}$ is a non-square in \mathbb{F}_{q}, then $\rho^{q^{3}}=-\rho$; the same holds if $r \in\{3,5\}$ and $28 v-11 u^{2}$ is a non-zero square in \mathbb{F}_{q}. Therefore, $\left(x_{1}^{(i)}\right)^{q^{3}}=x_{2}$, and $F_{u, v}$ is irreducible over \mathbb{F}_{q}. Hence, the roots b of $F_{u, v}$ provide PPs f_{b}.

Let $s, \epsilon \in \mathbb{F}_{q}$ with ϵ a primitive element of \mathbb{F}_{q}, such that $28 v-11 u^{2}=s^{2}$ when $28 v-11 u^{2}$ is a square in \mathbb{F}_{q}, and $28 v-11 u^{2}=s^{2} \epsilon$ when $28 v-11 u^{2}$ is a non-square in \mathbb{F}_{q}. Then the condition $7 v-3 u^{2} \neq 0$ reads $u \neq \pm s$ in the former case, while it is satisfied for all $(u, s) \neq(0,0)$ in the latter case.

Suppose now $q=2^{h}$. Then, $q \equiv 2,4(\bmod 7)$. The minimal polynomial of ξ is either $X^{3}+X+1$ or $X^{3}+X^{2}+1$; assume without loss of generality that $\xi^{3}=\xi+1$. The factors of $F_{u, v}$ over $\mathbb{F}_{q^{3}}$ in this case are

$$
\begin{gathered}
X^{2}+(\xi+1) X u+(\xi+1)^{2} v+\left(\xi^{2}+\xi\right) u^{2}, \\
X^{2}+(\xi+1)^{2} X u+(\xi+1)^{4} v+\xi u^{2} \\
X^{2}+(\xi+1)^{4} X u+(\xi+1) v+\xi^{2} u^{2}
\end{gathered}
$$

There exist roots of $F_{u, v}$ of multiplicity larger than one if and only if $u^{6}\left(u^{2}+\xi v\right)^{4}\left(u^{2}+\right.$ $\left.\xi^{2} v\right)^{4}\left(u^{2}+\left(\xi^{2}+\xi\right) v\right)^{4}=0$. Since $\xi \notin \mathbb{F}_{q}$, the only possibility is $u=0$. In this case

$$
F_{u, v}=\left[(X+(\xi+1) \sqrt{v}) \cdot\left(X+\left(\xi^{2}+1\right) \sqrt{v}\right) \cdot\left(X+\left(\xi^{2}+\xi+1\right) \sqrt{v}\right)\right]^{2} .
$$

Hence, $F_{u, v}$ has three distinct zeros with multiplicity 2 and defined over $\mathbb{F}_{q^{3}}$, for any $v \in \mathbb{F}_{q}^{*}$, namely

$$
(\xi+1) \sqrt{v},\left(\xi^{2}+1\right) \sqrt{v},\left(\xi^{2}+\xi+1\right) \sqrt{v}
$$

which form a unique orbit under the Frobenius map.

Suppose now $u \neq 0$, that is $F_{u, v}$ has six distinct zeros belonging to $\mathbb{F}_{q^{6}}$. They belong to $\mathbb{F}_{q^{3}}$ if and only if $\operatorname{Tr}_{\mathbb{F}_{q^{3}} / \mathbb{F}_{2}}\left(\frac{v}{u^{2}}+(\xi+1)^{2^{i}}\right)=0, i=0,1,2$, that is

$$
\operatorname{Tr}_{\mathbb{F}_{q^{3}} / \mathbb{F}_{2}}\left(\frac{v}{u^{2}}+(\xi+1)^{2^{i}}\right)=\operatorname{Tr}_{\mathbb{F}_{q^{3}} / \mathbb{F}_{2}}\left(\frac{v}{u^{2}}\right)+\operatorname{Tr}_{\mathbb{F}_{q^{3}} / \mathbb{F}_{2}}\left((\xi+1)^{2^{i}}\right)=0,
$$

where $\operatorname{Tr}_{\mathbb{F}_{q^{3}} / \mathbb{F}_{2}}(\alpha)$ denotes the trace function from $\mathbb{F}_{q^{3}}$ to \mathbb{F}_{2}. It is not hard to see that $\operatorname{Tr}_{\mathbb{F}_{q^{3}} / \mathbb{F}_{2}}\left((\xi+1)^{2^{i}}\right)=1$ if and only if h is odd. Therefore the zeros of $F_{u, v}(X)$ correspond to PPs f_{b} if and only if one of the following cases occurs:

