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aUniversità degli Studi e–Campus, Novedrate, Italy
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Abstract

In recent years, much attention has been paid to performance–based design

of flexible retaining structures, focusing on the evaluation of the permanent de-

formations of the soil–structure system caused by given seismic loads, rather

than on the assessment of conventional safety factors determined by compar-

ing seismic actions and system resistance (typically based on limit equilibrium

methods). While only a few examples of fully coupled, dynamic numerical sim-

ulations of flexible retaining structures adopting advanced cyclic/dynamic mod-

els for soils can be found in literature, a number of recent works have proposed

simple modifications of the classical Newmark method to assess the permanent

displacements of the structure at the end of the seismic excitation. Most of

the aforementioned works refer to cantilevered diaphragm walls, for which the

failure mechanisms at limit equilibrium are relatively simple to describe. How-

ever, this is not the case for anchored or propped flexible structures, where

the velocity field at failure under a pseudo–static seismic load is quite complex

and can be affected by the plastic yielding of the wall upon bending. In this

work, upper– and lower–bound limit analysis FE solutions are used as a basis

for the development of a Generalized Newmark Method, based on the accurate
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evaluation of the critical accelerations for the retaining structure and the cor-

responding failure mechanisms. It can be shown that, under two reasonable

simplifying assumptions, a Newmark–like scalar dynamic equation of motion

can be derived which, upon double integration in time, provides the magnitude

of the permanent displacements associated to each failure mechanism, as pro-

vided by limit analysis. This procedure allows the reconstruction of the full

permanent displacement field around the excavation, not just the evaluation of

horizontal soil movements at selected points. The application of the method to

a number of selected prototype excavations demonstrates the potentiality of the

proposed approach, which can be extended easily to other complex geotechnical

structures.

Keywords: Performance–based design, Limit Analysis, Flexible retaining

structures

List of symbols

B Domain considered in FE–LA simulations.

Bf Part of B interested by the failure mechanism.

∂Bf Boundary of B.

Ik k–th time interval for Newmark’s integration.

γ Soil weight per unit volume.

δ Soil–wall interface friction angle.

ρ Soil mass per unit volume.

φ Soil friction angle.

ψ Soil dilatancy angle.

η(+), η(−) Normalized velocity fields associated to the two possible

collapse mechanisms.

ac Critical pseudo–static acceleration.

ax Horizontal component of acceleration at the bedrock.

d Embedment depth.

D Soil damping coefficient.
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G Soil shear modulus.

G0 Soil small–strain shear modulus.

G0,ref Reference value for the small–strain shear modulus.

g Modulus of gravity acceleration.

h Height of the excavation.

k
(−)
c , k

(+)
c Critical seismic coefficents for the two possible directions of

the pseudostatic seismic action.

kx Horizontal seismic coefficient at the bedrock.

q Uniform lateral surcharge load.

u(+), u(−) Newmark displacements for the two possible directions of

the pseudostatic seismic action.

ux,max Absolute maximum permanent displacement.

v
(+)
rel , v

(−)
rel Newmark relative velocities for the two possible directions

of the pseudostatic seismic action.

IA Arias intensity.

M Total mass of Bf .

My Yield bending moment of the wall section.

Qx Horizontal component of the resultant normalized momen-

tum of Bf .

Td Duration of earthquake excitation.

U (+), U (−) Scaling factors for the permanent displacement fields asso-

ciated to the two possible collapse mechanisms.

V (+), V (−) Scaling factors for the normalized velocity fields η(+) and

η(−).

a Soil acceleration vector.

ab Acceleration vector at the bedrock.

e
(+)
e , e

(−)
e Unit vectors in the two possible directions of the pseudo-

static seismic action.

fe Pseudo–static seismic action per unit volume.

3



fec Critical value of the pseudo–static seismic action per unit

volume.

u(+), u(−) Permanent displacement fields associated to the two possi-

ble directions of the pseudostatic seismic action.

u Soil displacement vector.

ub Displacement vector at the bedrock.

ur Relative displacement vector.

ups post–seismic displacement field.

v Soil velocity vector.

v(+), v(−) Velocity fields associated to the two possible collapse mech-

anisms.

vr Relative velocity vector.

B Resultant of gravity forces on Bf .

I Resultant of inertia forces on Bf .

If Resultant of inertia forces on Bf at failure.

T Resultant of contact forces on ∂Bf .

T f Resultant of contact forces on ∂Bf at failure.

1. Introduction1

In the seismic design of flexible retaining structures, such as cantilevered2

or propped diaphragm walls, standard “force–based” pseudo–static design ap-3

proaches – relying on on suitable modifications of classical earth pressure the-4

ories [1, 2] and limit equilibrium methods – are still widely used. In such ap-5

proaches, the safety of the structure is assessed by comparing the destabilizing6

“loads” (typically forces or moments) acting on the structure to the system7

capacity for each possible failure mechanism. Safety levels are incorporated in8

the analysis by factorizing destabilizing actions and resistances with global or9

partial safety factors.10

In recent years, a new approach to the design of earth retaining structures11

based on the concept of “performance–based design” has been given much at-12
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tention, both by the research community and by the governmental agencies in13

charge of drafting building codes [3, 4]. This “displacement–based” approach14

focuses on the evaluation of the permanent deformations of the soil–structure15

system under a given seismic input. The rationale behind this alternative design16

philosophy is that: i) the seismic response of a retaining structure is not only17

affected by the peak ground acceleration but also by the duration and frequency18

content of the seismic input; and, ii) the performance of the soil–structure sys-19

tem can still be considered satisfactory even if limit equilibrium conditions are20

