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Abstract: Power law scaling has been widely observed in the frequency 

distribution of landslide sizes. The exponent of the power-law 

characterizes the probability of landslide magnitudes and it thus 

represents an important parameter for hazard assessment. The reason for 

the universal scaling behavior of landslides is still debated and the 

role of topography has been explored in terms of possible explanation for 

this type of behavior. We built a simple cellular automata model to 

investigate this issue, as well as the relationships between the scaling 

properties of landslide areas and the changes suffered by the topographic 

surface affected by landslides. The dynamics of the model is controlled 

by a temporal rate of weakening, which drives the system to instability, 

and by topography, which defines both the quantity of the displaced mass 

and the direction of the movement. Results show that the model is capable 

of reproducing the scaling behavior of real landslide areas and suggest 

that topography is a good candidate to explain their scale-invariance. In 

the model, the values of the scaling exponents depend on how fast the 

system is driven to instability; they are less sensitive to the duration 

of the driving rate, thus suggesting that the probability of landslide 

areas could depend on the intensity of the triggering mechanism rather 

than on its duration, and on the topographic setting of the area. 

Topography preserves the information concerning the statistical 

distribution of areas of landslides caused by a driving mechanism of 

given intensity and duration. 
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GREEN: Reviewer 

RED: Authors 

 

The authors would like to thank the Reviewer for the positive opinion expressed on the paper, and once again 

for helping us to catch the mistake that we made with the data analysis in the first version of the paper. 

Below we address all the points raised by the Reviewer in his second revision. To summarize, we 

implemented in the paper all of his suggestions at points 2 and 3, and in part, those at point 1. Please see 

below for more details. 

 

The authors performed a thorough revision of their manuscript. In my first review I mainly criticized a 

mistake in the data analysis with the consequence that fixing it will bring the main result (D) far away form 

landslides in nature. As I hoped and already mentioned, changing the parameter values has brought the D 

value closer to nature again. After doing so, the D values obtained in this study are still somewhat at the edge 

of the D values obtained in nature. In this sense it is somewhat difficult to believe that the model really 

captures the statistical properties of landslides well, but on the other hand the approach is indeed promising, 

and the discussion given in the revised version is appropriate. I would therefore recommend publication of 

the manuscript, but would suggest to address the following points before publication: 

 

(1) Several diagrams contain results leading to D values which are far off from the ``realistic'' range. I would 

suggest to remove those simulations where the D value is really too large in order to reduce the number of 

(sub)figures a bit. 

We see that this request is quite justified and because of this – when we started working on the revision of 

the paper – we changed both Fig. 4 and Fig. 7 by removing all the subfigures which show values of D 

outside of the range observed for real landslides. However, when we went through the text to change it 

accordingly, we realized that the removal of those subfigures in Fig. 4 would result in either a loss of clarity 

for the reader (if describing results without any reference to the figure) or a loss of information (if removing 

the text which can no longer find any correspondence with the figure). In order to better explain this issue, 

we show below how the portion of text related to Fig. 4 (extracted from Section 3) would look like by 

reducing the number of subfigures in Fig. 4. The potential changes are marked, and in the appended 

comments we explain the reasons for our concern, which finally drove us to the choice of leaving all the 

subfigures in Fig. 4. 

 

From Section 3: 

“For each w and tw tested tThe complementary of the cumulative frequency distribution of landslide areas 

obtained from the model for each w and tw tested, along with and their scaling properties were investigated., 

are shown in Fig. 4. 

Overall, landslide areas increase with increasing w and vary from 2×10
3
 to 2×10

7
 m

2
, which are values 

comparable with the range observed for real landslide areas (Pelletier et al., 1997; Guthrie and Evans, 2004; 

Malamud et al., 2004), although the highest order of magnitude represented in most real datasets is of 10
6
 m

2
, 

while landslides obtained from the model reach 10
7
 m

2
. Such large landslides are not often present in 

landslide inventories, since they require particular conditions in order to occur, that is, very high slope 

gradients like those observed in deeply incised river valley, and high-intensity rainfall events (Korup et al., 

2007). Moreover, particular structural settings may favor the instability of large slope portions. In terms of 

slope gradients and rainfall intensity, these conditions match those of the system modeled. Indeed, the river 

valleys are up to 70° steep, and landslide areas with a magnitude of 10
7
 m

2
 are obtained when the highest 

values for the rate of weakening are applied (w=2.5 and w=2.75), which according to the interpretation given 

in Section 2.2, correspond to the highest intensities of the triggering event. Moreover, as explained above, 

coalescent landslides are identified in the model as a single landslide, thus leading to larger areas. 

The graphs in Fig. 4 show that the right tails of the frequency distributions of landslide areas obtained from 

the model always follow a power law trend (R > 0.99) (Eq.3).  

Response to Reviewers
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          (3) 

In Eq. 3, N is the number of landslides with area greater than or equal to A, and D is the scaling exponent. 

The scaling exponents D range from 2.67 to 5.75, with uncertainty intervals at the 95% confidence level 

between 0.07 and 0.19. Overall, scaling behavior is observed in ranges of landslide areas from 0.6 orders of 

magnitude (Figs.4d and 4f: series obtained at 1,000 model steps) to 2 orders of magnitude (Figs.4b and 4c: 

series obtained at 2,000 and 1,000 model steps, respectively). 

The graphs in Fig. 4 show the results obtained for w between 2 and 2.75, which, as it will be shown later in 

this section, are the w-values that lead to realistic D-exponents. 

 

 

 

Comment [Authors1]:  
Related to the text above, we thought that 
we could restructure the manuscript as 
shown, without making major changes. As 
the Reviewer can see, here we would still 
provide information about the landslide 
areas and the scaling exponents obtained 
with all the w-values tested. We think that 
this information must be provided, since – 
because of the reasons explained in the 
previous response to Reviewers and in 
Section 3 -  in the subsequent elaborations 
we use the D-values obtained with all the 
rates of weakening and not just those 
obtained with the w-values that lead to 
realistic D-exponents. 
Since the figure would change as shown 
below, some of the values of landslide 
areas and D-exponents mentioned in the 
text could no longer be observed in the 
diagrams. Of course, this could also be 
done, since not necessarily all the 
information provided in the text must be 
illustrated. However, in our opinion, the 
situation would be more complex in the 
next part of the paper. Please, see 
comment 4 for details. 
 

Formatted: Font: (Default) Times
New Roman

Comment [Authors2]:  
Original figure. 

Formatted: Font: (Default) Times
New Roman

Comment [Authors3]:  
New figure after removing the graphs 
leading to unrealistic D-values. 
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Fig. 4 Complementary of the cumulative frequency distributions (CFDs) of landslide areas (Ai in m
2
) obtained with a) w 

= 0.52, b) w = 12.25, c) w =12.5, d) w = 2.75, e) w = 2.25, f) w = 2.5, g) w = 2.75, for different time spans (1,000 model 

steps in red, 2,000 in green, and 5,000 in black). The dotted lines indicate the portions of the CFDs taken in 

consideration for the identification of the power law (dotted lines). For each power law the respective scaling exponent 

D is shown. 

 

 

 

A flattening of the frequency distributions is observed when landslide areas are lower than 10
4
 m

2
 (Fig.4a 

and 4b), thus indicating that small landslides are less frequent than predicted by the power law. A deviation 

from the power law at the smallest landslide sizes is also recognized in the CFDs obtained from real datasets. 

However, in the real world small landslides show a specific statistical behavior that is not observed in our 

CFDs: when non-cumulative frequency distributions are used, the interval corresponding to the smallest 

landslide areas is characterized by an opposite trend, with positive slope, followed by a rollover above which 

landslide areas start following the power law (Guzzetti et al., 2002; Guthrie and Evans, 2004; Malamud et 

al., 2004). Such a rollover is not present in the outcomes of this model: non-cumulative frequency 

distributions calculated for the same landslide data series for which the cumulative distributions are shown in 

Fig. 4a and 4b, exhibit a flattening rather than a rollover for the smallest sizes of landslide areas. As 

explained in Section 1, the rollover in real landslide inventories may be associated with a range of 

explanations, such as an underestimation of small landslides (Stark and Hovious, 2001; Brardinoni and 

Church, 2004), and the physics of processes controlling the occurrence of small landslides (Stark and 

Guzzetti, 2009, Milledge et al., 2014). In this regard, our model does not consider the physical parameters 

and processes invoked to explain the frequency distribution of small landslides, and it cannot be affected by 

the resolution of the data sources of the landslide inventory either. This could explain why the CFDs 

obtained do not exhibit a rollover. In our model, the only variable affecting landslide areas is the topography. 

Thus, the flattening that we observe for these series at the smallest landslide areas is expected to be related to 

the constraints represented by the topographic surface. 

The first part of the frequency distributions obtained with w from 2 to 2.75 (Figs. from 4d to 4g) exhibits a 

behavior that it is not the same with the one from real landslide inventories. In particular, although the 

smallest sizes of these series are in a range at which scaling behavior is observed in nature, in this part of the 

CFD the number of the modeled landslides is higher than that predicted by the power law. The difference 

can again be related to the fact that the only constraint to model dynamics is represented by topography: as 

we deduced from Fig. 3, topographic adjustments occur in response to the large landslides caused by high 

rates of weakening, thus leading to a high number of slope failures with smaller area. 

While model choices affect the first part of the area-frequency distributions, results indicate that the model is 

capable of reproducing the scaling properties of real landslides. The values of D were compared to those 

observed for real landslide inventories by taking as a reference the work by Van Den Eeckhaut et al. 

(2007)…”  

 

 

Last rows of Section 4: 

“These outcomes also suggest that the fact that the model does not accurately represent the first part of the 

frequency distribution of real landslides (Section 3) is not due to the scale of analysis but rather, as 

hypothesized in the previous section, due to the choice of topography as the main way of describing the 

spatial variability of the system.” 

Because of the reasons explained above, we finally decided to leave Fig. 4 and the text in Section 3 as they 

were in the first review. However, in order to better point out that some w-values lead to unrealistic D-

exponents, we reiterated this concept through the paper, where appropriate. In the file ‘Liucci et al._changes 

marked’, the Reviewer can see – highlighted in yellow – the parts of text where this concept was already 

present, and – highlighted in green – the parts where it has been repeated. 

As for Fig. 7, we followed Reviewer’s suggestion and removed the two subfigures where the D-values where 

too high. The text still explains that we compared results for two rates of weakening, since we think that this 

makes the results of the comparison stronger. We hope that the Reviewer agrees with the decisions made. 

 

Comment [Authors4]:  
The flattening that we are referring to, can 
be observed in subfigures 4a and 4b, which 
have been removed in the updated figure. 
The parts of this paragraph highlighted in 
yellow are those where we explicitly refer 
to those graphs, and that allow us to 
compare the behavior of small landslides in 
real inventories and in our model. 
In the attempt of adapting this paragraph 
to the new figure, we would thus have two 
options: 
- 1) leave it as it is, only removing the 
references to Figs. 4a and 4b, that is, to 
provide the information highlighted in 
yellow and the related discussion without 
the possibility for the reader to find any 
correspondence in the figure, 
- 2) to remove this whole paragraph from 
the text (as shown) and no longer address 
the issue related to the frequency 
distribution of small landslides. 
We think that none of them would be a 
good choice. 
- If we apply option 1, we are concerned 
that the reader would get lost in the text 
and not understand what we are speaking 
about.  
- If we apply option 2, the removal of the 
paragraph would imply that we would no 
longer make any consideration about the 
behavior of small landslide sizes, while we 
think that a paper that deals with landslide-
area frequency statistic should mention 
this aspect of the distribution, which has 
been widely depicted and debated in 
literature. Also, one of the main 
clarifications asked by the other Reviewer 
in the first review was about the reasons 
why our model does not reproduce well 
this part of the distribution, and if we 
remove this part we will no longer provide 
any explanation regarding that. 