- h is odd and $\operatorname{Tr}_{\mathbb{F}_{q^{3}} / \mathbb{F}_{2}}\left(\frac{v}{u^{2}}\right)=\operatorname{Tr}_{\mathbb{F}_{q} / \mathbb{F}_{2}}\left(\frac{v}{u^{2}}\right)=0 ;$
- h is even and $\operatorname{Tr}_{\mathbb{F}_{q^{3}} / \mathbb{F}_{2}}\left(\frac{v}{u^{2}}\right)=\operatorname{Tr}_{\mathbb{F}_{q} / \mathbb{F}_{2}}\left(\frac{v}{u^{2}}\right)=1$.

In these cases, let $\delta_{i}=\frac{v}{u^{2}}+(\xi+1)^{2^{i}}, i=0,1,2$, and let k be an element with $\operatorname{Tr}_{\mathbb{F}_{q^{6}} / \mathbb{F}_{2}}(k)=1$. Denote by y_{i} the quantity $k \delta_{i}^{2}+\left(k+k^{2}\right) \delta_{i}^{4}+\cdots+\left(k+k^{2}+\cdots+k^{2^{h-2}}\right) \delta_{i}^{2^{h-1}}, i=0,1,2$. The six roots are

$$
b \in\left\{y_{i}(\xi+1)^{2^{i+1}} u,\left(y_{i}+1\right)(\xi+1)^{2^{i+1}} u \mid i=0,1,2, \quad \operatorname{Tr}_{\mathbb{F}_{q} / \mathbb{F}_{2}}\left(\frac{v}{u^{2}}\right)=0\right\}
$$

if h is odd,

$$
b \in\left\{y_{i}(\xi+1)^{2^{i+1}} u,\left(y_{i}+1\right)(\xi+1)^{2^{i+1}} u \mid i=0,1,2, \quad \operatorname{Tr}_{\mathbb{F}_{q} / \mathbb{F}_{2}}\left(\frac{v}{u^{2}}\right)=1\right\}
$$

otherwise.
Therefore we have proved Theorem 1.1.
For the case $p=7$, Propositions 3.1 and 3.2 imply Theorem 1.2.
Proposition 3.1. Let $q=7^{h} \geq 421$ and let $\xi \in \mathbb{F}_{7^{3}}$ be such that $\xi^{18}=1$ and let $\epsilon \in \mathbb{F}_{7^{3}}$ be such that $\epsilon^{2}=\xi$. The polynomial f_{b} is a PP in $\mathbb{F}_{q^{6}}$ of type (17) if and only if one of the following cases occurs.

- h is even and

$$
b \in\left\{\left.-2 \xi \bar{C}+\epsilon \frac{3 \bar{D}}{\bar{C}} \right\rvert\, 3 \bar{C}^{3} \text { is not a cube in } \mathbb{F}_{q}, \bar{D} \in \mathbb{F}_{q}\right\} .
$$

- h is odd and

$$
b \in\left\{\left.-2 \xi \bar{C}+\epsilon \frac{3 \bar{D}}{\bar{C}} \right\rvert\, 3 \bar{C}^{3} \text { is not a cube in } \mathbb{F}_{q}, \bar{D} \in \mathbb{F}_{q^{2}} \backslash \mathbb{F}_{q}, \bar{D}^{2} \in \mathbb{F}_{q}\right\}
$$

$$
b \in\left\{-\xi \bar{C} \mid 3 \bar{C}^{3} \text { is not a cube in } \mathbb{F}_{q}\right\} .
$$

Proof. We have that f_{b} is a PP if and only if $b, b^{q}, \ldots, b^{q^{5}}$ are the unique zeros of some polynomial $F_{C, D}(x)$, with $C, D \in \mathbb{F}_{q}, C \neq 0$, where

$$
F_{C, D}(x):=C^{2} x^{6}-C^{3} x^{3}+C^{2} D x^{2}-3 D^{2} C x+\left(2 C^{4}+4 D^{3}\right) .
$$