reached during the shaking, provided that this happens for sufficiently short21

time intervals, so that the permanent displacements accumulated during these22

periods remain below an acceptable threshold.23

The current state of development of advanced numerical methods for the24

solution of non–linear geomechanics problems, with the parallel development25

of advanced inelastic constitutive equations for modeling the cyclic/dynamic26

behavior of soils, suggest that a possible approach to the evaluation of the seis-27

mic performance of flexible retaining structures could be the direct numerical28

solution of the balance of mass and momentum equations for the retaining struc-29

ture and the surrounding soils, modeled as a (possibly inelastic and multiphase)30

continuous medium.31

Examples of such an approach are provided by the works of Iai et al. [5],32

Alyami et al. [6], Miriano et al. [7] and Cattoni and Tamagnini [8]. However, the33

application of this methodology to current engineering practice is still imprac-34

ticable, due to the following reasons: i) the difficulties inherent to developing35

robust and accurate integration strategies for complex incrementally nonlinear36

constitutive equations; ii) advanced inelastic models capable of capturing the37

details of the cyclic response of the soil typically require the calibration of large38

number of model constants and the definition of the initial values of (often-39

times tensorial) internal state variables adopted to provide sufficient memory40

of the previous loading history; iii) the lack of a commonly accepted ground41

concerning the minimum level of complexity in the constitutive description of42

soil behavior required to provide reliable predictions of the seismic performance43
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of the retaining structure.44

A possible simplification with respect to advanced numerical methods based45

on the principles of continuum mechanics and computational inelasticity, is pro-46

vided by the attempts to extend the classical Winkler approach for flexible re-47

taining structures (see, e.g., ref. [9]) to earthquake loading conditions. Notable48

examples in this field are provided by the works of Franchin and coworkers49

[10, 11, 12]. Although they still have a strong appeal to practitioners, these50

Winkler–type models suffer from some important drawbacks when applied to51

the analysis of SSI problems for flexible retaining structures. The calibration of52

the subgrade reaction modulus from standard geotechnical site investigations –53

in which the in–situ and laboratory test data are interpreted under the assump-54

tion that the soil is a continuous medium – is typically based on empirical rules55

or very strong simplifying assumptions. Moreover, the limiting values of the56

subgrade reactions in compression and in extension are derived from classical57

earth pressure theories, developed from highly idealized wall failure mechanisms.58

Finally, being the model focused on the structural elements, the inertial prop-59

erties of the soil behind and in front of the wall are usually accounted for in a60

drastically simplified manner.61

An alternative, much simpler strategy is based on ad–hoc modifications of62

the classical Newmark sliding block method [13], where permanent displace-63

ments can be obtained as the result of a double integration of the equations64

of motion for an assumed failure mechanism, when a (critical) acceleration65

threshold is exceeded. Key points in this procedure are the accurate evalua-66

tion of the critical acceleration ac – i.e., the soil acceleration which generates67

pseudo–static inertia forces capable of bringing the soil–retaining structure sys-68

tem in a limit equilibrium condition, such as horizontal sliding of gravity walls69

or rotation of flexible embedded walls around a fixed point – and the proper70

definition of the failure mechanism for the soil–structure system. Examples71

of calculation of permanent displacements with this type of approach can be72

found, e.g., in Refs. [14, 15, 16, 17, 18, 19] for relatively rigid gravity walls,73

and [15, 20, 21, 22, 23] for flexible structures such as anchored bulkheads and74
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diaphragm walls.75

As far as anchored diaphragm walls are concerned, the application of New-76

mark approach presents two main problems: the calculation of the critical ac-77

celeration by means of classical limit equilibrium solutions could be inaccurate,78

due to the numerous simplifying assumptions introduced in the analysis, and the79

accurate definition of the collapse mechanism is by no means trivial, given that80

no simple equivalent “block sliding” mechanism can be identified, particularly81

when wall yielding occurs.82

In a recent paper, Cattoni and Tamagnini [24] have shown how the use of the83

theorems of Limit Analysis by means of suitable Finite Element implementations84

(FE–LA) can provide an accurate and versatile solution to the aforementioned85

problems, since critical accelerations and the associated collapse mechanisms86

can be determined very effectively as a function of the problem geometry and87

the mechanical properties of the soil and the structural elements.88

In this paper, the work of Cattoni and Tamagnini is extended to show89

how a Generalized Newmark Method (GNM) for the simplified evaluation of90

earthquake–induced permanent soil and structural displacement can be con-91

structed, based on the results of FE–LA simulations, with particular reference92

to embedded r.c. diaphragm walls.93

The main steps of the procedure can be summarized as follows:94

1. the upper– and lower–bound theorems of Limit Analysis are used to iden-95

tify the critical accelerations corresponding to pseudo–static inertial force96

fields with a given orientation (typically horizontal) and 2 possible direc-97

tions (positive or negative with respect to the x–axis of the global reference98

frame, assumed as horizontal);99

2. the upper–bound (kinematic) solution of LA is used to identify, as accu-100

rately as possible, the velocity fields associated to the two collapse mech-101

anisms, denoted by v(+)(x) and v(−)(x), respectively;102

3. using the analogy between the motion of the soil volume affected by the103

collapse mechanism and the sliding of a rigid block on a horizontal plane104
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when the inertia forces exceed the limit equilibrium conditions, the per-105

manent displacement fields associated to the two collapse mechanisms,106

u(+)(x, t) and u(−)(x, t), are computed using a standard Newmark–type107

procedure, and then vectorially composed to obtain the total permanent108

displacement field at the generic time t ∈ [0, Td].109

The post–seismic displacement field is then obtained as:110

ups(x) = u(x, Td) (1)

where Td is the duration of the earthquake excitation.111

In Step 1 of the proposed method, the critical accelerations are established112

for the failure mechanisms provided by pseudo–static loads, as in classical New-113

mark approaches. This procedure shares some similarities to structural earth-114

quake engineering applications in which the base–shear capacity of a structure115