Comment [Authors5]:  
The considerations above also apply to the 
last rows of Section 4, which should be 
either left as they are without having 
shown – in Section 3 – any graphical 
information, or removed from the text, 
although they proved to the other 
Reviewer (and more in general, they prove 
to the reader) that the resolution does not 
affect the statistical behavior of small 
landslides in the model. 
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(2) The second part of the paper (from Fig. 8 on) discusses results of the model in great detail. Taking into 

account that we cannot be completely sure about the relationship of the model for real landslides, the authors 

might think about tightening this part a bit and reducing the overall length of the paper. 

We followed the Reviewer’s suggestion and removed some sentences from the manuscript (from Section 5 to 

Section 7), which either provided too detailed information about marginal aspects of results or stressed the 

possibility of a link between the model and reality. 

(3) The log scales in the diagrams are not consistent. Some diagrams use axes with 10^... (what I would 

prefer for clarity), while others use labels such as log(A) and number like 5, 6, ... Maybe the authors could 

use a uniform style for this. 

Thank you for helping us notice this. We uniformed the log scales of the diagrams by converting the axes in 

Fig. 7 in the format of 10^… 

I think the authors can establish at least some of these suggestions, and I will be happy to recommend 

publication of this interesting and in general well written paper then. 
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 A Cellular Automata model for the study of landslide scaling behavior is proposed. 

 The rate of weakening of the system affects landslide area frequency distribution. 

 Topography is a good candidate to explain the scaling behavior of landslide areas. 

 Topography conserves information about the probability of landslide magnitudes. 
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Abstract 23 

Power law scaling has been widely observed in the frequency distribution of landslide sizes. The exponent of 24 

the power-law characterizes the probability of landslide magnitudes and it thus represents an important 25 

parameter for hazard assessment. The reason for the universal scaling behavior of landslides is still debated 26 

and the role of topography has been explored in terms of possible explanation for this type of behavior. We 27 

built a simple cellular automata model to investigate this issue, as well as the relationships between the 28 

scaling properties of landslide areas and the changes suffered by the topographic surface affected by 29 

landslides. The dynamics of the model is controlled by a temporal rate of weakening, which drives the 30 

system to instability, and by topography, which defines both the quantity of the displaced mass and the 31 

direction of the movement. Results show that the model is capable of reproducing the scaling behavior of 32 

real landslide areas and suggest that topography is a good candidate to explain their scale-invariance. In the 33 

model, the values of the scaling exponents depend on how fast the system is driven to instability; they are 34 

less sensitive to the duration of the driving rate, thus suggesting that the probability of landslide areas could 35 

depend on the intensity of the triggering mechanism rather than on its duration, and on the topographic 36 

setting of the area. Topography preserves the information concerning the statistical distribution of areas of 37 

landslides caused by a driving mechanism of given intensity and duration. 38 

Keywords: Landslide area; Topography; Cellular automata; Scaling 39 

 40 

1. Introduction 41 

Landslide occurrence is controlled by the interaction of many factors, such as geology, topography, 42 

hydrology, land use and climate. These factors affect both the proneness to slope failures and the type and 43 

magnitude of landslides. However, regardless of the local characteristics, it has been widely shown that 44 

landslide patterns (Goltz, 1996; Liucci et al., 2015) and the frequency distribution of landslide areas and 45 

volumes exhibit scaling properties (Malamud and Turcotte, 1999; Stark and Hovius, 2001; Guzzetti et al., 46 

2002, Martin et al. 2002; Brardinoni and Church, 2004; Guzzetti et al., 2005; Korup, 2005; Brunetti et al., 47 

2009). In particular, landslide sizes follow a power law with negative scaling exponent, which can also be 48 
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similar for landslides triggered by different mechanisms (Pelletier et al., 1997; Malamud et al., 2004; 49 

Hergarten, 2013). This trend is found from medium to large landslide sizes, while an opposite trend is 50 

identified at smaller sizes. Several models have been built to investigate this behavior and hypotheses have 51 

been discussed that the scaling properties of landslides could arise in Self-Organized Critical dynamics 52 

(Malamud and Turcotte, 1999; Hergarten, 2003, 2013). 53 

According to the work by Van Den Eeckhaut et al. (2007), who reviewed the values of the scaling exponent 54 

observed for about thirty landslide datasets around the world, the exponent of the non-cumulative frequency 55 

distribution of landslide areas ranges between 1.42 and 3.36. 56 

Compared to regolith landslides, rockfalls exhibit, on average, smaller scaling exponents (Malamud et al. 57 

2004, Brunetti et al., 2009), and this could depend on the physics of processes leading to rockfalls, which are 58 

different from those responsible for regolith landslides (Malamud et al., 2004). The comparison between the 59 

scaling behavior of these two types of mass movement commonly takes into account the mobilized volumes. 60 

The understanding of the factors controlling this power law decay and the value of the scaling exponent is of 61 

much interest, since it would provide valuable information concerning the probability of occurrence of 62 

landslides of different magnitudes. Several studies suggested possible explanations for the characteristic 63 

shape of the landslide frequency distribution and for the factors responsible for landslide sizes. Katz and 64 

Aharonov (2006) induced landslides in a vibrating box of cohesive sands through the application of both 65 

horizontal and vertical acceleration. The analysis of the frequency-size distribution of the generated 66 

landslides showed that the power law behavior observed for medium to large sizes is due to the strength 67 

heterogeneity of the material caused by the fracture systems that form in response to the acceleration applied. 68 

Lehmann and Or (2012) used a hydromechanical physically based hillslope model inspired by concepts of 69 

Self-Organized Criticality (SOC) (Bak et al., 1988), to study the frequency distribution of rainfall-induced 70 

shallow landslide volumes. They observed that root reinforced soils and high slope angles lead to smaller 71 

values of the scaling exponent of landslide volumes, while soil textural class and rain intensity have less of 72 

an impact on its value. Conversely, the work by Alvioli et al. (2014) showed that the shape of the frequency 73 

distribution for medium to large landslides changes with rainfall intensity and rainfall duration, for given 74 

geotechnical parameters. Frattini and Crosta (2013) observed that topography exhibits power law scaling 75 

with a rollover at smaller scales, similarly to what was observed for landslide size-frequency distributions, 76 
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and that the scaling exponent of the frequency distribution of areas of patches (triangular units used to tile 77 

the topographic surface) increases with the slope gradient of relief. This indicates that topography is 78 

characterized by a low number of large areas with high slopes. They conclude that the low number of large 79 

patches with a slope gradient high enough to have slope failure causes an increase of the scaling exponent of 80 

the frequency distribution of landslides compared to the case of unlimited availability of high-slope patches. 81 

However, the investigation of synthetic landslide inventories showed that the main factor controlling the 82 

scaling exponent of landslide sizes is the variation of the geotechnical properties with depth. Katz et al. 83 

(2014) investigated the possible factors controlling the size and geometry of an individual landslide through 84 

the use of a numerical model. They hypothesized that the size of small landslides is controlled by the amount 85 

of material disintegrated by pre-sliding rupture processes, which in turn is controlled by the peak strength of 86 

the material and by the slope angle, while the size of medium to large landslides is not necessarily related to 87 

material disintegration and is mainly affected by the preexisting discontinuity setting. Milledge et al. (2014) 88 

proposed a slope stability model to predict the size of shallow landslides. They suggested that the low 89 

number of small landslides observed in real inventories and their size depend on the so called ‘critical area’, 90 

defined as the minimum area necessary to overcome resistive forces like friction and (when present) 91 

cohesion and thus to become prone to failure. The critical area is controlled by the critical failure depth, 92 

which is the depth at which the critical area is minimized, and in both cohesion and cohesionless soils it is 93 

affected by the position of the water table, which thus indirectly controls landslide sizes. They also found 94 

that the critical area closely corresponds to the peak of the frequency distribution of landslide areas on the 95 

reference site. This peak delimitates the rollover that marks the transition from the part of the frequency 96 

distribution corresponding to small landslide areas and characterized by positive slope, to the part 97 

corresponding to the medium to large landslide areas, which follows a power law with negative exponent 98 

(Guzzetti et al., 2002; Guthrie and Evans, 2004; Malamud et al., 2004). There is a wide debate about the 99 

reasons for the rollover. A possible explanation is an underestimation of small landslides because of the 100 

resolution of the original data sources used to build the dataset (Stark and Hovious, 2001; Brardinoni and 101 

Church, 2004). For example, raster data with a certain spatial resolution do not allow us to identify landslides 102 

with areas lower than the resolution of cells. Moreover, erosional processes quickly remove the fingerprint of 103 

small landslides (Guzzetti et al., 2002) - the level of conservativeness of landforms increases with their size. 104 
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Another possible explanation for the low number of small landslides concerns the geomechanical properties 105 

of soil and their relative importance in the rupture mechanism, which depends on the scale at with the 106 

process occurs (Stark and Guzzetti, 2009). Another category of models widely applied to the study of the 107 

dynamics of such natural phenomena is that of cellular automata (CA) models. A cellular automaton is a 108 

discrete numerical model, in which the studied system is discretized in cells. Each cell is characterized by a 109 

state representing one or more physical properties. The states of cells are evaluated and updated at discrete 110 

time steps according to rules that concern the states of the neighboring cells. One can then study the overall 111 

behavior of the system in space and time as an effect of local interactions. One of the strengths of these 112 

models stems from their capability of reproducing the complexity of real world patterns by using a small 113 

number of input parameters and by reducing processes to simple rules, capable of fruitfully describing their 114 

dynamics. Although in reality the dynamics are quite more complex and the factors involved are many, in 115 

CA models complex patterns emerge from simple rules (Wolfram, 2002); that is, they manifest emergent 116 

behavior (Bonabeau et al., 1995) just like complex natural systems do. 117 

Two pivotal CA models are the Bak-Tang-Wiesenfeld model (Bak et al., 1988) and the Olami-Feder-118 

Christensen model (Olami et al., 1992). The former, known as ‘sandpile model’, describes the behavior of a 119 

system subject to constant input that drives the system to instability: the equivalent of adding grains to a sand 120 

pile causes local instabilities that may propagate throughout the system, in a chain reaction, as a function of 121 

local states, producing scale invariant features both in space and in time. Constant input is thus leading to 122 

outputs in a wide range of sizes, corresponding to a distribution governed by a power law. The second one 123 

belongs to the group of CA spring-block models and it was built to study earthquake dynamics. In this 124 

model, cells represent blocks connected with each other through springs. In its theoretical formulation, 125 

blocks are also connected to a rigid driver plate, slowly moving, thus increasing the forces acting on the 126 

blocks until one (or some of them) exceeds the static friction and becomes unstable. When the block 127 

becomes unstable it is displaced, possibly initiating a chain-reaction involving neighboring cells. The OFC 128 

model is considered as a paradigm for non-conservative SOC because it involves dissipation: the potential 129 

energy gradually accumulated in the springs is partially transferred to the driver plate, while a part of it is 130 

lost from the system. 131 



6 
 

Like other phenomena, landslides seem suitable to be treated as avalanche processes. For slides occurring on 132 

slopes of overconsolidated clay and clay shales, the development of a sliding surface follows a mechanism of 133 

progressive slope failures (Bjerrum, 1967): the instability starts in a small region and destabilizes the 134 

neighborhood, thus allowing the instability to propagate. Moreover, the behavior of CA models can be 135 

thought of as a self-similar inverse cascade (Turcotte et al., 2002), and this idea can be fruitfully applied to 136 

landslides by considering the cascade as a coalescence of metastable regions: small failures coalesce to form 137 

a large failure plane. 138 

Attempts have been made to apply the sandpile model (Bak et al., 1988) and the OFC model (Olami et al., 139 