A polynomial of this type factorizes over $\mathbb{F}_{q^{3}}$ as
$\left(\bar{C}^{2} x^{2}+\xi \bar{C}^{3} x+\xi^{8} \bar{C}^{4}+\xi^{4} D\right)\left(4 \bar{C}^{2} x^{2}+\xi^{7} \bar{C}^{3} x+2 \xi^{2} \bar{C}^{4}+\xi^{10} D\right)\left(2 \bar{C}^{2} x^{2}+\xi^{13} \bar{C}^{3} x+4 \xi^{14} \bar{C}^{4}+\xi^{16} D\right)$,
where $\bar{C}, 2 \bar{C}, 4 \bar{C} \in \mathbb{F}_{q^{3}}$ are the cubic roots of C. It is easily seen that the three factors above are defined over \mathbb{F}_{q} if and only if $\xi \bar{C}$ belongs to \mathbb{F}_{q}, that is if and only if $3 C$ is a cube in \mathbb{F}_{q}. Also, the polynomial $F_{D, C}(x)$ has roots of multiplicity greater than 1 if and only if $C^{3} D^{10}\left(C^{4}+2 D^{3}\right)^{4}=0$. Since $C \neq 0$, the only possibilities are $D=0$ and $C^{4}+2 D^{3}=0$.

- $D=0$. In this case $F_{C, D}(x)=C^{2}\left(x^{3}+3 C\right)^{2}$, which has three roots not defined over \mathbb{F}_{q} if and only if $3 C$ is not a cube in \mathbb{F}_{q}.
- $C^{4}+2 D^{3}=0$. This is equivalent to $D^{3} / C^{3}=3 C$, which is not possible since $3 C$ is not a cube in \mathbb{F}_{q}.

Suppose now that $F_{C, D}(x)$ has no roots of multiplicity greater than 1 . Then, the six roots are

$$
\left\{\frac{-\xi \bar{C}^{3} \pm \bar{C} \xi^{3} \sqrt{D \xi}}{2 \bar{C}^{2}}, \frac{-\xi^{7} \bar{C}^{3} \pm \bar{C} \xi^{3} \sqrt{D \xi}}{\bar{C}^{2}}, \frac{-\xi^{13} \bar{C}^{3} \pm \bar{C} \xi^{3} \sqrt{D \xi}}{4 \bar{C}^{2}}\right\}
$$

These six solutions belong to a unique orbit under Frobenius if and only if ξD is a square in $\mathbb{F}_{q^{3}}$. This happens if and only if h is even and D is a non-zero square in \mathbb{F}_{q}, or h is odd and D is a non-square in \mathbb{F}_{q}.

Proposition 3.2. Let $q=7^{h}$. The polynomial f_{b} is a PP in $\mathbb{F}_{q^{6}}$ of type (18) if and only if one of the following cases occurs:
-

$$
\begin{gathered}
b \in\left\{3 \bar{B} \mid \bar{B} \in \mathbb{F}_{q^{2}} \backslash \mathbb{F}_{q}, \bar{B}^{2} \in \mathbb{F}_{q}^{*}\right\} ; \\
b \in\left\{\left.3 \bar{D}+3 \bar{C}+\frac{\bar{C}^{2}}{\bar{D}} \right\rvert\, \bar{D} \in \mathbb{F}_{q^{2}} \backslash \mathbb{F}_{q}, \bar{C} \in \mathbb{F}_{q^{3}} \backslash \mathbb{F}_{q}, \bar{D}^{2} \in \mathbb{F}_{q}^{*}, \bar{C}^{3} \in \mathbb{F}_{q}^{*}\right\} .
\end{gathered}
$$

Proof. We need to determine if the roots in $\mathbb{F}_{q^{6}}$ of the polynomials
$F_{B, C}(x):=B^{3} x^{6}+B^{4} x^{4}-B^{3} C x^{3}+\left(5 B^{3}+6 C^{2}\right) B^{2} x^{2}-B C\left(3 B^{3}+4 C^{2}\right) x+6\left(B^{3}+6 C^{2}\right)^{2}$,
with $B, C \in \mathbb{F}_{q}, B \neq 0$, are contained in a unique orbit under the Frobenius map. Such roots are