provided by a single–mode pushover analysis is used in the response history116

analysis of an equivalent nonlinear SDOF system. In this case, the limitations117

of this approach have been pointed out, e.g., by Villaverde [25]. Goulet et al. [26]118

have shown that different ground motion time–series may induce different failure119

mechanisms in a framed structure. The real extent to which such limitations120

also apply to the collapse of geotechnical systems such as propped diaphragm121

walls is an open question, which will require a thorough investigation on the122

failure modes activated under different earthquake loading conditions by means123

of advanced numerical simulations, and, as such, falls beyond the scope of the124

present work.125

The outline of the paper is as follows. Sect. 2 presents the application of126

FE–LA for the evaluation of the critical accelerations and the kinematic fea-127

tures of the computed collapse mechanisms for 6 retaining structures, differing128

for soil conditions, wall geometry and wall structural properties. The basis of129

the Generalized Newmark Method are detailed in Sect. 3. The application of the130

method to the structures considered in Sect. 2 is presented in Sect. 4. The com-131

parison between the results obtained with the Generalized Newmark Method132

and non–linear dynamic FE simulations for a retaining structure subjected to133
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two different acceleration histories is presented in Sect. 5, to provide a valida-134

tion for the proposed simplified approach. Finally, some concluding remarks are135

provided in Sect. 6.136

2. Critical seismic conditions of propped diaphragm walls137

As shown by [24], FE limit analysis [27, 28] is a versatile and accurate tool for138

determining the pseudostatic critical acceleration of deep excavations supported139

by diaphragm walls and the corresponding collapse mechanism. This approach,140

implemented in the commercial FE code OptumG2 [29], has been adopted to141

evaluate the seismic performance of a number of deep excavations in cohesionless142

sands with height h = 8 m, supported by diaphragm walls propped at the crest,143

under seismic excitations differing for PGA and Arias Intensity IA.144

2.1. Problem geometry, material properties and simulations program145

The geometry of the problem under study is shown in Fig. 1. In the appli-146

cation of LA for the definition of failure conditions under pseudo–static seismic147

loads, the soil has been assumed as a rigid–perfectly plastic material with Mohr–148

Coulomb yield condition and non–associative plastic flow. The walls, modeled149

as 1–dimensional beam elements, have been assumed as rigid–perfectly plastic150

solids, with yield bending moment My.151

In order to identify the different collapse mechanisms involving soil and152

(possibly) structural yield, six problems have been considered, with varying153

wall embedment depth d, soil friction angle φ and wall yield bending moment154

My. In two cases, a uniform lateral surcharge load q = 50 kPa has been applied155

on the right side of the excavation, in order to have non–symmetrric collapse156

mechanisms for the two possible orientations of the pseudo–static seismic force.157

158

A detail of the FE discretization used for the LA simulations is shown in159

Fig. 2. 3–noded linear stress triangles have been used in Lower Bound calcu-160

lations, while Upper Bound simulations have been made with 3–noded linear161
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Figure 1: Problem geometry.

Figure 2: Detail of the FE–LA discretization of simulation r06, close to the excavation.

displacement elements. Although the code allows for mesh refinement in zones162

of high plastic strain concentration, a uniform discretization with 15144 very163

small elements has been adopted for the soil to allow the superposition of the164

collapse mechanisms obtained with seismic forces of different orientation. The165

large number of elements has provided the required level of accuracy in the166

computed solution, at expense of some computational efficiency loss.167

The details of the simulation program, with the geometry and the mechanical168

properties of the soil and the structural elements, are given in Tab. 1. In the169

table, information are also provided for one additional simulation (r07, discussed170

in Sect. 5), performed to validate the Generalized Newmark Method (Sect. 4).171
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In the simulations r01–r06, wall embedment depths d of 4 and 6 m have been172

considered, with embedment ratios d/h varying from 0.5 to 0.75. The excavation173

width b has been set to 18 m for all the cases examined. The soil unit weight γ174

has been assumed constant and equal to 18 kN/m3 in all the cases considered,175

while the friction angle has been varied between 26 and 35 degrees. To account176

for non–associative plastic flow at failure, a constant dilatancy angle ψ = 15◦177

has been adopted.178

It is well known that Limit Analysis relies crucially on the concept of asso-179

ciated flow rule. However, for granular materials, this assumption is, in many180

cases, not supported by experimental evidence. To extend the FE–LA pro-181

cedures to the case of non-associative cohesive-frictional materials, Krabben-182

hoft et al. [30] have proposed a general approach in which the original non–183

associated problem is transformed into an associated one by replacing the ac-184

tual soil strength properties, c and φ, with equivalent ones, c∗, φ∗, which are185

functions of c and φ, as well as of the dilatancy angle ψ. This approach has186

been used in this work. It is worth noting that Cattoni and Tamagnini [24]187

have investigated the effect of non–associativeness on the critical acceleration188

ac of propped diaphragm walls and, from the results of an extensive parametric189

study, have observed that the dilatancy angle has only a minor impact on the190

computed values of ac.191

A soil–wall interface friction angle, δ, equal to 50% of the soil friction angle192

φ has been considered to take into account wall friction. Finally, the yield193

bending moment My of the two walls has been varied in the range 800 kNm/m194

(low strength, typical of slender sheetpiles) to 2400 kNm/m (high strength,195

typical of r.c. diaphragm walls), see ref. [24].196

2.2. Collapse mechanisms and critical accelerations197

The different collapse mechanisms obtained in the six cases considered, for198

pseudostatic forces oriented either in the positive (+) or negative (−) direction199

of the x–axis of the global reference frame (Fig. 1), are shown in Fig. 3. In200

the following we will refer to the wall directly affected by the seismic action201
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Table 1: Program of LA–FE simulations.