1992) to landslides, but results showed that none of them works on a quantitative level if the surface gradient 140 

is the only parameter used to describe the state of cells in the model (Hergarten, 2003). Hergarten and 141 

Neugebauer (2000) presented a new type of model, which introduces a second variable to the one describing 142 

the state of cells. The second variable represents a time-dependent weakening, and when the model is applied 143 

to landslides it consists of a temporal decrease of the stability slope threshold of each site. The rate of 144 

weakening can be introduced in different ways in the stability criterion, for example as a sum approach or as 145 

a product approach. When the product approach is used, the model shows SOC behavior and the scaling 146 

exponent observed is in agreement with values observed for real landslides. Thus, when a second variable is 147 

introduced to describe slope stability, results improve. 148 

The idea of a two-variable model was also applied by Piegari et al. (2006, 2009). Their model uses the 149 

inverse of a factor of safety as a dynamic variable describing the state of cells, while a second parameter 150 

drives the system to instability, which in practice is equivalent to the time-dependent weakening of 151 

Hergarten and Neugebauer (2000). In their model, the instability of cells is partly lost from the system, 152 

which means that unlike previous landslide models the system is non-conservative, in analogy with the non-153 

conservative case of the OFC model. A good correspondence with real frequency-size distributions is 154 

obtained when a specific level of conservation and driving rate are used, and after spatially scaling the 155 

model. They conclude that the frequency-size distribution of landslides is controlled by the rate of 156 

approaching instability more than by the triggering mechanism. Hergarten (2013) points out that the 157 

introduction of a degree of dissipation represents a tuning parameter for the model, whose value cannot be 158 

conceptually interpreted based on physical arguments. 159 
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Both the CA by Hergarten and Neugebauer (2000) and by Piegari et al. (2006, 2009) describe landslides on 160 

an individual slope. However, as shown by Frattini and Crosta (2013), topography is a key factor affecting 161 

landslide sizes. The important role of topography in slope failure occurrence is also highlighted by landslide 162 

susceptibility analyses, which find the slope gradient to be a predominant factor in causing the instability of 163 

an area (Lee and Min, 2001; Ayalew and Yamagishy, 2005). More generally, the setting of the topographic 164 

surface plays a major role in all the geomorphological processes acting on the landscape. Topography is not 165 

a static property of an area. A topographic surface changes as a consequence of the processes acting on it and 166 

in turn it affects the dynamics of most of these processes. A large number of landscape evolution models aim 167 

to describe these mutual interactions (a recent review of these models is given by Chen et al., 2014), and the 168 

factors mainly considered are the tectonic uplift, the fluvial erosion, and the gravitational processes. 169 

Topography also implicitly contains information concerning the lithology and the structural aspects of the 170 

area, since the geological properties constrain the resulting landforms (Taramelli and Melelli, 2009; Melelli 171 

et al., 2014). Consequently, the variability of the topographic surface also reflects the variability of many 172 

other parameters and it can thus be considered representative of the specificities of an area. 173 

The changes that the topographic surface incurs over time could play a key role in the explanation for the 174 

statistics of landslide sizes (Hergarten, 2013). This paper focuses on this specific aspect of landslide 175 

dynamics, in order to contribute to the understanding of the scaling properties observed for medium to large 176 

landslides. In particular, we explore the possible relationships between landslide scaling properties and the 177 

changes in topography, which to the authors’ knowledge, represents a new contribution to the existing 178 

literature on this topic.  179 

To this purpose, we use a cellular automata (CA) model.  In the model, we consider the gravitational process 180 

as the only mechanism shaping the landscape, and the topographic surface as the only parameter defining the 181 

variability in the initial conditions. Given that the model does not take into account the subsoil and structural 182 

geology, it refers to shallow landslides involving the regolith layer of the slope, and triggered by moisture 183 

increase. Its basic structure is similar to the one proposed by Hergarten and Neugebauer (2000), which is also 184 

used in the non-conservative CA model by Piegari et al. (2006, 2009). The model dynamics is driven by two 185 

variables: a temporal rate of weakening and a variable describing the state of cells. However, the 186 

fundamental difference between the model proposed here and those models consists of the predominant role 187 
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of topography in the evolution of the system and in landslide dynamics, since topography is decisive for both 188 

the displaced mass and the instability direction. Moreover, conversely to the model by Piegari et al. (2006, 189 

2009), this model is based on the transfer of mass and thus it is conservative. 190 

The steps involved in this work consisted in: i) building the CA model (described in Section 2); ii) 191 

investigating the frequency distribution of landslide areas resulting from the implementation of the model 192 

starting from a topographic surface (Section 3 and 4); iii) qualitatively and quantitatively investigating the 193 

changes undergone by the topographic surface (Sections 5); iv) exploring the possible relationships between 194 

the scaling behavior of landslide areas and the changes in topography (Section 6). Section 7 discusses the 195 

results and their implications in terms of landslide dynamics, the limitations of this study, and possible future 196 

developments. 197 

2. A cellular automata model for landslides 198 

2.1. Structure of the model 199 

The cellular automata model presented in this study was designed and written by the authors using the 200 

Matlab® software. It consists of a square lattice of square cells. Each cell is characterized by an altitude 201 

value, which can change during the evolution of the model through local interactions between neighboring 202 

cells. The initial state of the system is represented by the altitude values acquired from the Digital Elevation 203 

Model (DEM) of a real area. The lattice has a size of 320×320 cells, while the original DEM corresponds to 204 

an area located in the Umbria region (central Italy) and has a cell size of 25x25m. The area represents a 205 

mountainous morphology characterized by steep river valleys with slopes up to about 68° and flat surfaces at 206 

the top of the slopes. Overall, the area exhibits low drainage density and wide interfluve areas. The 207 

maximum altitude is of 1,412 m a.s.l (Fig. 1). We would like to specify the fact that it is not our objective to 208 

study landslide phenomena in this specific area. Rather, we use a real DEM in order to represent the natural 209 

variability of topographic surfaces, which has been shown to possess self-affine statistics over a wide range 210 

of scales (Turcotte, 1997). The advantage of using a real topography instead of a synthetic self-affine surface 211 

is that the latter typically lacks some important features of the earth’s surface, such as river valleys and 212 

morphological shapes resulting from a variety of processes, including tectonics (Hergarten, 2013). Moreover, 213 

real topographic surfaces exhibit deviations from scale invariance (Evans and McClean, 1995). 214 
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 215 

Fig. 1 DEM of the area used as initial topographic surface in the CA model. The black line indicates the cross-section of 216 
profiles shown in Fig. 9. 217 
 218 

The stability criterion for the cells is based on the local slope angle. The slope angle βc of each cell c is 219 

defined as the maximum slope gradient between the cell and its eight Moore neighboring cells (Wolfram and 220 

Packard, 1985). The slope threshold is defined as the slope angle above which cells are unstable. The model 221 

starts from stable initial conditions; that is, the initial threshold α0 for all the cells is higher than the 222 

maximum βc of the area. Then, at each step the threshold decreases by a quantity w, driving the system 223 

towards instability. In analogy with the real world, the decrease of the stability threshold can be thought of as 224 

representative of the weakening of soil caused by triggering events such as rainfall and snowmelt, which 225 

produce a decrease of the resistive forces of soil until one or more slope failures occur. If the slope threshold 226 

of a cell at a given time t has a value lower than or equal to αmin, the decrease is no longer applied. The value 227 

used for αmin is 5°, which implies that a quasi-flat area is always stable. A cell c is unstable when βc is higher 228 

than the slope threshold αc. When the cell c is unstable, its altitude ec decreases by a quantity Δec. The value 229 

of Δec is evaluated as the amount of altitude that c must lose so that βc after perturbation becomes equal to αc, 230 

that is, the quantity necessary to bring cell c back to a metastable state. The quantity Δec is discharged to the 231 

ni neighboring cells identified as receiving cells (ni, i = 1…, N), thus resulting in an increase of their altitude 232 

   . Accordingly, in order to evaluate Δec the model takes into account both the decrease of ec and the 233 

corresponding increase of     of the receiving cells. There can be between one and three receiving cells (1 ≤ 234 

N ≤3) and they are evaluated based on the slope gradients between the eight Moore neighboring cells and the 235 
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overcritical cell. The neighboring cell with the highest slope angle identifies the main landslide direction, 236 

which means that the avalanche follows the steepest descendent gradient. Then, if the two neighboring cells 237 

located at the two sides of the main landslide direction have an altitude that is lower than the altitude of c, 238 

they are also considered to be receiving cells. If N > 1, Δec is anisotropically discharged among the ni cells. In 239 

particular, the fraction       (0 ≤      ≤ 1) of Δec that each of the cells ni receives is proportional to the values 240 

of the slope angle between c and the cells ni. If N = 1, Δec is shifted in its entirety to the receiving cell in the 241 

direction of the maximum slope gradient (i.e.,     = 1). Thus, both the landslide direction and the transfer of 242 

mass are constrained by the local topographic features of the surface. After perturbation, the threshold αc of 243 

cell c is restored to its initial value α0. The instability of a cell may cause the instability of the neighboring 244 

cells, thus allowing the landslide to propagate within the system. At each model step t and for each cell c, the 245 

rules governing the dynamics of the model are summarized in Eqs. 1 and 2, which represent the driving rule 246 

and the transition rule, respectively. 247 

                  (1) 248 

                   

                          

                        
                                    

   (2) 249 

In the model, landslides are considered instantaneous compared to the time scale of the overall evolution of 250 

the system. Thus, when the condition described in the transition rule (Eq. 2) is verified for at least one cell of 251 

the lattice (i.e. when there is at least one landslide in progress) the driving rule (Eq. 1) is no longer applied 252 

until all the cells become stable again. 253 

Moreover, our model does not take into account a regenerating process such as uplift, since it is based on the 254 

assumption that the time scale at which the modeled landslides occur is much shorter than that of tectonic 255 

processes: the effect of these processes on the evolution of the system is negligible at the temporal scale 256 

considered and it does not significantly affect landslide dynamics. 257 

2.2. Implementation of the model 258 

The model was applied to the investigation of the frequency distribution of landslide areas. We used a series 259 

of values for the rate of weakening w. For each of these values we measured the areas of landslides that 260 
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occurred over time windows tw defined as a number of model steps. The area of a landslide is calculated as 261 

the number of adjacent cells affected by instability during a single event. For each landslide area series we 262 

investigated the scaling properties of the resulting cumulative frequency distribution. 263 

The choice of the values to be used for w was constrained by the model outputs. In the next section it will be 264 

shown that in the model, landslide areas increase with w. Thus, the value of w affects the sizes of the 265 

resulting landslides as well as the shape of the size frequency distribution. Accordingly, the model outputs 266 

drove the selection of the values of w capable of representing the range of landslide sizes and the values of 267 

scaling exponents observed in the real world. In particular, we first tested a low value for w (w = 0.5). Then, 268 

we repeatedly ran the model by progressively increasing the value of w by 0.5, until values were reached for 269 

which the behavior of the system was similar to real world observations. In the range of w for which such 270 

similarity was observed, we reduced the distance between subsequent w values to 0.25, to investigate the 271 

behavior of the system in more detail. The values tested for w are 0.5, 1, 1.5, 2, 2.25, 2.5, 2.75. 272 

As explained in Section 2.1, the weakening w applied in the model through a decrease in the slope angle 273 

stability threshold is meant to correspond to the effect of rainfall or snowmelt events, which weaken the soil 274 

thus causing the instability of some sites of the system. In the real world, the rate of soil weakening depends 275 

both on the intensity of the triggering event and on the physical response of the soil (Iverson, 2000), which in 276 

turn depends on its physical properties. In our model we apply a constant rate of weakening in space and in 277 

time, which means to assume that the factors that create unstable conditions are constant in time, and that the 278 

only variable affecting the response of the system is topography, while all the other physical properties are 279 

homogeneous in space. Thus, a higher w can be associated with a higher rainfall intensity or snowmelt rate, 280 

or more generally with a higher rate of increase of the resulting pore pressure, under the assumption of 281 

homogeneous soil properties. 282 

To summarize, the way we implement the model allows us to study how landslide dynamics evolves when 283 

the system is subjected to a constant driving mechanism over time, with different predefined intensities. 284 