$$
\begin{aligned}
& \left\{4 \bar{B}+6 \bar{C}+3 \bar{C}^{2} / \bar{B}, 4 \bar{B}+5 \bar{C}+5 \bar{C}^{2} / \bar{B}, 4 \bar{B}+3 \bar{C}+6 \bar{C}^{2} / \bar{B}\right. \\
& \left.3 \bar{B}+6 \bar{C}+4 \bar{C}^{2} / \bar{B}, 3 \bar{B}+5 \bar{C}+2 \bar{C}^{2} / \bar{B}, 3 \bar{B}+3 \bar{C}+\bar{C}^{2} / \bar{B}\right\}
\end{aligned}
$$

where $\bar{B} \in \mathbb{F}_{q^{2}} \backslash \mathbb{F}_{q}$ and $\bar{C} \in \mathbb{F}_{q^{3}}$ are such that $\bar{B}^{2}=B$ and $\bar{C}^{3}=C$, respectively. There are roots of multiplicity larger than one if and only if $C^{4} B^{15}\left(B^{3}+6 C^{2}\right)^{8}=0$. Note that $B \neq 0$ by hypothesis and $B^{3}=C^{2}$ would imply $C= \pm \bar{B} B \notin \mathbb{F}_{q}$, impossible. Also, $C=0$ implies that the two distinct solutions of $F_{B, 0}(x)=0$ are $\pm 3 \bar{B} \notin \mathbb{F}_{q}$ and the corresponding polynomial f_{b} is a PP.

If $C^{4} B^{15}\left(B^{3}+6 C^{2}\right)^{8} \neq 0$, all the roots of $F_{B, C}(x)$ are distinct. If $\bar{C} \in \mathbb{F}_{q}$ then there are three orbits under Frobenius, namely

$$
\begin{aligned}
& \left\{4 \bar{B}+6 \bar{C}+3 \bar{C}^{2} / \bar{B}, 3 \bar{B}+6 \bar{C}+4 \bar{C}^{2} / \bar{B}\right\}, \\
& \left\{4 \bar{B}+5 \bar{C}+5 \bar{C}^{2} / \bar{B}, 3 \bar{B}+5 \bar{C}+2 \bar{C}^{2} / \bar{B}\right\}, \\
& \left\{4 \bar{B}+3 \bar{C}+6 \bar{C}^{2} / \bar{B}, 3 \bar{B}+3 \bar{C}+\bar{C}^{2} / \bar{B}\right\} .
\end{aligned}
$$

The corresponding f_{b} are not PPs.
If $\bar{C} \notin \mathbb{F}_{q}$ then the six roots are contained in a unique orbit and therefore the corresponding f_{b} are PPs.

Note that if q is even, then $q \equiv 2,4,8,16(\bmod 28)$, whereas $7 \mid q$ implies $q \equiv 7,14$ $(\bmod 28)$.

Corollary 3.3. Let $q \geq 421$ and let n_{q} be the number of PPs of $\mathbb{F}_{q^{6}}$ of type f_{b}.

- If $q \equiv 0,1,6,8,13,14,15,27(\bmod 28)$, then $n_{q}=0$.
- If $q \equiv 2,3,4,5,9,11,16,17,18,19,23,25(\bmod 28)$, then $n_{q}=3\left(q^{2}-1\right)$.
- If $q \equiv 7,21(\bmod 28)$, then $n_{q}=4 q^{2}-3 q-1$.

Proof. Note first that the values of b listed in Theorems 1.1 and 1.2 are all distinct for a fixed q.

1. The solutions of type (4) - (7) are

$$
\begin{cases}3(q-1)(q-2)+3(q-1)=3(q-1)^{2}, & q \equiv 3,5,17,19 \quad(\bmod 28) \\ 3(q-1) q+3(q-1)=3\left(q^{2}-1\right), & q \equiv 9,11,23,25 \quad(\bmod 28)\end{cases}
$$