run d d/h γ φ ψ δ My q

# (m) (–) (kN/m3) (deg) (deg) (deg) (kNm/m) (kPa)

r01 4 0.50 18 30 15 15 2400 0

r02 4 0.50 18 30 15 15 1200 0

r03 4 0.50 18 35 15 17.5 800 0

r04 6 0.75 18 30 15 15 800 0

r05 6 0.75 18 26 15 13 1200 50

r06 6 0.75 18 26 15 13 800 50

r07 3 0.38 18 30 15 30 2400 0

(left wall for positive pseudo–static force, right wall for negative pseudo–static202

force) as “leading wall” and to the wall on the opposite side of the excavation203

as “trailing wall”.204

The collapse mechanisms for positive and negative directions of the pseudo–205

static force are symmetric for simulations r01 to r04, while the presence of206

the surcharge load in cases r05 and r06 makes the negative failure mechanism207

different from the positive one. Case r01 is the only one in which plastic yielding208

occurs only in the soil mass, and no plastic hinges form in the two walls. Only209

the leading wall is actually rotating around the point of contact with the strut.210

No plastic zones form behind the trailing wall.211

In cases r02 and r03, the leading wall translates and rotates remaining rigid,212

while the trailing wall and the soil behind it, pushed by the strut, yield with the213

formation of a plastic hinge located at about half the excavation depth. In case214

r04, where the wall yield bending moment is minimum and soil shear strength215

is relatively low, both walls undergo plastic yielding. In cases r05 and r06, the216
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Figure 3: Contour maps of normalized velocity magnitude. Left column: positive pseudostatic

force; right column: negative pseudostatic force.
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collapse mechanisms for the (+) and (−) earthquake directions are significantly217

different, due to the presence of the surcharge load on the right side of the218

excavation. When the pseudo–static force acts on the positive direction, the219

leading wall fails while the trailing wall remains still. In the other case, what220

happens to the leading wall depends on My, while the trailing wall always yields221

as in cases r02 and r03. It is important to note that the plastic mechanisms222

activated in the soil by the two earthquake loadings affect zones of soil which223

are not disjoint: the permanent displacement fields produced by the (+) and224

(−) mechanisms interact with each other in all the cases considered.225

A summary of the critical seismic coefficients obtained in each simulation226

is given in Tab. 2. For symmetric plastic mechanisms (r01–r04) the critical227

accelerations computed for both directions in the lower bound (LB) and upper228

bound (UB) simulations are the same, within a small approximation due to the229

non perfect symmetry of the unstructured mesh. The presence of surcharge230

load makes the value of k
(−)
c much smaller than k

(+)
c . The differeces between231

the UB and LB solutions are very small, with a maximum error smaller than232

5% of the average value for each of the 12 simulations considered. Therefore, to233

all practical purposes, the average values of kc listed in the last two columns of234

Tab. 2 can be used as the critical seismic coefficients for each failure mechanism.235

236

3. Generalized Newmark method237

Let B be the domain occupied by the soil body and the structure under study.238

Both the soil and the structural elements are considered as rigid–perfectly plastic239

materials. Soil yielding is defined by the Mohr–Coulomb yield condition.240

Let Bf be the part of B interested by the failure mechanism generated by a241

pseudo–static critical seismic actions whose volume density is given by:242

fec = ρace
(i)
e = kcgρe

(i)
e (2)

where kc = ac/g is the critical seismic coefficient (normalized critical accelera-243

tion) and e
(i)
e , with (i) = (+) or (−) is the unit vector in the direction of the244
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Table 2: Critical accelerations for the 7 cases considered.

LB UB LB UB Average Average

run k
(+)
c k

(+)
c k

(−)
c k

(−)
c k

(+)
c k

(−)
c

# (–) (–) (–) (–) (–) (–)

r01 0.411 0.451 0.410 0.449 0.431 0.430

r02 0.406 0.425 0.405 0.424 0.415 0.415

r03 0.510 0.530 0.511 0.529 0.520 0.520

r04 0.412 0.417 0.412 0.417 0.415 0.414

r05 0.357 0.372 0.300 0.320 0.364 0.310

r06 0.314 0.322 0.231 0.247 0.318 0.239

r07 0.285 0.353 0.286 0.351 0.319 0.319
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pseudo–static inertia force. Finally, let ∂Bf be the boundary of the volume Bf ,245

along which contact force densities are exchanged with the rest of the stable soil246

body. Without lack of generality, in the following e
(i)
e will be assumed as hori-247

zontal and oriented either in the positive (+) or in the negative (−) direction of248

the x–axis of the adopted global reference frame. These two choices correspond249

to two distinct potential plastic collapse mechanisms induced by earthquake250

loading, see for example Fig. 10, referring to one of the cases examined in the251

following Sect. 4.252

For each of the two possible directions of the pseudo–static seismic action253

fe, the Finite Element implementation of the upper–and lower–bound theorems254

of limit analysis (FE–LA) provided by the code Optum G2 is used to determine:255

a) the best approximation to the critical acceleration coefficients k
(+)
c and256

k
(−)
c for the positive and negative directions of the pseudo–static seismic257

action;258

b) the normalized velocity fields, η(+)(x) and η(−)(x), associated to each

collapse mechanism, defined as:

η(+) :=
v(+)

max
∥∥v(+)

∥∥ η(−) :=
v(−)

max
∥∥v(−)∥∥ (3)