The time windows tw used for the model consist of 1,000; 2,000; and 5,000 model steps. Accordingly, tw 285 

represents the sum of the “landsliding steps”, that is, the steps at which the instability is communicated from 286 

the unstable cells to their neighbors, and the “weakening steps”, that is, the steps at which the decrease of the 287 

slope stability threshold is applied. This implies that for a given time window tw, the larger the areas of 288 
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landslides of the resulting landslide series, the higher the number of landslide steps in the tw-window, since 289 

the avalanche process involves a larger number of cells.  290 

Figure 2 shows an example of stability conditions (Fig. 2a) and of the pattern of the slope stability threshold 291 

(Fig. 2b) of the examined topography, after 1,000 steps and for w = 2. In Fig. 2a, yellow denotes the unstable 292 

cells at the 1,000
th
 step of the model. In Fig. 2b we observe that under the effect of the driving rule (Eq.1, 293 

taking w = 2), the slope threshold αc, which at time t = 0 is uniform for all cells of the matrix (Eq.1, with αc 294 

=75°; that is,      =3.7), has become strongly variable after 1,000 steps: its values vary from cell to cell, 295 

depending on the stability history of the cells during this time span. 296 

 297 

Fig. 2 Stability conditions of the matrix, at the 1,000th step of the model. a) unstable cells (yellow) and stable cells 298 
(blue); b) Map of the tangent of the slope stability threshold αc. 299 
 300 

3. Analysis of the probability of landslide areas obtained from the model 301 

In this section, we first describe results obtained with all the rates of weakening (w) tested, and then compare 302 

these results with the real world observations in order to define the range of w-values capable of reproducing 303 

the behavior of real landslides. 304 

For each number of iterations tw and for each w-value tested, the outputs from the model consist of a series of 305 

landslide areas Ai, expressed as a number of cells. These values were converted in in m
2
 according to the 306 

resolution of the original DEM, in order to facilitate the comparison between the results obtained from the 307 

models and the behavior of real landslides. 308 
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Figure 3 shows how the mean area of landslides (AL) of each landslide data series varies with the rate of 309 

weakening w (Fig. 3a) and with the number of model steps tw (Fig. 3b). In both graphs we observe that the 310 

higher the value of w the higher the mean area AL. In particular, the two parameters are linked to each other 311 

by a linear equation (Fig. 3a). The increase of AL with w is due to the spatial spread of instability, which 312 

increases with increasing rate of weakening. Indeed, according to the driving rule (Eq.1), a higher w implies 313 

a faster decrease of the slope threshold αc and thus a higher number of unstable cells with a higher 314 

probability to be in touch with each other. This results in larger landslide triggering areas, which 315 

consequently generate larger landslide bodies. Moreover, the wide spatial spread of instability can also cause 316 

the formation of coalescent landslides, which are identified in the model as a single landslide. Finally, a 317 

faster decrease of the slope threshold also implies that a larger mass must be lost from the unstable cell in 318 

order to restore equilibrium conditions. The increase of the landslide mass involved in the landslide process 319 

increases the probability for the neighboring cells that receive the mass to become in turn unstable and, as a 320 

result, landslide processes are more likely to generate large areas. 321 

 322 

Fig. 3 (a) For each number of model steps (tw = 1,000; 2,000; 5,000), mean area of landslides (AL) of the respective 323 
landslide areas data series as a function of  w, and the respective linear best fit. (b) For each  w, AL as a function of tw. 324 
 325 

The slope of the linear best fit in Fig 3a decreases with increasing tw, thus indicating that the largest 326 

landslides occur at the early stages of the evolution of the model, while the relative importance of smaller 327 
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landslides in the data series increases with tw, thus lowering the mean value of landslide areas AL. This aspect 328 

of the behavior of the system is well depicted in Fig. 3b, where we observe that AL decreases with tw, and that 329 

this decrease is higher for higher w. Since high values of w lead to large landslide areas, we can hypothesize 330 

that like in real systems, relatively smaller topographic adjustments occur in response to large landslides, 331 

thus decreasing the value of AL. 332 

The complementary of the cumulative frequency distribution of landslide areas obtained from the model for 333 

each w and tw tested, along with their scaling properties, are shown in Fig. 4. 334 

Overall, landslide areas increase with increasing w and vary from 2×10
3
 to 2×10

7
 m

2
, which are values 335 

comparable with the range observed for real landslide areas (Pelletier et al., 1997; Guthrie and Evans, 2004; 336 

Malamud et al., 2004), although the highest order of magnitude represented in most real datasets is of 10
6
 m

2
, 337 

while landslides obtained from the model reach 10
7
 m

2
. Such large landslides are not often present in 338 

landslide inventories, since they require particular conditions in order to occur, that is, very high slope 339 

gradients like those observed in deeply incised river valley, and high-intensity rainfall events (Korup et al., 340 

2007). Moreover, particular structural settings may favor the instability of large slope portions. In terms of 341 

slope gradients and rainfall intensity, these conditions match those of the system modeled. Indeed, the river 342 

valleys are up to 70° steep, and landslide areas with a magnitude of 10
7
 m

2
 are obtained when the highest 343 

values for the rate of weakening are applied (w=2.5 and w=2.75), which according to the interpretation given 344 

in Section 2.2, correspond to the highest intensities of the triggering event. Moreover, as explained above, 345 

coalescent landslides are identified in the model as a single landslide, thus leading to larger areas. 346 

The graphs in Fig. 4 show that the right tails of the frequency distributions of landslide areas always follow a 347 

power law trend (R > 0.99) (Eq.3).  348 

          (3) 349 

In Eq. 3, N is the number of landslides with area greater than or equal to A, and D is the scaling exponent. 350 

The scaling exponents D range from 2.67 to 5.75, with uncertainty intervals at the 95% confidence level 351 

between 0.07 and 0.19. Overall, scaling behavior is observed in ranges of landslide areas from 0.6 orders of 352 

magnitude (Figs.4d and 4f: series obtained at 1,000 model steps) to 2 orders of magnitude (Figs.4b and 4c: 353 

series obtained at 2,000 and 1,000 model steps, respectively). Later in this section we will show that only 354 

some of the D-values obtained are in the range detected for real landslides. 355 



15 
 

 356 

 357 

Fig. 4 Complementary of the cumulative frequency distributions (CFDs) of landslide areas (Ai in m
2
) obtained with a) w 358 

= 0.5, b) w = 1, c) w =1.5, d) w = 2, e) w = 2.25, f) w = 2.5, g) w = 2.75, for different time spans (1,000 model steps in 359 
red, 2,000 in green, and 5,000 in black). The dotted lines indicate the portions of the CFDs taken in consideration for 360 
the identification of the power law (dotted lines). For each power law the respective scaling exponent D is shown. 361 
 362 
 363 
 364 
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A flattening of the frequency distributions is observed when landslide areas are lower than 10
4
 m

2
 (Figs.4a 365 

and 4b), thus indicating that small landslides are less frequent than predicted by the power law. A deviation 366 

from the power law at the smallest landslide sizes is also recognized in the CFDs obtained from real datasets. 367 

However, in the real world small landslides show a specific statistical behavior that is not observed in our 368 

CFDs: when non-cumulative frequency distributions are used, the interval corresponding to the smallest 369 

landslide areas is characterized by an opposite trend, with positive slope, followed by a rollover above which 370 

landslide areas start following the power law (Guzzetti et al., 2002; Guthrie and Evans, 2004; Malamud et 371 

al., 2004). Such a rollover is not present in the outcomes of this model: non-cumulative frequency 372 

distributions calculated for the same landslide data series for which the cumulative distributions are shown in 373 

Fig. 4a and 4b, exhibit a flattening rather than a rollover for the smallest sizes of landslide areas. As 374 

explained in Section 1, the rollover in real landslide inventories may be associated with a range of 375 

explanations, such as an underestimation of small landslides (Stark and Hovious, 2001; Brardinoni and 376 

Church, 2004), and the physics of processes controlling the occurrence of small landslides (Stark and 377 

Guzzetti, 2009, Milledge et al., 2014). In this regard, our model does not consider the physical parameters 378 

and processes invoked to explain the frequency distribution of small landslides, and it cannot be affected by 379 

the resolution of the data sources of the landslide inventory either. This could explain why the CFDs 380 

obtained do not exhibit a rollover. In our model, the only variable affecting landslide areas is the topography. 381 

Thus, the flattening that we observe for these series at the smallest landslide areas is expected to be related to 382 

the constraints represented by the topographic surface. 383 

The first part of the frequency distributions obtained with w from 2 to 2.75 (Figs. from 4d to 4g) exhibits a 384 

behavior that it is not the same with the one from real landslide inventories. In particular, although the 385 

smallest sizes of these series are in a range at which scaling behavior is observed in nature, in this part of the 386 

CFD the number of the modeled landslides is higher than that predicted by the power law. The difference 387 

can again be related to the fact that the only constraint to model dynamics is represented by topography: as 388 

we deduced from Fig. 3, topographic adjustments occur in response to the large landslides caused by high 389 

rates of weakening, thus leading to a high number of slope failures with smaller area. 390 

While model choices affect the first part of the area-frequency distributions, results indicate that the model is 391 

capable of reproducing the scaling properties of real landslides, when specific values for the parameters of 392 
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the model are used. The values of D were compared to those observed for real landslide inventories by taking 393 

as a reference the work by Van Den Eeckhaut et al. (2007), which provides an overview of the values of D 394 

observed for about thirty landslide inventories around the world, published in twenty-seven papers (please 395 

refer to Van Den Eeckhaut et al. (2007) for the related bibliography). According to this paper, for real 396 

landslide inventories the values of D range between 1.42 and 3.36, with many of them around 2.5. The 397 

landslide inventories considered are both historical and post-event. Since like most CA models, the one 398 

presented in this paper does not have a timescale, for the comparison of the model outputs with reality we 399 

preferred not to refer to a specific type of inventory, but rather to include both post-event inventories and 400 

historical ones, also considering that the main difference between historical and post-event inventories is 401 

observed in the frequency distribution of small landslides, which is not the focus of this study, while in the 402 

portion of the frequency distribution that exhibits power law scaling, the scaling exponent does not show any 403 

specific behavior for the two types of datasets. 404 

The comparison indicates that the power law decay of the modeled landslide areas is in accordance with that 405 

of real landslide inventories for rates of weakening between 2 and 2.75 (Figs. from 4d to 4g). Indeed, in this 406 

range of w the exponents are comprised between 2.47 and 3.26, while for lower values of w the exponent is 407 

too high compared to real values, thus indicating an underestimation of large landslides and suggesting that 408 

although power law behavior is observed for all the w applied, only the highest rates of weakening among 409 

those tested are capable of reproducing the action exerted by real landslide triggering events. The histogram 410 

in Fig. 5 shows the values of the D-exponent in literature. The D classes are 0.3 wide and the values in the x-411 

axis represent the middle value of each class. Most of the real observations are in the D class from 2.4 to 2.6. 412 

In Fig. 5, the arrow delimitates the range of D-exponents observed for the landslide series obtained from the 413 

model, with rates of weakening w between 2 and 2.75. The comparison with literature shows that in this 414 

range of w-values, the scaling behavior of landslide areas is well reproduced by the model: the scaling 415 

exponents of the modeled landslide series range from 2.5 to 3.2. 416 

 417 
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 418 

Fig. 5 Comparison of the percentage frequency (F) of the values of D observed within each D class, in literature (Tab. 1 419 
in Van Den Eeckhaut et al. (2007)) and for the landslide data series obtained with w from 2 to 2.75. The D classes are 420 
0.3 wide. 421 
 422 