If $q \equiv 3,5,17,19(\bmod 28)$ the number of solutions of type (3) is $6(q-1)$.
2. If q is even and $q \equiv 2,4(\bmod 7)$, that is $q \equiv 2,4,16,18(\bmod 28)$, there are $q / 2$ elements with trace 1 and $q / 2$ elements with trace 0 . For a fixed element $t \in \mathbb{F}_{q}$ there are $q-1$ pairs $(u, v), u \neq 0$, such that $v / u^{2}=t$. For each of them there exist 6 corresponding b 's. If $u=0$, there are 3 values of b for each choice of $v \in \mathbb{F}_{q}^{*}$. The solutions of type (9) are $6 \frac{q}{2}(q-1)$, whereas the number of solutions of type (8) is $3(q-1)$.
3. If $7 \mid q$, that is $q \equiv 7,21(\bmod 28)$, then the solutions of types (10), (11), (12), (13), $(14),(15)$ are respectively $2(q-1), 2(q-1)^{2}, 2(q-1)^{2}, 2(q-1),(q-1), 2(q-1)^{2}$. Therefore the total number of solutions is

$$
2(q-1)+2(q-1)^{2}+2(q-1)+(q-1)+2(q-1)^{2}=4(q-1)^{2}+5(q-1)=4 q^{2}-3 q-1 .
$$

Remark 3.4. By using the same methods, it is possible to obtain similar descriptions of the values $b \in \mathbb{F}_{q^{4}} \backslash \mathbb{F}_{q}$ which provide permutation polynomials of $\mathbb{F}_{q^{4}}$ of the type $x^{q^{3}+q^{2}+q+2}+b x$. By straightforward computations, if $q \equiv 2,3(\bmod 5)$, then the values b satisfying the first condition in [21, Theorem 4.1] are as follows. Let $a \in \mathbb{F}_{q^{2}} \backslash \mathbb{F}_{q}$ be such that $a^{2}+a+1 / 5=0$; for each pair $(A, B) \in \mathbb{F}_{q}^{2}$ distinct from $(0,0)$, if $7 A^{2}-20 B \neq 0$, then

$$
b \in\left\{\frac{-(2 a+1) a A \pm 5 \sqrt{(a+1)\left(7 A^{2}-20 B\right)}}{2(2 a+1)}, \frac{(2 a+1)(a+1) A \pm 5 \sqrt{-a\left(7 A^{2}-20 B\right)}}{2(2 a+1)}\right\}
$$

otherwise

$$
b \in\left\{\frac{-a A}{2}, \frac{(a+1) A}{2}\right\} .
$$

As to the second condition in $\left[21\right.$, Theorem 4.1], no $b \in \mathbb{F}_{q^{4}} \backslash \mathbb{F}_{q}$ can satisfy it when $q \equiv 4$ $(\bmod 5)$. If $q \equiv 2,3(\bmod 5)$, then for each $A \in \mathbb{F}_{q}^{*}$ we have

$$
b \in\left\{\frac{-(2 a+1) a A \pm 5 A \sqrt{-(a+1)}}{2(2 a+1)}, \frac{(2 a+1)(a+1) A \pm 5 A \sqrt{a}}{2(2 a+1)}\right\},
$$

where $a \in \mathbb{F}_{q^{2}} \backslash \mathbb{F}_{q}$ is such that $a^{2}+a+1 / 5=0$.

4 Necessary conditions for PPs of type $x^{\frac{q^{n}-1}{q-1}+1}+b x, n$ odd

The Niederreiter-Robinson Criterion can be applied to any binomial of type $f_{q, b, n}=x^{\frac{q^{n}-1}{q-1}+1}+$ $b x$ for some $n \in \mathbb{N}$. The algebraic curve $\mathcal{C}_{q, b, n}$ associated to $f_{q, b, n}$ is given by

$$
\sum_{i=0}^{n} A_{n-i} \frac{x^{i+1}-y^{i+1}}{x-y}=0
$$

where $A_{0}=1$ and $A_{i}=\sum_{0 \leq j_{1}<j_{2}<\cdots<j_{i} \leq(n-1)} b^{q^{j_{1}}+q^{j_{2}}+\cdots+q^{j_{i}}}$. Note that

$$
A_{1}=\operatorname{Tr}_{\mathbb{F}_{q^{n}} / \mathbb{F}_{q}}(b)
$$

When n is odd, it is easily seen that the point $(1,-1,0)$ belongs to $\mathcal{C}_{q, b, n}$ for every q and $b \in \mathbb{F}_{q^{n}} \backslash \mathbb{F}_{q}$.
Proposition 4.1. Let \mathcal{C} be an algebraic curve defined over \mathbb{F}_{q} having a simple \mathbb{F}_{q}-rational point P. Then there exists an absolutely irreducible \mathbb{F}_{q}-rational component passing through P.