Note that the upper–bound theorem provides the velocity fields v(+) and v(−)259

at collapse up to an arbitrary scale. The normalization conditions in eq. (3) are260

therefore necessary to provide a scale factor.261

3.1. Equations of motion for the body Bf262

Let us consider the earthquake excitation as a prescribed horizontal acceler-263

ation time history applied at the base of the soil volume B:264

ab(t) = üb(t) = ax(t)ee (4)

the function ax(t) being provided by the input seismic accelerogram.265

For a given collapse mechanism, the global equilibrium equations applied to266

the part Bf read:267 ∫
Bf

ρv̇ dv =

∫
Bf

ρb dv +

∫
∂Bf

t da (5)
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where v is the velocity field, b is the gravity force density per unit mass and t268

is the contact force density at the boundary of Bf . In a more synthetic form,269

eq. (5) can be rewritten as:270 ∫
Bf

ρv̇ dv = B + T (6)

where:

B :=

∫
Bf

ρb dv T :=

∫
∂Bf

t da (7)

3.2. Relative equations of motion for the body Bf271

Let:

ur := u− ub vr := v − vb ar := a− ab

be the displacement, velocity and acceleration fields relative to a reference frame272

moving with the base of the soil volume B. The equations of motion (6) in the273

relative reference frame now read:274 ∫
Bf

ρv̇r dv = B + T + I (8)

where:275

I(t) := −
∫
Bf

ρab(t) dv (9)

is the resultant of the inertia forces acting on Bf .276

3.3. Limit equilibrium conditions277

Under limit equilibrium conditions induced by inertia forces in direction278

(i) = (+) or (−), we can assume that:279

B + T f + If = 0 (10)

where

T f :=

∫
∂Bf

t
(i)
f da If := −

∫
Bf

ρa(i)
c dv (11)

and ac = −k(i)c ge
(i)
e , the minus sign indicating that the inertia forces have280

direction opposite to the critical acceleration.281
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3.4. Permanent displacement field282

In order to quantify the motion of the collapsing soil mass for each potential283

failure mechanism (i), we introduce the following:284

Assumption 1. When the collapsing soil mass Bf is in motion under inertia285

forces larger than the critical ones – as provided by eq. (10) – the relative velocity286

field v
(i)
r is proportional to the normalized velocity field η(i) according to:287

v(i)r (x, t) = V (i)(t)η(i)(x) (12)

where the scalar function V (i)(t) represents a single scaling factor for the nor-288

malized velocity field η(i), and:289

Assumption 2. Under dynamic equilibrium conditions, the stress vector field290

t acting on ∂Bf remains equal to t
(i)
f since the boundary between the failing soil291

body and the remaining stable soil mass is a slip line.292

It is worth noting that a unique value of the scaling factor V (i)(t) for the entire293

domain Bf does not imply that the collapse mechanism is a pure translation, as294

the normalized velocity field η(i) varies with x in both modulus and orientation.295

Taking into account Assumptions 1 and 2, and eq. (10), the equation of296

motion under critical conditions reads, for each instant in which Bf is in motion:297

V̇ (i)

∫
Bf

ρη(i) dv = I − If = −
∫
Bf

ρ
[
ab(t)− a(i)

c

]
dv (13)

considering that:

ab(t) = −ax(t)e(i)e = −gkx(t)e(i)e a(i)
c = −k(i)c ge(i)e (14)

eq. (13) yields:

V̇ (i)

∫
Bf

ρη(i) dv =

{∫
Bf

ρg
[
kx(t)− k(i)c

]
dv

}
e(i)e

= Mg
[
kx(t)− k(i)c

]
e(i)e (15)

where:298

M :=

∫
Bf

ρ dv (16)
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is the total mass of the soil in motion (in the domain Bf ).299

Projecting eq. (15) in the direction e
(i)
e , we obtain the simplified equation of

motion:

V̇ (i) =
Mg

Qx

[
kx(t)− k(i)c

]
where: Qx :=

∫
Bf

ρη(i) · e(i)e dv (17)

is the horizontal component of the resultant normalized momentum of the soil300

in Bf .301

Obviously, in eq. (17), V̇ can only be non–zero when kx(t) > k
(i)
c . Integrating

eq. (17) in time over the time intervals Ik over which either kx > k
(i)
c or V > 0

(like in Newmark’s sliding block approach), we get:

V (i)(t) =
M

Qx

nint∑
k=1

∫
Ik
g
[
kx(τ)− k(i)c

]
dτ =

M

Qx
v
(i)
rel(t) (18)

U (i)(t) =

∫ t

0

V (i)(τ) dτ =
M

Qx

∫ t

0

v
(i)
rel(τ) dτ =

M

Qx
u(i)(t) (19)

where v
(i)
rel(t) and u(i)(t) are the Newmark velocity and displacement resulting302

from the single and double time integration of the function g(kx(t)− k(i)c ).303

The permanent displacement field at time t associated to the (i)–th plastic304

mechanism is given by:305

u(i)
r (x, t) = U (i)(t)η(i)(x) (20)

The final permanent (relative) displacement field associated to both collapse306

mechanisms is finally computed by vectorially composing the two fields u
(+)
r (x, t)307

and u
(−)
r (x, t) at the generic time t ∈ [0, Td]:308

ur(x, t) = u(+)
r (x, t) + u(−)

r (x, t) (21)

The calculation of the two scalar quantities M and Qx, defined by eqs. (16)309

and (17)2, relies on the results of the Upper Bound FE simulations. First, the310

domain Bf is identified as the union of all the elements in the discretization311

where the average value of
∥∥η(i)

∥∥ is larger than a predefined (small) threshold312

ε , set to 10−3 in all the cases examined. Then, the two integrals are computed313

as the sum of the contributions of each element belonging to Bf . Parametric314
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studies conducted with different threshold values have shown that the computed315

values of M and Qx do not vary significantly as ε is reduced.316

4. Application to deep excavations supported by diaphragm walls317

The Generalized Newmark method outlined in previous Sect. 3 has been318

applied to the 6 retaining structures considered in Sect. 3, adopting the acceler-319

ation time history recorded on 18.01.2017 in the site of Poggio Cancelli (L’Aquila320

province, Italy), taken from the accelerometric database Itaca [31]. The main321

properties of the earthquake record are summarized in Tab. 3, while the time322

history of the horizontal acceleration and the corresponding response spectrum323

are shown in Fig. 4. It can be observed that the spectrum is characterized by324

two peaks, located at about 0.2 s and 0.45 s (f = 2.22 and 5 Hz).