In the next section we will show that the shape of the frequency distributions is not affected by the resolution 423 

of the DEM used, at least for the resolutions tested. This means that although the results presented in Fig. 4 424 

correspond to landslide areas expressed in m
2
 (based on the resolution of the original DEM of 25x25 m), the 425 

represented constraints exercised by topography on the landslide probability should correspond to a wider 426 

range of landslide areas than the one represented in the figure. 427 

We studied the way the scaling exponents depend on (i) the rate of weakening w and (ii) time tw. For this 428 

analysis, all the values of w were used, although only those higher than or equal to 2 lead to scaling 429 

exponents similar to the real ones (as shown above). This allows us to better explore the behavior of the 430 

system, which according to the results obtained and shown below and in the next sections, may be described 431 

by mathematical rules that can be fitted to the whole range of rates of weakening w tested. Graphs a, b, and c 432 

in Fig. 6 show that for each tw, D linearly decreases with an increasing rate of weakening w (R
2
 > 0.98), thus 433 

indicating that the faster the system is driven to instability the higher becomes the probability of large 434 

landslides. The decrease is described by: 435 

            (4) 436 

where    is a constant. 437 

This result indicates that a possible cause affecting the probability of occurrence of real landslide sizes is the 438 

rate at which the system is driven to instability, such as the rainfall intensity for rainfall triggered landslides. 439 

Fig. 6d indicates that when the rate of weakening w is lower than or equal to 1.5, D does not significantly 440 
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change over time.  Conversely, for higher w, D slowly increases with tw. However, the change of D over time 441 

is much lower than that produced by the rate of weakening: for tw equal to 5,000 model steps, the maximum 442 

temporal change of D is of 0.4 (Fig. 6d), while in the same time window, the change of D with w is of about 443 

2.7. This result will be discussed in section 7. 444 

 445 

Fig. 6 (a, b, c) For each tw (1,000; 2,000; 5,000 model steps), D as a function of the rate of weakening w, and the 446 
respective linear best fit. (d) For each w, D as a function of tw. 447 

4. Investigation of the effect of model choices and computational techniques 448 

The model is based on a lattice of 320×320 cells, and the DEM used to define the altitude values of cells has 449 

a resolution of 25×25 meters, thus implying that the smallest possible landslide in the model is of 625 m
2
 450 

(i.e, when the instability involves only one cell). We investigated the ways in which these choices affect the 451 

landslide area distribution, by keeping the same area as the initial surface for the model, but changing the 452 

DEM resolution to 10×10 meters (the DEM was built by Tarquini et al., 2007, 2012). Accordingly, the 453 

resulting lattice has a size of 800×800 cells and the smallest possible landslide area is of 100 m
2
. We used a 454 

low (w=1) and a high value (w=2.75) among the rates of weakening w applied in the model: 1 and 2.75 455 

(1,000 model steps were used for this comparison) and obtained similar results for both of them. Results The 456 

outcomes of the model for w=2.75 are shown in Fig. 7. 457 
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 458 

 459 

Fig. 7 Portions of the cumulative frequency distributions (CFD) of landslide areas (Ai) that can be described by power 460 
laws (dotted lines) and their respective scaling exponents (D), for the series of Ai obtained with a DEM of 25×25 m 461 
(lattice size of 320×320 cells) and with a DEM of 10×10 m (lattice size of 800×800 cells) (tw=1,000;), with a rates of 462 
weakening of (a) w = 1 and (b) w = 2.75: a1 and b1) Ai values as number of cells; a2 and b2) Ai values in m

2
. 463 

 464 

GraphsFigure 7a)1 and b1 shows the power law fit of the CFD of landslide areas, with the latter expressed as 465 

a number of cells, that is, without converting these values in m
2
. For both w = 1 (Fig. 7a1) and w = 2 (Fig. 466 

7b1), tThe range of landslide areas obtained from the model is about the same for the two DEMs used, while 467 

the number of landslides is higher for the DEM of 10×10m. The scaling exponents D of the power laws 468 

observed for the two DEMs are very similar, as well as their scaling ranges. This result shows that while the 469 

Formatted: Font: (Default) Times
New Roman

Formatted: Font: (Default) Times
New Roman



21 
 

size of the lattice affects, as expected, the number of landslides (the higher the model size, the higher the 470 

number of cells available to become unstable, and the higher the number of landslides), it does not affect the 471 

shape of the distribution and the dynamics of the system. The same applies to the resolution of the original 472 

DEM, which according to the results obtained does not produce any significant effect on the value of the 473 

scaling exponent, for the two resolutions tested. This result suggests that the control of topography on the 474 

size frequency distribution of the modeled landslides is the same at the two scales of analyses used, and this 475 

may be explained by the scale-invariant character of topography (Frattini and Crosta, 2013). Accordingly, 476 

after converting landslide areas from number of cells to m
2
 (Figs. 7b1 and 7b2) the only effect is a shift of 477 

the power laws along the x-axis. As a result, while the range of the scaling regimes for the landslide series 478 

obtained from the two DEMs are different, the values of their exponents do not change. This also indicates 479 

that, for example (Fig. 7b2) a D-value of about 2.6 characterizes the scaling behavior of landslide areas in a 480 

range from about 2×10
5
 to 10

7
 (i.e, from 5.3 to 7 in terms of logarithms of landslide areasFig. 7b), 481 

considering the scaling ranges observed for both the DEMs. 482 

These outcomes also suggest that the fact that the model does not accurately represent the first part of the 483 

frequency distribution of real landslides (Section 3) is not due to the scale of analysis but rather, as 484 

hypothesized in the previous section, due to the choice of topography as the main way of describing the 485 

spatial variability of the system. 486 

 487 

5. Changes of the topographic surface modeled 488 

The initial topographic surface is subjected to changes caused by the mass distribution occurring during the 489 

time window tw. In the present section we investigate these changes focusing on different morphometric and 490 

geomorphological features of the landscape. We must remember that according to the dynamics of the 491 

model, these changes represent the evolution of an area only subjected to the action of the gravitational 492 

process and whose variability is only represented by topography. 493 

5.1 Topographic attributes 494 
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Fig. 8 shows the difference in altitude between the final surface obtained at tw = 5,000 steps, and the initial 495 

one, for w equal to 1, 2 and 2.75, respectively. The difference is expressed in meters, according to the 496 

altitude values of the original DEM. Red zones indicate a decrease in altitude (areas affected by erosion), 497 

while blue zones indicate an increase in altitude (areas affected by deposition). When w grows from 1 (Fig. 498 

8a) to 2.75 (Fig. 8c), the difference in altitude increases. This is due to the observed property of the 499 

frequency distribution of landslides, which indicates that for the same tw the number of large landslides 500 

increases with increasing rate of weakening. Consequently, the higher w the larger the change of the surface 501 

configuration. 502 

 503 

 504 

Fig. 8 Difference in altitude between the final surface obtained at tw equal to 5,000, and the initial one. a) w=1; b) w=2; 505 
c) w=2.75. 506 

 507 

In order to highlight the variation of specific topographic attributes a cross-section through the surface is 508 

made (Fig. 1). The section is traced so as to cross the main ridges and valleys to highlight the evolution of 509 

the slopes. Fig. 9 shows how specific topographic attributes change along the cross-section after an interval 510 

tw equal to 5,000 model steps and with w = 2.75, i.e. the situation in which we observed the more pronounced 511 

topographic changes. Fig. 9a displays the initial and the final topographic profiles. The comparison of the 512 

two profiles indicates that landslides that occurred over the time interval tw cause a decrease of the altitude of 513 

mountain ridges and the filling of valleys, thus producing a smoothing of the relief. The stronger smoothing 514 

occurs where the altitude difference between the top and the bottom of the slope is lower, thus suggesting 515 

that where the slope length is short, the material transfer due to landslides is more effective in changing the 516 



23 
 

topographic geometry. Fig. 9b shows the initial and the final profile curvature (Pc) of the topographic surface 517 

(Moore et al., 1991), which describes the curvature of the surface along the direction of the steepest gradient. 518 

We chose this secondary attribute among those that may describe a topographic surface (e.g., slope angle, 519 

planar curvature, aspect, roughness) because when a landslide occurs the geomorphic evidence consists of a 520 

concave profile curvature between the crown and the main scarp and a convex profile curvature between the 521 

foot and the toe of the mass involved. 522 

 523 

Fig. 9 Change of topographic attributes along the cross-section made in Fig. 1. The change is evaluated between the 524 
initial topographic surface and the final one, obtained at tw = 5,000 and with w = 1.5. a) Altitude; b) Profile curvature 525 
(Pc) in 10

-2
 m; c) Difference Δsl between the initial and final slope angle (in degrees). 526 

 527 

 528 
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The curvatures were calculated using the algorithm in Spatial Analyst (ArcGIS10.0 © Esri), and are 529 

expressed in 10
-2

 m. Positive Pc values indicate concave curvatures, while negative values indicate convex 530 

ones. In the graph we observe that the Pc values of the final surface are closer to zero than those of the initial 531 

one, thus describing a decrease of both the convex and the concave curvature. Moreover, in the profile of the 532 

final curvature a general trend can be recognized, which consists in the shifting of the peaks corresponding to 533 

the maximum values of curvature toward lower values of linear distance (x-axis), compared to the peaks of 534 

the initial curvature profile. This could be due to a slope decline evolution, where the decrease of the slope 535 

angle is associated with a lateral movement of ridges and valley axes. 536 

Fig. 9c displays the variation of the slope angle (Δsl) of the surface, calculated as the difference between the 537 

final and the initial slope. Overall, a decrease of the slope angle is observed, up to a maximum of about 21°. 538 

However, some exceptions can be noticed. A positive Δsl corresponds to the medium and lower slope 539 

portions, where the moved mass increases the curvature and consequently the slope angle. 540 

Overall, tThese results are in agreement with real-world observations, where landslides dampen local relief 541 

removing mass from upper slopes and depositing it on lower slopes, thus producing a decrease of mean slope 542 

relief and relief variability, of slope angles and of their standard deviation (Korup, 2006; Korup et al., 2010). 543 

A more in-depth analysis of the change of the slope angles undergone by the relief will be addressed in 544 

Section 5.2. The evolution of the surface modeled also highlights that although the rules of the model apply 545 

to all cells of the lattice without discriminating between scar area, runout area and depositional area of 546 

landslides, this differentiation is intrinsically produced by the model. Indeed, the areas where we observe 547 

erosion represent the scar areas where landslides are triggered, i.e. where the instability is generated. These 548 

areas are located in the upper slope zones, which in real active mountain belts are the areas dominated by 549 

landslide erosion (Montgomery and Brandon, 2002; Korup et al., 2007). For the middle slopes we did not 550 

observe any significant change in altitude. Thus, they represent the runout areas of landslides where, in terms 551 

of the cells of the lattice, the instability is transferred from one cell to another but not generated. Finally, an 552 

increase in altitude is observed in the lower slopes overlooking the toe of slopes, which thus represent the 553 

depositional areas affected by the accumulation of landslide bodies. 554 

5.2 Statistical properties of the slope angles 555 
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The topographic changes are driven by the dynamics of the model, which are controlled by the slope angles β 556 

of the area. In Fig. 9c we observed that like other topographic attributes, slope angles also change over time. 557 

We thus investigated the temporal evolution of the slope angles and their possible dependence on the rate 558 

with which the system is driven to instability, in order to compare the behavior of the surface with the one 559 

observed for the scaling exponents of the frequency distribution of landslide sizes. 560 