Proof. Let \mathcal{C}^{\prime} be an absolutely irreducible \mathbb{F}_{q}-rational component of \mathcal{C} containing P. The image $\mathcal{C}^{\prime \prime}$ of \mathcal{C}^{\prime} under the Frobenius map φ_{q} contains P, since $\varphi_{q}(P)=P$. Also, P being a simple point implies the existence of a unique component of \mathcal{C} through it. Therefore $\mathcal{C}^{\prime \prime}=\varphi_{q}\left(\mathcal{C}^{\prime}\right)=\mathcal{C}^{\prime}$, that is \mathcal{C}^{\prime} is defined over \mathbb{F}_{q}.

The above criterion is useful to deduce necessary conditions for a polynomial $f_{q, b, n}$ to be a PP. Let p be the characteristic of \mathbb{F}_{q}.
Theorem 4.2. Let n be odd. Suppose $q>\frac{\left((n-1)(n-2)+\sqrt{n^{2}+13 n-2}\right)^{2}}{4}$. If $f_{q, b, n}$ is a PP then $p \left\lvert\, \frac{n+1}{2}\right.$ and $\operatorname{Tr}_{\mathbb{F}_{q^{n}} / \mathbb{F}_{q}}(b)=0$.
Proof. We already observed that the point $P=(1,-1,0)$ always belongs to the curve $\mathcal{C}_{q, b, n}$. We now show that if $f_{q, b, n}$ is a PP then the point P is a singular point of $\mathcal{C}_{q, b, n}$. Assume on the contrary that P is simple. Then by Proposition 4.1 the curve $\mathcal{C}_{q, b, n}$ contains an absolutely irreducible component defined over \mathbb{F}_{q}. Since $q>\frac{\left((n-1)(n-2)+\sqrt{n^{2}+13 n-2}\right)^{2}}{4}$ this component contains an affine \mathbb{F}_{q}-rational point not lying on $X=0, Y=0$, or $X=Y$. Therefore by the Niederreiter-Robinson Criterion $f_{q, b, n}$ cannot be a PP, a contradiction.

Let $F(X, Y, T)=\sum_{i=0}^{n} A_{n-i} \frac{X^{i+1}-Y^{i+1}}{X-Y} T^{n-i}$ the homogenization of the polynomial defining $\mathcal{C}_{q, b, n}$. As P is singular, we have

$$
\frac{\partial F(X, Y, T)}{\partial X}(1,-1,0)=\frac{\partial F(X, Y, T)}{\partial Y}(1,-1,0)=\frac{\partial F(X, Y, T)}{\partial T}(1,-1,0)=0
$$

This is equivalent to

$$
p \left\lvert\, \frac{n+1}{2} \quad\right. \text { and } \quad A_{1}=0 .
$$

A consequence of Theorem 4.2 is that for a given n odd there are just a finite number of characteristics p for which there exists a PP of type $f_{q, b, n}$.

For $n=3$, Theorem 4.2 implies that for $q \geq 23$ odd there cannot be a PP of type $x^{q^{2}+q+2}+b x$. This is the main result in $[5$, Section 3].

For $n=7, p=2$, it has been shown in [7] that for q large enough the values b for which $f_{2^{h}, b, 7}$ is a PP are exactly the roots of irreducible polynomials of type $x^{7}+a x^{3}+b x+c$ for some $a, b, c \in \mathbb{F}_{q}$. Note that for such b 's, the monomial $b^{-1} x^{\frac{q^{7}-1}{q-1}+1}$ is a CPP. In particular, for $q=2$ the values of b are $\left\{\eta^{2^{i}}: i=0 \ldots 6\right\} \cup\left\{\left(\eta^{11}\right)^{2^{i}}: i=0 \ldots 6\right\}$, where η is a primitive element of $\mathbb{F}_{2^{7}}$.

The cases $n=5,9,11,13,15$ are currently under investigation in [1].