Table 3: Properties of the acceleration time history considered.

Station name Date Site class. Mw PGA Td IA

(EC8) (–) (cm/s2) (s) (cm/s)

Poggio Cancelli 18.01.2017 B* 5.5 575.0 31.085 195.571

325

4.1. Definition of the seismic input326

In the application of Newmark’s approach to the performance–based design327

of ordinary gravity walls, the seismic input considered is typically applied di-328

rectly at the base of the wall, see, e.g., [14]. In the case of deep excavations329

supported by flexible diaphragm walls, strong amplification effects may occur,330

depending on the stratigraphy and the mechanical properties of the soil layers331

affected. This must be taken into account in the selection of the accelerograms332

used to compute the permanent displacement field using the procedure discussed333

in Sect. 3.334
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(a)

(b)

Figure 4: Poggio Cancelli earthquake record: a) time history of the acceleration; b) response

spectrum at 5% damping.
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Figure 5: Definition of the seismic input via a 1–d site response analysis

Following Callisto and Soccodato [20], a possible simplified strategy to take335

this effect into account, which appears consistent with the scope of the General-336

ized Newmark approach, is to evaluate the local amplification effects by means337

of a simplified 1–d nonlinear site response analysis, using one of the tools widely338

available for this purpose. In this work, we have used the code EERA [32]. In339

principle, an equivalent, or average, acceleration time history should be used340

to account for the spatial variability of the acceleration within the moving soil341

mass. In practice, a reasonable approximation consists in considering the accel-342

eration history computed at a depth equal to the excavation height h, as shown343

in Fig. 5.344

The mechanical characterization of the soil layer in terms of strain–dependent345

stiffness and damping has been carried out considering two possible cases: a rel-346

atively stiff, class B soil and a relatively soft, class C soil according to the site347

classification of the Italian building code [4]. The small strain shear modulus348

G0 has been assumed to depend on mean effective stress p according to the349

following relation [33]:350

G0 = G0,ref

√
p

pref
(22)

In eq. (22) the effects of soil preconsolidation on G0 have been neglected, as-351
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Figure 6: Profiles of small–strain shear modulus G0 assumed for soils type B and C.

suming OCR = 1. The profiles of G0 with depth assumed for the two cases352

considered are shown in Fig. 6.353

The evolution of shear stiffness and damping for the two sites have been

defined using a simplified version of the relations proposed by Ishibashi and

Zhang [34]:

G

G0
=

1

2

{
1 + tanh

[
ln

(
0.000102

γ

)0.492
]}

(23)

D = 0.333

[
0.586

(
G

G0

)2

− 1.547

(
G

G0

)
+ 1

]
(24)

The functions G(γ) and D(γ) of eqs. (23) and (24) are shown in Fig. 7.354

The response spectra for the seismic input at the base and for the two ac-355

celerograms computed at a depth h for soil profiles B and C are shown in Fig. 8.356
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Figure 7: Shear stiffness decay curve (a) and damping ratio (b) vs. shear strain relation

assumed in 1–d site response simulations.

A significant amplification of the spectral ordinates is clearly visible for both357

sites. As expected, the amplification effect, in terms of acceleration magnitude,358

is slightly larger for site C. However, it is interesting to note that the different359

soil profiles amplify only one of the two dominant frequencies of the seismic360

input: the higher dominant frequency is amplified by soil profile B, while the361

opposite occurs for soil profile C. This is due to the fact that the fundamental362

periods of the two deposits are equal to 0.171 s for site B and 0.373 s for site C.363

364

4.2. Results365

The 2 acceleration time histories obtained by this procedure for sites B366

and C, as well as the original seismic record from Poggio Cancelli have been367

applied to all the 6 cases of deep excavations presented in Sect. 2. The com-368

puted values of the masses M (+) and M (−), and of the resultant normalized369

momenta in the horizontal direction, Q
(+)
x and Q

(−)
x , for all the simulations are370

reported in Tab. 4. It is worth noting that, as expected, the values of M and371

Qx corresponding to the (+) and (−) collapse mechanisms are almost equal for372
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Figure 8: Response spectra for the seismic input at the base and for the accelerograms com-

puted at a depth h for soil profiles B and C.

symmetrically loaded structures (cases r01–r04) and significantly different for373

the non–symmetrically loaded structures (cases r05 and r06).374

An example of the results obtained by applying the Generalized Newmark375

method to case r06 and soil profile C is provided in Figs. 9 to 13. The results of376

the Newmark integration procedure for the (+) and (−) directions of the seismic377

action, computed for case r06, are shown in Fig. 9. It can be noticed that, due378

to the presence of the surcharge load, the critical accelerations are not the same379

for the two collapse mechanisms, ac of the (−) case being smaller than the one380

calculated for the (+) case.381

Fig. 10 plots the plastic regions associated to the two collapse mechanisms,382

over which the two quantities M and Qx are calculated, see eqs. (16) and (17).383

It is worth noting that the two regions overlap beneath the bottom of the ex-384

cavation and in the zone of soil behind the upper part of the left wall, which385

undergoes a “passive” failure in the (−) mechanism due to the thrust exerted386

by the strut on the left wall. The computed values of the ratios Mg/Qx for the387

two collapse mechanisms are 6.53 and 5.15, respectively.388
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Figure 9: Simulation r06: Newmark integration for the two collapse mechanisms.
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Table 4: Computed values of M(+), M(−), Q
(+)
x and Q

(−)
x for the 6 cases considered.

run M (+) M (−) Q
(+)
x Q

(−)
x

# (t) (t) (t) (t)

r01 515.02 505.67 108.60 105.68

r02 662.00 571.62 176.18 173.53

r03 579.22 580.77 131.94 132.48

r04 631.12 638.84 146.17 145.50

r05 665.59 543.51 117.87 187.92

r06 485.23 407.65 74.28 79.16

Figure 10: Simulation r06, soil profile C: plastic regions for the two collapse mechanisms.