For each rate of weakening w and number of model steps tw (i.e., 1,000; 2,000; 5,000) we calculated the 561 

respective frequency distribution of β of the initial and the final topographic surface. Fig. 10 shows the non-562 

cumulative (Fig. 10a) and the cumulative (Fig. 10b) distributions of β for the initial surface and for those 563 

obtained with the maximum tw, equal to 5,000 model steps. For clarity, in Fig. 10a only the frequency 564 

distributions corresponding to w = 1, 2.5 and 2.75 are shown, since they offer a good description of the 565 

behavior of slope angles with increasing w. 566 

 567 

 568 

Fig. 10 Non-cumulative (a) and cumulative (b) frequency distributions of the slope angle β for the initial topographic 569 
surface and for those obtained at the maximum tw, equal to 5,000 model steps, with w = 1, 2.5, 2.75, in graph (a), and 570 
with all the w applied in graph (b). 571 
 572 
 573 
The initial frequency distribution of β (black symbols in Fig. 10a) is representative of the topographic setting 574 

of the area, which is characterized by steep river valleys and flat surfaces at the top of the slopes. Because of 575 

this, in the slope angle series the intermediate classes (between 12° and 37°) are less represented than they 576 

would be in a Gaussian distribution, in favor of the frequency of classes corresponding to low and high slope 577 

angles. Landslide occurrence changes the shape of the curve. In comparison with the initial frequency 578 

distribution, for each w tested we observe a decrease of the frequency of the angles higher than about 40° and 579 
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an increase of those lower than about 13° (Fig. 10a). Moreover, landslide processes emphasize the bimodal 580 

character of the initial topographic setting, and this is particularly evident at the highest rate of weakening 581 

applied (w = 2.75, green series in Fig. 10a). The smoothing produced on the surfaces by landslides is still 582 

more evident in the cumulative frequency distributions (CFβ), where we observe that for each w the curve is 583 

shifted toward lower values of β. In order to quantify these changes, we calculated for each frequency 584 

distribution (thus considering all the tw and not just tw=5,000) the following statistical parameters: maximum 585 

(    ), mean (  ), standard deviation (  ), kurtosis (  ), skewness (   ). Figure 11 shows the change of 586 

each statistical parameter in time. Also in this case, only results corresponding to some w are displayed (w = 587 

1, 2 and 2.75), for clarity purposes. 588 

 589 

 590 

Fig. 11 Temporal change of the statistical parameters of the slope angle frequency distribution, for w = 0.5, 1.5, 2.75; tw, 591 
number of model steps;     , maximum;   , mean;   , standard deviation;   , kurtosis;    , skewness. 592 
 593 

The overall temporal behavior of these parameters consists of a decrease of their value over time, although 594 

exceptions and some differences in the way these values decrease can be observed. The values of    and    595 

show a similar trend described by a linear decrease of their value with increasing tw. T and this decrease is 596 

steeperhigher when the weakening is stronger. The parameter      quickly decreases in the beginning (i.e., 597 

from t=0 to t=1,000) and then the decrease slows down. A similar behavior is observed for   , which is a 598 
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measure of the peakedness or flattening of the distribution, when compared to a normal distribution. The 599 

positive values of    indicate a leptokurtic distribution - that is, a distribution with a higher weight of tails 600 

compared to a Gaussian distribution. Overall, also for this parameter the higher tw the lower the decrease of 601 

its value. The decrease indicates that the weight of the tails decreases and this can be observed in Fig. 10a, 602 

for the right tail. A particular behavior is observed for    : one can notice a slight asymmetry of the 603 

distribution, which quantifies the asymmetry of the distribution; . Iits temporal evolution depends on w. F: 604 

for w equal to 0.5, the parameter decreases over time, while for w values of 1.5 and 2.75 there is an initial 605 

decrease followed by an increase of the value. This increase is due to the fact that We interpret this 606 

difference as follows: the change in topography takes place at a faster rate for higher w-values, while the 607 

decreasing trend of     for w = 0.5 may be due to the fact that the system cannot manifest over the 608 

maximum tw of 5,000 model steps the increasing trend observed for the other values of w. Accordingly, to 609 

this hypothesis and in agreement with Fig. 10a, the initial decrease of the asymmetry is due to the difference 610 

between the decrease of the frequency of high β values and the increase of the frequency of low β values, 611 

while the subsequent increase of the asymmetry is mainly due to the increase of the relative importance of 612 

the lower β, over time. The values of    and    show a similar trend described by a linear decrease of their 613 

value with increasing tw. This decrease is steeper when the weakening is stronger. 614 

The values of the statistical parameters of slope angles of the final topography also depend on the rate of 615 

weakening. In particular, we have found that    and    are linearly linked with w according to the following 616 

equations: 617 

               (5) 618 

              (6) 619 

where     and    are the angular coefficients of the best fit lines and     and    are constants, which depend 620 

on tw (R
2
   0.99 for         and R

2
   0.97 for        ). The relationships are illustrated in Fig. 12. 621 

According to Eqs. 5 and 6, the higher the rate of weakening the lower the values of    and    of the final 622 

surface - that is, the higher the change of the topographic surface caused by landslides. 623 



28 
 

 624 

Fig. 12 For each tw (1,000; 2,000; 5,000 model steps), (a) mean    and (b) standard deviation    of slope angles as a 625 

function of the rate of weakening w, and their respective linear best fit lines. 626 

 627 

6. Relation between topographic changes and scaling properties of landslide sizes 628 

In this section the relationship between topographic changes and the statistical behavior of landslide sizes is 629 

investigated. 630 

We observed that landslide phenomena produce a smoothing of the topographic surface, which results in a 631 

decrease of the main statistical parameters of the frequency distribution of β, in time (Fig. 11). Unlike β, the 632 

scaling exponent D of the frequency distribution of landslide does not show any specific trend over time 633 

(Fig. 6d). Thus, the probability of landslide sizes and the changes undergone by the topographic surface 634 

exhibit different types of behavior over time. Instead, we observed that they manifest similar dependence on 635 

the rate of weakening w. In particular, we found that the scaling exponent D, the mean    and the standard 636 

deviation    of slope angles linearly decrease with increasing w (Figs. 6a, 6b, 6c and 12). Thus, by 637 

substituting in turn Eqs. 5 and 6 in Eq. 4 we obtain: 638 

           (7) 639 

 640 

             (8) 641 

 642 
where           and          are the angular coefficients of the best fit lines, and    and    are 643 

constants. Figure. 13 shows the same result obtained by plotting, for each t, D as a function of    (Fig. 13a) 644 



29 
 

and    (Fig. 13b) obtained for the same w. The best fit lines have R
2
   0.95 and R

2
   0.94, in Fig.13a and 645 

13b, respectively. 646 

This result indicates that at each time span tw, the scaling exponent D that characterizes the probability of 647 

landslide sizes is linearly related, with a good approximation, to the values of the statistical parameters of the 648 

slope angles of the topographic surface where landslides occurred. In particular, the positive correlation of D 649 

with    and    respectively, shows that an increase of w (i.e., moving from the right extreme of the linear best 650 

fits to the left in Fig. 13) produces a decrease of D and thus an increase of the probability of large landslide 651 

sizes, which is linearly related to the decrease of the mean and standard deviation of the slope angles of the 652 

final surface. In other words, the statistical parameters of the modeled topography preserve information 653 

about the probability of landslide sizes that occurred during a specific tw and under the action of a specific w. 654 

 655 

Fig. 13 For each tw (1,000; 2,000; 5,000 model steps), D as a function of (a) the mean    and (b) the standard deviation 656 
   of slope angles of the topographic surface, and their respective linear best fit. For each point, w indicates the value of 657 
the rate of weakening at which D,    and    were obtained. 658 

 659 

Although we observed that the way the system reacts in terms of landslide sizes and topographic changes 660 

depends on the way it is driven to instability (i.e. the configuration of the system changes as a function of the 661 
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external forces acting on it), tThe Eqs. 4 to 8 indicate that the way the values of D,    and    change with w 662 

may be described by linear mathematical laws, which respectively work for all the time spans tw tested and 663 

for which only the value of the linear fit parameters of the equation (slope and intercept) are different for the 664 

different tw. Both in Figs. 13a and 13b we observe that going from tw = 1,000 to tw = 5,000 the steepness of 665 

the best fit lines decreases; that is, the angular coefficients m1 and m2 of Eqs. 7 and 8 decrease over time. 666 

This result indicates that the way D is linked to the topographic change depends on the time span. In the next 667 

section we discuss outcomes, implications and limitations of the results obtained, including time-related 668 

aspects. 669 

 670 

7. Discussion 671 

The frequency distribution of landslide sizes characterizes the probability of landslide of a given magnitude. 672 

A property of this distribution identified in many landslide datasets around the world is the characteristic 673 

power-law decay of the frequency from medium to large sizes. Although small slope failures are the most 674 

frequent ones in landslide datasets, larger landslides represent the main hazard in terms of associated risk.  675 

Despite its simple structure, the cellular automata model proposed in this paper has shown to be capable of 676 

reproducing key features of landslide processes related to the occurrence of medium to large slope failures. 677 

First, the distribution of landslide areas exhibits the typical scaling properties of real landslides, and a good 678 

agreement is observed for the values of the scaling exponents when a specific range of values is used for the 679 

parameters of the model. Given that in the model the topographic variability is the only component affecting 680 

the evolution of the system, this result suggests that the scaling properties of medium to large landslides 681 

could actually arise due to topography, thus supporting the conclusions of Frattini and Crosta (2013), who 682 

hypothesized that the scaling behavior of landslide sizes could find an explanation in the scaling properties 683 

of topography. Furthermore, the comparison of the frequency distributions of landslide areas obtained by 684 

using DEMs with different resolutions for the same initial topographic surface showed that neither the shape 685 

of the probability distribution nor the value of the scaling exponent are significantly affected by the change 686 

from one resolution to another. This indicates that the constraints imposed by topography on the probabilities 687 

of landslide areas are about the same at the investigated spatial scales, of 10 m and 25 m, respectively. 688 

Moreover, we observed that although the model does not use specific rules to distinguish between the 689 



31 
 

processes of erosion, transport and deposition of landslides as other models do (Guthrie et al., 2008), these 690 

different parts of landslides may be recognized in the resulting topography. In particular, we observed that 691 

scour areas are located in the upper slopes, runout areas in the middle slopes, and depositional areas in the 692 

lower slopes, in accordance with the natural behavior of landslides, which produce a smoothing of the relief. 693 

Also, we found that landslide areas in the model increase with increasing rate of weakening. This result 694 

indicates that large landslides are more abundant when the intensity of the triggering mechanism is high, in 695 

agreement with findings from real geographic contexts (Saito et al., 2014). These similarities suggest that 696 

other properties observed for the model and discussed below may also describe properties of real systems. 697 