References

[1] D. Bartoli, E. Franzé, and G. Zini, Permutation binomials of type $x^{\frac{q^{k}-1}{q-1}+1}+b x, k$ odd, in preparation.
[2] U. Bartocci, B. Segre, Ovali ed altre curve nei piani di Galois di caratteristica 2, Acta Arith. XVIII (1971), 423-449.
[3] L.A. Bassalygo, V.A. Zinoviev, On complete permutation polynomials, in: "Fourteenth International Workshop on Algebraic and Combinatorial Coding Theory", September 7 -13, 2014, Svetlogorsk (Kaliningad region), Russia, Proceedings, 57-62.
[4] L.A. Bassalygo, V.A. Zinoviev, On one class of permutation polynomials over finite fields of characteristic two. Preprint.
[5] L.A. Bassalygo, V.A. Zinoviev, Permutation and complete permutation polynomials, Finite Fields Appl. 33 (2015) 198-211.
[6] P. Charpin, G.M. Kyureghyan, Cubic monomial bent functions: a subclass of \mathcal{M}^{*}, SIAM J. Discrete Math. 22 (2) (2008), 650-665.
[7] E. Franzè, Polinomi di permutazione, Master thesis, Università degli Studi di Perugia.
[8] X. Hou, Permutation polynomials over finite fields - A survey of recent advances, Finite Fields Appl. 32 (2015) 82-119.
[9] R. Lidl, H. Niederreiter, Finite Fields. Encyclopedia of Mathematics and Its Applications Vol. 20, Addison-Wesley Publishing Company, London 1983.
[10] J. Ma, T. Zhang, T. Feng, G. Ge, New results on permutation polynomials over finite fields, arXiv:1506.05525.
[11] G. L. Mullen, Q. Wang, Permutation polynomials: one variable, in "Handbook of Finite Fields", Eds. G. L. Mullen, D. Panario, Chapman and Hall/CRC, 2013.
[12] A. Muratovic-Ribic, E. Pasalic, A note on complete polynomials over finite fields and their applications in cryptography, Finite Fields Appl. 25 (2014) 306-315.
[13] H. Niederreiter, K.H. Robinson, Complete mappings of finite fields, J. Austral. Math. Soc. (Series A) 33 (1982) 197-212.
[14] P. Stanica, S. Gangopadhyay, A. Chaturvedi, A.K. Gangopadhyay, S. Maitra, Investigation on Bent and Negabent Functions via the Nega-Hadamard Transform, IEEE Trans. Inf Theory 58(6) (2012) 4064-4072.
[15] B. Segre, Ovali e curve σ nei piani di Galois di caratteristica 2, Atti dell'Accad. Naz. Lincei 32(8) (1962), 785-790.
[16] S. Sarkar, S. Bhattacharya, A. Cesmelioglu, On Some Permutation binomials of the form $x^{\left(2^{h}-1\right) / k+1}+$ ax over $\mathbb{F}_{2^{h}}$: Existence and Count, International Workshop on the Arithmetic of Finite Fields, WAIFI 2012, Springer LNCS 7369, (2012) 236-246.
[17] H. Stichtenoth, Algebraic function fields and codes, Graduate Texts in Mathematics Vol. 254, 2nd edn. Springer, Berlin 2009.
[18] Z. Tu, X. Zeng, L. Hu, Several classes of complete permutation polynomials, Finite Fields Appl. 25 (2014), 182-193.
[19] S.G. Vladüt, D.Yu. Nogin, M.A. Tsfasman, Algebraic-geometric codes, Moscow, Independent Moscow University, 2003.
[20] G. Wu, N. Li, T. Helleseth, Y. Zhang, Some classes of monomial complete permutation polynomials over finite fields of characteristic two, Finite Fields Appl. 28 (2014) 148165.
[21] G. Wu, N. Li, T. Helleseth, Y. Zhang, Some classes of complete permutation polynomials over \mathbb{F}_{q}, Sci. China Math. 58 (10) (2015), 2081-2094.

Daniele Bartoli and Massimo Giulietti are with Dipartimento di Matematica e Informatica
Università degli Studi di Perugia
Via Vanvitelli, 1 - 06123 Perugia - Italy
emails: daniele.bartoli,massimo.giulietti@unipg.it
Giovanni Zini is with
Dipartimento di Matematica e Informatica "Ulisse Dini"
Università degli Studi di Firenze
Viale Morgagni, 67/A - 50134 Firenze - Italy
email: gzini@math.unifi.it

[^0]: *The research of D. Bartoli, M. Giulietti, and G. Zini was supported in part by Ministry for Education, University and Research of Italy (MIUR) (Project PRIN 2012 "Geometrie di Galois e strutture di incidenza" - Prot. N. 2012XZE22K_005) and by the Italian National Group for Algebraic and Geometric Structures and their Applications (GNSAGA - INdAM).