27



Figure 11: Simulation r06, soil profile C: deformed mesh for the combined displacement field.

Figure 12: Simulation r06, soil profile C: contour maps of horizontal displacement ux.

The permanent displacement field provided by eq. (21) is shown by the389

deformed mesh reported in Fig. 11. The contour map of the horizontal dis-390

placements is given in Fig. 12. The points where the maximum (positive) and391

minimum (negative) horizontal displacements occur are marked in Fig. 11 with392

red open circles. In both cases they are close to the plastic hinges formed in the393

two walls. In the particular case considered, the interaction between the failure394

mechanisms associated with the two possible orientations of the seismic action395

is significant. The permanent displacement field cannot be accurately predicted396

by considering each wall independently, with the seismic action oriented towards397

the excavation.398

A summary of the results obtained in the 6 cases considered and with399

seismic inputs corresponding to no site amplification, site B and site C, is400
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Figure 13: Maximum permanent horizontal displacements for seismic inputs a1–a4.

provided by Fig. 13 in terms of absolute maximum permanent displacement401

ux,max = max (|ux|). As expected, the higher the critical acceleration, the lower402

is the computed permanent displacement. The comparison between the re-403

sults obtained by applying directly the seismic input at the bedrock and those404

obtained by considering the site amplification effects shows that a significant405

underestimation of permanent displacements is to be expected if this aspect is406

not taken into account. In addition, it is worth noting that the effect of soil407

stiffness on the seismic performance of the structure can be significant, partic-408

ularly for cases r05 and r06 with the lower critical accelerations, where ux,max409

computed for site C is almost twice the corresponding value for site B. This is410

a result of the fact that the soil profile C tends to amplify the lower frequen-411

cies, while the most significant amplification effects on site B occur at relatively412

higher frequencies.413
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5. Comparison with non–linear dynamic FE simulations414

The last FE–LA simulation of Tab. 1 (r07) has been performed to compare415

the predictions of the GNM with the results of non–linear dynamic FE analy-416

ses, to provide an assessment of its predictive capabilities as compared to more417

rigorous but computationally more demanding approaches. The non–linear dy-418

namic simulations have been performed with the FE code Tochnog Professional419

[35].420

5.1. Problem geometry, soil properties and seismic input adopted in the FE421

simulations422

The excavation geometry for case r07 is characterized by the same dimensions423

adopted in the previous cases – height h = 8.0 m and width b = 18 m – but a424

smaller wall embedment depth (d = 3.0 m) has been chosen to obtain relatively425

low critical accelerations (see Tab. 2). The adopted yield bending moment426

for the walls is sufficiently high that no plastic hinges are formed at failure.427

Therefore, both the walls and the struts have been modeled as linear elastic428

structural elements.429

A detail of the central portion of the discretization adopted in the FE sim-430

ulations is shown in Fig. 14. The soil layer, 25 m thick, is discretized with431

3900 bi–quadratic, 8–noded elements with 2 displacement dofs per node; the432

walls have been modeled with 88 beam elements and the strut with a single433

truss element. Particular care has been placed in the selection of the maximum434

element size to avoid filtering of high frequencies [36], taking into account the435

characteristics of the seismic input considered. Periodic boundary conditions436

have been assumed at the fictitious vertical boundaries of the domain, and a437

relatively large distance has been adopted between them and the diaphraghm438

walls (90 m), in order to minimize the effects of possible spurious reflections.439

In the FE simulations, the soil layer has been assumed as an elastic–perfectly440

plastic medium with a Mohr–Coulomb yield function and non–associative plas-441

tic flow. Although the material library of Tochnog Professional contains several442
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Figure 14: Detail of the discretization adopted in non–linear dynamic FE simulations (ele-

ments inside the excavation removed).

advanced material models for coarse–grained materials, in this case the choice443

of the relatively standard perfect plasticity model adopted in the simulations444

has been dictated by the need to guarantee the consistency between the FE445

simulations and the simplified GNM approach, in which permanent deforma-446

tions are accumulated only when the system is in (instantaneous) global failure447

conditions.448

The soil unit weight as well as the material constants defining the soil shear

strength and dilatancy adopted in the simulations are provided in Tab. 1. The

elastic behavior of the soil has been assumed isotropic and linear elastic, with

shear and bulk stiffnesses provided by the following relation:

G(p) = Gref

(
p

pref

)α
K(p) =

2(1 + ν)

3(1− 2ν)
G(p) (25)

with Gref = 127 MPa, pref = 100 kPa, α = 0.5 and ν = 0.2. The shear modulus is449

assumed to be equal to the small–strain shear stiffness G0 of the soil. With the450

aforementioned properties, and adopting a coefficient of earth pressure at rest451

K0 = 0.5 to define the geostatic stress state, eq. (25)1 provides a small–strain452

shear stiffness profile corresponding to soil profile C of Sect. 4.1.453

Two different seismic inputs have been considered in the dynamic FE simu-454

lations: the Poggio Cancelli earthquake of Tab. 3 (hereafter indicated as SI-1)455

and a slightly stronger earthquake obtained by amplifying the accelerations of456

the Poggio Cancelli signal by 40% (hereafter indicated as SI-2).457
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5.2. Selected results458