We found that the scaling exponent of the landslide area frequency distribution linearly decreases with 698 

increasing driving rate, thus indicating that the faster the system is driven to instability the higher becomes 699 

the probability of large landslides. This result supports the hypothesis of Piegari et al. (2009), who conclude 700 

that the frequency-size distribution of landslides is controlled by the rate of approaching instability more than 701 

by the type of triggering mechanism per se. This could actually explain why landslide inventories generated 702 

for different triggering mechanisms, like rainfall and snowmelt, exhibit similar frequency–size statistics of 703 

landslides (Pelletier et al., 1997; Malamud et al., 2004). Additionally, our results suggest that the value of the 704 

scaling exponent is controlled by the way the topographic variability characterizing the area combines with 705 

the temporal effectiveness of the mechanism generating instability. A behavior similar to that of the scaling 706 

exponent was observed for the mean and standard deviation of the local slope angles of the surface, which 707 

under the action of landslides linearly decrease with increasing rate of weakening. Moreover, we observed 708 

that for the same driving rate, the value of the scaling exponent does not significantly change in time, 709 

contrary to what happens for the main statistical values of the slope angles of the surface, which show a 710 

decrease over time. Finally, we found that for a given time window, the scaling exponent of landslide areas, 711 

the driving rate, and the changes of the topographic setting are related to each other. In Section 2.2 we 712 

explained that the rate of weakening w in the model may represent, for example, the rate of snow melt or the 713 

intensity of rainfall, or more generally, the temporal effectiveness with which the triggering mechanism 714 

weakens the soil, such as the temporal increase of the pore pressure by water, under the assumption of 715 

homogeneous soil properties. While in the model tw is the sum of both the weakening steps and the 716 

landsliding steps, and although tw does not have a characteristic scale length, the higher tw is, the wider is the 717 
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time window during which the system is driven to instability. Thus, a higher tw represents a longer 718 

application of the triggering mechanism in real systems. With reference to rainfall, it has been widely shown 719 

that the triggering of landslides can be related to rainfall intensity-duration thresholds (or analogously, 720 

cumulated rainfall - rainfall duration thresholds) (Guzzetti et al., 2007; Peruccacci et al., 2012, Salciarini et 721 

al., 2012). Our results suggest that for an area of given topography, while this threshold governs the 722 

triggering of landslides, the probability of landslide areas depends on the intensity of the triggering 723 

mechanism and is rather insensitive tomore than on its duration, which mainly affects the number of 724 

landslides. Indeed, we found that the value of the scaling exponent is much more sensitive to the rate of 725 

weakening than to time (as shown in Fig. 6). Conversely, what we found to be strongly time-dependent is the 726 

footprint left on the topographic surface by landslides. In the real world, for every rainfall event that exceeds 727 

the threshold (that is, when the intensity-duration conditions for the triggering of landslides are satisfied), the 728 

longer the duration of rainfall the higher the number of landslides triggered. Consequently, the longer the 729 

duration of the triggering mechanism, the more pronounced the topographic change of the topographic 730 

surface, caused by landslides. Interestingly, we foundMoreover, we observed that the topographic setting of 731 

the area modeled preserves the information concerning the statistical distribution of landslide areas caused 732 

by a triggering event of given intensity and duration: based on the equations established above (Eqs. 7 and 733 

8), by studying the topographic change of the modeled topography in the model, it would be possible to go 734 

back to the scaling exponent of the frequency distribution of landslide areas that caused that change. This 735 

result opens up new potentially fruitful perspectives in the field of landslide forecasting. Indeed, while a 736 

numerical model is not meant to describe in detail real processes, given the correspondences observed 737 

between the behavior of the model and that of real systems, it is possible to hypothesize that a similar 738 

behavior could be observed in nature. 739 

Some critical considerations must be added to the above. The model does not take into account river erosion 740 

and uplift, which are processes that allow for the rejuvenation of the system (Pucci et al., 2014) and landslide 741 

triggering. However, studies have shown that landslide erosion is not only the way in which hillslopes adjust 742 

in response to river channel incision. Rather, it plays an active role in shaping the landscape also 743 

independently of river processes and as a consequence of triggering mechanisms like rainfall (Korup, 2010; 744 

Reinhardt et al., 2015; Singh et al., 2015), and this role is mainly effective on smaller timescales (Korup, 745 
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2010). Thus, the choice whether or not to consider fluvial processes in the model should not affect the 746 

possibility to represent landslide dynamics and to investigate the scaling properties of this phenomenon. 747 

Uplift is a long-term driving factor for landslide processes. Ignoring this process in the model implies that if 748 

we left the topographic surface free to evolve for a much larger number of model steps it would eventually 749 

become an almost flat surface. According to such a scenario, the surface would reach a maximum slope 750 

gradient equal to the one below which cells are always stable. This situation is not plausible in a dynamic 751 

geomorphological context affected by landslides. However, studies have shown that the rate of erosion by 752 

rivers and slope failures is regulated by the way the rate of uplift and the rate of precipitation interact with 753 

each other. Various scenarios have been described, where depending on the relative changes in uplift and 754 

precipitation the landscape evolves in different ways and with different erosion rates and mechanisms 755 

(Bonnet and Crave, 2006). The different types of system behavior have been described by defining, for 756 

example, specific uplift thresholds, which characterize the type of process that dominates the mountain range 757 

evolution, where slope failures occur in response to the rise of the surface (Ouchi, 2011, 2015). As explained 758 

above, in our model the driving rate could be thought of as representing the intensity of the landslide 759 

triggering mechanism, assuming constant intensity over time, and the higher the number of model steps, the 760 

longer the application of the triggering mechanism. Accordingly, although the model does not use a 761 

characteristic timescale, results from the model must be interpreted in the light of the possible  maximum 762 

realistic duration of a triggering event, which can range from several days to several months depending on 763 

the climate of the area. Thus, we are studying the properties of the scaling behavior of landslides that 764 

occurred during one and the same erosion event, which happens in response to uplift – that is, the erosion 765 

operated by landslides in response to a rise of the topographic surface, which allows the equilibrium to be 766 

restored. In this context, while uplift affects the long-term evolution of landforms, for the single erosional 767 

event it only represents the underlying cause. Based on these considerations, it is reasonable to consider that 768 

the properties observed for the scaling behavior of landslides can could actually describe real properties of 769 

landslide processes. This idea is also supported by real-world studies, which found scaling properties in 770 

landslide datasets compiled both for long time spans and after a single triggering event (Guzzetti et al., 2002; 771 

Guthrie and Evan, 2004; Malamud et al., 2004), thus suggesting that the scale-invariance of landslides does 772 
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not appear in the system only as a consequence of its long-term evolution, but rather manifests itself in a 773 

landscape, whose configuration is the result of its evolutionary history. 774 

Although ignoring uplift does not allow us to draw clear conclusions about specific aspects of the long-term 775 

system dynamics, some considerations can be made. All the mathematical relationships that we found are 776 

time independent; time only affects the value of their parameters. This means that the properties observed for 777 

landslides in the model do not have a characteristic timescale. In the case of real landscapes, experimental 778 

studies suggested that topography advances toward a dynamical steady state (Bonnet and Crave, 2003; Lague 779 

et al., 2003), which arises in space-time scale invariant dynamics (Reinhardt et al., 2015; Singh et al., 2015). 780 

Consequently, considering the time-independence of the laws derived, we hypothesize that the properties 781 

observed could also describe the long-term dynamics of landslide processes. As for the possible SOC 782 

behavior of landslides, in Fig. 6d we observed that at the lowest rates of weakening, that is, at the rates at 783 

which the change of topography caused by landslides is low, the scaling exponent is nearly stable over time. 784 

Conversely, at the highest rates of weakening corresponding to the most ample changes in topography, a 785 

change of the exponent trough time is observed. In summary, small topographic changes lead to small 786 

temporal changes in the scaling exponent, while more significant transformations in topography are 787 

associated with major variation in the values of the scaling exponent. This result indicates that the behavior 788 

of the model does not exhibit SOC dynamics, and this is due to the fact that in the model rejuvenation 789 

processes such as uplift are neglected, thus implying that in the model, topography cannot tend toward a 790 

dynamical steady state, unlike what has been hypothesized for topography in nature (Bonnet and Crave, 791 

2003; Lague et al., 2003). 792 

 793 

8. Conclusions 794 

The cellular automata model (CA) proposed in this paper is capable of reproducing the power-law decay of 795 

the probability distribution of real landslide areas for a range of model parameter values. In analogy with the 796 

CA model by Hergarten and Neugebauer (2000), who firstly used a time-dependent variable in a CA model, 797 

our results confirm the key role that the temporal rate of weakening exerts in landslide dynamics. Model 798 

outputs provide insights into the variability of the scaling exponents observed in reality, indicating that the 799 

power-law scaling of medium to large landslide areas results from the interplay of the topographic spatial 800 
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variability and the rate at which the system is driven to instability, which in the real world may be thought of 801 

as representing, for example, rainfall intensity. The fundamental difference between this model and the 802 

previous CA models used to study the frequency distribution of landslide areas consists of the topographic 803 

control of both the displaced mass and instability direction; our results point to topography as a major 804 

controlling factor in the probability of landslide sizes. Although the spatial variability of a real system is due 805 

to the combination of many interdependent factors, it is worth noting that the correspondence between the 806 

model outcomes and real landslide sizes is obtained by considering topography as the only factor defining 807 

the spatial variability in the system modeled. This result is consistent with the fact that the shapes of the 808 

landscape are dependent on geological and structural aspects of the relief, which constrain the type of the 809 

physical processes modeling the surface. To conclude, topography seems to be a good candidate to explain 810 

the scaling properties of medium to large landslide sizes, thus supporting with numerical evidence 811 

hypotheses made in previous studies (Frattini and Crosta, 2013). 812 

Moreover, according to our results, the modeled topography not only provides explanations for the power 813 

law decay of landslide sizes, but also conserves the information about the scaling exponent of the probability 814 

distribution of areas of landslides that caused changes in its characteristics. 815 

Incorporating rejuvenation processes like uplift and river erosion in the model could support the further study 816 

of long term landslide dynamics, as well as the possible SOC behavior of these processes. 817 
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Abstract 23 

Power law scaling has been widely observed in the frequency distribution of landslide sizes. The exponent of 24 

the power-law characterizes the probability of landslide magnitudes and it thus represents an important 25 

parameter for hazard assessment. The reason for the universal scaling behavior of landslides is still debated 26 

and the role of topography has been explored in terms of possible explanation for this type of behavior. We 27 

built a simple cellular automata model to investigate this issue, as well as the relationships between the 28 

scaling properties of landslide areas and the changes suffered by the topographic surface affected by 29 

landslides. The dynamics of the model is controlled by a temporal rate of weakening, which drives the 30 

system to instability, and by topography, which defines both the quantity of the displaced mass and the 31 

direction of the movement. Results show that the model is capable of reproducing the scaling behavior of 32 

real landslide areas and suggest that topography is a good candidate to explain their scale-invariance. In the 33 

model, the values of the scaling exponents depend on how fast the system is driven to instability; they are 34 

less sensitive to the duration of the driving rate, thus suggesting that the probability of landslide areas could 35 

depend on the intensity of the triggering mechanism rather than on its duration, and on the topographic 36 

setting of the area. Topography preserves the information concerning the statistical distribution of areas of 37 

landslides caused by a driving mechanism of given intensity and duration. 38 

Keywords: Landslide area; Topography; Cellular automata; Scaling 39 

 40 

1. Introduction 41 

Landslide occurrence is controlled by the interaction of many factors, such as geology, topography, 42 

hydrology, land use and climate. These factors affect both the proneness to slope failures and the type and 43 

magnitude of landslides. However, regardless of the local characteristics, it has been widely shown that 44 

landslide patterns (Goltz, 1996; Liucci et al., 2015) and the frequency distribution of landslide areas and 45 

volumes exhibit scaling properties (Malamud and Turcotte, 1999; Stark and Hovius, 2001; Guzzetti et al., 46 

2002, Martin et al. 2002; Brardinoni and Church, 2004; Guzzetti et al., 2005; Korup, 2005; Brunetti et al., 47 

2009). In particular, landslide sizes follow a power law with negative scaling exponent, which can also be 48 
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similar for landslides triggered by different mechanisms (Pelletier et al., 1997; Malamud et al., 2004; 49 

Hergarten, 2013). This trend is found from medium to large landslide sizes, while an opposite trend is 50 

identified at smaller sizes. Several models have been built to investigate this behavior and hypotheses have 51 

been discussed that the scaling properties of landslides could arise in Self-Organized Critical dynamics 52 