Some selected results from the non–linear FE simulations with the inputs459

SI–1 and SI–2, along with the corresponding predictions provided by the GNM460

are shown in Figs. 15–17. All the figures focus on horizontal displacements,461

which, for the case at hand provide a reasonable indication of the overall system462

performance.463

Fig. 15 shows the contour maps of post–seismic horizontal displacement ux464

computed in the two non–linear dynamic simulations. The corresponding final465

permanent displacement fields obtained with GNM are plotted in Fig. 16. By466

comparing the two sets of results, it can be observed that the minimum and467

maximum horizontal displacements predicted by the FE simulations at the wall468

tips are captured quite reasonably by the GNM solutions, where ux,min and469

ux,max occur at the same points, see Tab. 5. Also, the entire spatial distributions470

of the permanent displacements provided by the two approaches look quite471

close in both cases, in spite of the strong simplifying assumptions introduced472

in the GNM. From the comparison of Figs. 15 and 16 and the data in Tab. 5473

it can be noted that the agreement between GNM and FE displacements is474

better for the strongest earthquake SI–2, when both rightward and leftward475

plastic mechanisms are fully mobilized, than for the weakest earthquake SI–1,476

for which the leftward mechanism is not completely activated and the minimum477

displacement computed in the FE simulation for the right wall is only 37% of478

the corresponding GNM displacement.479

The time evolutions of ux in a point located on the left wall, at the base of480

the excavation, computed by the two approaches for the two seismic inputs are481

shown in Fig. 17. While it is clear that, in both cases, the permanent displace-482

ments are accumulated in correspondence to the peaks of the seismic excitations,483

the ux(t) curve provided by the GNM is not realistic, as it does not take into484

account the effects of the reversible component of the soil deformations during485

the events – responsible for the obscillations observed in the FE results. The486

only instant in which the comparison between the two simulations is meaningful487

is at the end of the earthquake event, when all the displacements observed in488
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Figure 15: Contour maps of post–seismic horizontal displacement ux computed by non–linear

dynamic FE simulations: a) seismic input SI–1; b) seismic input SI–2.

Figure 16: Contour maps of post–seismic permanent horizontal displacement ux computed by

the GNM: a) seismic input SI–1; b) seismic input SI–2.
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Table 5: Maximum and minimum post–seismic horizontal displacements predicted with the

FE and GN methods.

Seismic Type of ux,max ux,min

input simulation (m) (m)

SI–1 FEM 0.10 -0.08

SI–1 GNM 0.10 -0.03

SI–2 FEM 0.14 -0.10

SI–2 GNM 0.16 -0.10

the dynamic FE simulations are mostly the effect of irreversible deformation489

processes in the soil.490

6. Concluding remarks491

In this work, a Generalized Newmark Method has been proposed for estimat-492

ing the permanent displacement field induced by seismic actions on geotechnical493

structures such as diaphragm walls propped at the crest. The method relies cru-494

cially on the results of quasi–static FE–LA simulations, which not only provide495

very accurate estimates of the critical acceleration for each possible orienta-496

tion of the seismic action, but also very detailed information on the normalized497

velocity field associated to the collapse mechanism. The effects of local site498

amplification are taken into account by means of a simple, non–linear 1–d site499

response analysis.500

The application of the GNM to a number of flexible retaining structures sup-501

porting a deep excavation in sand has shown that – depending on the embedment502

depth and strength of the soil and the walls – different collapse mechanisms can503

be activated which, in most cases, include both soil and wall yielding. In most504

cases, the collapse mechanisms activated by the leftward and rightward seismic505

actions are not independent, in the sense that the zones of soil interested by each506
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(a)

(b)

Figure 17: Time–histories of horizontal displacement of the left wall at the base of the exca-

vation: a) seismic input SI–1; b) seismic input SI–2.

35



collapse mechanisms are not disjoint. Therefore, the permanent displacements507

in the areas affected by both collapse mechanisms must be determined by vecto-508

rially superimposing the effects of each failure mode. The Generalized Newmark509

Method can handle such feature of the collapse mechanisms in a straightforward510

way.511

The proposed approach allows to take into account the effects of both soil512

strength, which controls the critical accelerations of the system, and soil stiffness513

and damping properties, which affect the seismic input provided by the 1–d514

site response analysis. This last aspect is particularly important as significant515

variations in the predicted performance of the structure can be obtained for516

different stiffness profiles, for a given seismic input at the bedrock.517

The comparison between the permanent displacements fields provided by518

the GNM and those computed by means of non–linear, dynamic FE simulations519

for two different earthquake events have shown that the proposed approach can520

capture quite realistically, from both the qualitative and quantitative points of521

view, the post–seismic displacement field computed by taking rigorously into522

account all the balance principles and the constitutive equations of the contin-523

uous medium under the dynamic excitation. It is worth noting that the model524

adopted for the soil in the FE simulations is a relatively standard perfect plas-525

ticity model which, in general, is not capable of reproducing all the relevant526

features of the cyclic/dynamic behavior of the soil under seismic loading con-527

ditions. In this case, the choice has been dictated by the need to guarantee528

the consistency between the FE simulations and the simplified GNM approach,529

in which permanent deformations are accumulated only when the system is in530

(instantaneous) global failure conditions.531

Further studies are currently in progress to validate the Generalized New-532

mark Method on both experimental data obtained in small–scale model tests533

under artificial gravity and non–linear FE simulations carried out with advanced534

constitutive models, capable of modeling plastic yielding even for stress paths535

which do not necessarily lead to material failure. As pointed out by Conti et536

al. [21], this will require the parallel introduction in the GNM of a suitable537
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hardening mechanism for the critical acceleration ac, by means of an evolution538

equation linking ȧc with the permanent displacement rate. The extension of the539

GNM to incorporate such an effect and the studies necessary to properly define540

the features of the hardening law for ac are currently under way, and will be541

presented in forthcoming publications.542
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