(Malamud and Turcotte, 1999; Hergarten, 2003, 2013). 53 

According to the work by Van Den Eeckhaut et al. (2007), who reviewed the values of the scaling exponent 54 

observed for about thirty landslide datasets around the world, the exponent of the non-cumulative frequency 55 

distribution of landslide areas ranges between 1.42 and 3.36. 56 

Compared to regolith landslides, rockfalls exhibit, on average, smaller scaling exponents (Malamud et al. 57 

2004, Brunetti et al., 2009), and this could depend on the physics of processes leading to rockfalls, which are 58 

different from those responsible for regolith landslides (Malamud et al., 2004). The comparison between the 59 

scaling behavior of these two types of mass movement commonly takes into account the mobilized volumes. 60 

The understanding of the factors controlling this power law decay and the value of the scaling exponent is of 61 

much interest, since it would provide valuable information concerning the probability of occurrence of 62 

landslides of different magnitudes. Several studies suggested possible explanations for the characteristic 63 

shape of the landslide frequency distribution and for the factors responsible for landslide sizes. Katz and 64 

Aharonov (2006) induced landslides in a vibrating box of cohesive sands through the application of both 65 

horizontal and vertical acceleration. The analysis of the frequency-size distribution of the generated 66 

landslides showed that the power law behavior observed for medium to large sizes is due to the strength 67 

heterogeneity of the material caused by the fracture systems that form in response to the acceleration applied. 68 

Lehmann and Or (2012) used a hydromechanical physically based hillslope model inspired by concepts of 69 

Self-Organized Criticality (SOC) (Bak et al., 1988), to study the frequency distribution of rainfall-induced 70 

shallow landslide volumes. They observed that root reinforced soils and high slope angles lead to smaller 71 

values of the scaling exponent of landslide volumes, while soil textural class and rain intensity have less of 72 

an impact on its value. Conversely, the work by Alvioli et al. (2014) showed that the shape of the frequency 73 

distribution for medium to large landslides changes with rainfall intensity and rainfall duration, for given 74 

geotechnical parameters. Frattini and Crosta (2013) observed that topography exhibits power law scaling 75 

with a rollover at smaller scales, similarly to what was observed for landslide size-frequency distributions, 76 
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and that the scaling exponent of the frequency distribution of areas of patches (triangular units used to tile 77 

the topographic surface) increases with the slope gradient of relief. This indicates that topography is 78 

characterized by a low number of large areas with high slopes. They conclude that the low number of large 79 

patches with a slope gradient high enough to have slope failure causes an increase of the scaling exponent of 80 

the frequency distribution of landslides compared to the case of unlimited availability of high-slope patches. 81 

However, the investigation of synthetic landslide inventories showed that the main factor controlling the 82 

scaling exponent of landslide sizes is the variation of the geotechnical properties with depth. Katz et al. 83 

(2014) investigated the possible factors controlling the size and geometry of an individual landslide through 84 

the use of a numerical model. They hypothesized that the size of small landslides is controlled by the amount 85 

of material disintegrated by pre-sliding rupture processes, which in turn is controlled by the peak strength of 86 

the material and by the slope angle, while the size of medium to large landslides is not necessarily related to 87 

material disintegration and is mainly affected by the preexisting discontinuity setting. Milledge et al. (2014) 88 

proposed a slope stability model to predict the size of shallow landslides. They suggested that the low 89 

number of small landslides observed in real inventories and their size depend on the so called ‘critical area’, 90 

defined as the minimum area necessary to overcome resistive forces like friction and (when present) 91 

cohesion and thus to become prone to failure. The critical area is controlled by the critical failure depth, 92 

which is the depth at which the critical area is minimized, and in both cohesion and cohesionless soils it is 93 

affected by the position of the water table, which thus indirectly controls landslide sizes. They also found 94 

that the critical area closely corresponds to the peak of the frequency distribution of landslide areas on the 95 

reference site. This peak delimitates the rollover that marks the transition from the part of the frequency 96 

distribution corresponding to small landslide areas and characterized by positive slope, to the part 97 

corresponding to the medium to large landslide areas, which follows a power law with negative exponent 98 

(Guzzetti et al., 2002; Guthrie and Evans, 2004; Malamud et al., 2004). There is a wide debate about the 99 

reasons for the rollover. A possible explanation is an underestimation of small landslides because of the 100 

resolution of the original data sources used to build the dataset (Stark and Hovious, 2001; Brardinoni and 101 

Church, 2004). For example, raster data with a certain spatial resolution do not allow us to identify landslides 102 

with areas lower than the resolution of cells. Moreover, erosional processes quickly remove the fingerprint of 103 

small landslides (Guzzetti et al., 2002) - the level of conservativeness of landforms increases with their size. 104 
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Another possible explanation for the low number of small landslides concerns the geomechanical properties 105 

of soil and their relative importance in the rupture mechanism, which depends on the scale at with the 106 

process occurs (Stark and Guzzetti, 2009). Another category of models widely applied to the study of the 107 

dynamics of such natural phenomena is that of cellular automata (CA) models. A cellular automaton is a 108 

discrete numerical model, in which the studied system is discretized in cells. Each cell is characterized by a 109 

state representing one or more physical properties. The states of cells are evaluated and updated at discrete 110 

time steps according to rules that concern the states of the neighboring cells. One can then study the overall 111 

behavior of the system in space and time as an effect of local interactions. One of the strengths of these 112 

models stems from their capability of reproducing the complexity of real world patterns by using a small 113 

number of input parameters and by reducing processes to simple rules, capable of fruitfully describing their 114 

dynamics. Although in reality the dynamics are quite more complex and the factors involved are many, in 115 

CA models complex patterns emerge from simple rules (Wolfram, 2002); that is, they manifest emergent 116 

behavior (Bonabeau et al., 1995) just like complex natural systems do. 117 

Two pivotal CA models are the Bak-Tang-Wiesenfeld model (Bak et al., 1988) and the Olami-Feder-118 

Christensen model (Olami et al., 1992). The former, known as ‘sandpile model’, describes the behavior of a 119 

system subject to constant input that drives the system to instability: the equivalent of adding grains to a sand 120 

pile causes local instabilities that may propagate throughout the system, in a chain reaction, as a function of 121 

local states, producing scale invariant features both in space and in time. Constant input is thus leading to 122 

outputs in a wide range of sizes, corresponding to a distribution governed by a power law. The second one 123 

belongs to the group of CA spring-block models and it was built to study earthquake dynamics. In this 124 

model, cells represent blocks connected with each other through springs. In its theoretical formulation, 125 

blocks are also connected to a rigid driver plate, slowly moving, thus increasing the forces acting on the 126 

blocks until one (or some of them) exceeds the static friction and becomes unstable. When the block 127 

becomes unstable it is displaced, possibly initiating a chain-reaction involving neighboring cells. The OFC 128 

model is considered as a paradigm for non-conservative SOC because it involves dissipation: the potential 129 

energy gradually accumulated in the springs is partially transferred to the driver plate, while a part of it is 130 

lost from the system. 131 
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Like other phenomena, landslides seem suitable to be treated as avalanche processes. For slides occurring on 132 

slopes of overconsolidated clay and clay shales, the development of a sliding surface follows a mechanism of 133 

progressive slope failures (Bjerrum, 1967): the instability starts in a small region and destabilizes the 134 

neighborhood, thus allowing the instability to propagate. Moreover, the behavior of CA models can be 135 

thought of as a self-similar inverse cascade (Turcotte et al., 2002), and this idea can be fruitfully applied to 136 

landslides by considering the cascade as a coalescence of metastable regions: small failures coalesce to form 137 

a large failure plane. 138 

Attempts have been made to apply the sandpile model (Bak et al., 1988) and the OFC model (Olami et al., 139 

1992) to landslides, but results showed that none of them works on a quantitative level if the surface gradient 140 

is the only parameter used to describe the state of cells in the model (Hergarten, 2003). Hergarten and 141 

Neugebauer (2000) presented a new type of model, which introduces a second variable to the one describing 142 

the state of cells. The second variable represents a time-dependent weakening, and when the model is applied 143 

to landslides it consists of a temporal decrease of the stability slope threshold of each site. The rate of 144 

weakening can be introduced in different ways in the stability criterion, for example as a sum approach or as 145 

a product approach. When the product approach is used, the model shows SOC behavior and the scaling 146 

exponent observed is in agreement with values observed for real landslides. Thus, when a second variable is 147 

introduced to describe slope stability, results improve. 148 

The idea of a two-variable model was also applied by Piegari et al. (2006, 2009). Their model uses the 149 

inverse of a factor of safety as a dynamic variable describing the state of cells, while a second parameter 150 

drives the system to instability, which in practice is equivalent to the time-dependent weakening of 151 

Hergarten and Neugebauer (2000). In their model, the instability of cells is partly lost from the system, 152 

which means that unlike previous landslide models the system is non-conservative, in analogy with the non-153 

conservative case of the OFC model. A good correspondence with real frequency-size distributions is 154 

obtained when a specific level of conservation and driving rate are used, and after spatially scaling the 155 

model. They conclude that the frequency-size distribution of landslides is controlled by the rate of 156 

approaching instability more than by the triggering mechanism. Hergarten (2013) points out that the 157 

introduction of a degree of dissipation represents a tuning parameter for the model, whose value cannot be 158 

conceptually interpreted based on physical arguments. 159 
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Both the CA by Hergarten and Neugebauer (2000) and by Piegari et al. (2006, 2009) describe landslides on 160 

an individual slope. However, as shown by Frattini and Crosta (2013), topography is a key factor affecting 161 

landslide sizes. The important role of topography in slope failure occurrence is also highlighted by landslide 162 

susceptibility analyses, which find the slope gradient to be a predominant factor in causing the instability of 163 

an area (Lee and Min, 2001; Ayalew and Yamagishy, 2005). More generally, the setting of the topographic 164 

surface plays a major role in all the geomorphological processes acting on the landscape. Topography is not 165 

a static property of an area. A topographic surface changes as a consequence of the processes acting on it and 166 

in turn it affects the dynamics of most of these processes. A large number of landscape evolution models aim 167 

to describe these mutual interactions (a recent review of these models is given by Chen et al., 2014), and the 168 

factors mainly considered are the tectonic uplift, the fluvial erosion, and the gravitational processes. 169 

Topography also implicitly contains information concerning the lithology and the structural aspects of the 170 

area, since the geological properties constrain the resulting landforms (Taramelli and Melelli, 2009; Melelli 171 

et al., 2014). Consequently, the variability of the topographic surface also reflects the variability of many 172 

other parameters and it can thus be considered representative of the specificities of an area. 173 

The changes that the topographic surface incurs over time could play a key role in the explanation for the 174 

statistics of landslide sizes (Hergarten, 2013). This paper focuses on this specific aspect of landslide 175 

dynamics, in order to contribute to the understanding of the scaling properties observed for medium to large 176 

landslides. In particular, we explore the possible relationships between landslide scaling properties and the 177 

changes in topography, which to the authors’ knowledge, represents a new contribution to the existing 178 

literature on this topic.  179 

To this purpose, we use a cellular automata (CA) model.  In the model, we consider the gravitational process 180 

as the only mechanism shaping the landscape, and the topographic surface as the only parameter defining the 181 

variability in the initial conditions. Given that the model does not take into account the subsoil and structural 182 

geology, it refers to shallow landslides involving the regolith layer of the slope, and triggered by moisture 183 

increase. Its basic structure is similar to the one proposed by Hergarten and Neugebauer (2000), which is also 184 

used in the non-conservative CA model by Piegari et al. (2006, 2009). The model dynamics is driven by two 185 

variables: a temporal rate of weakening and a variable describing the state of cells. However, the 186 

fundamental difference between the model proposed here and those models consists of the predominant role 187 
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of topography in the evolution of the system and in landslide dynamics, since topography is decisive for both 188 

the displaced mass and the instability direction. Moreover, conversely to the model by Piegari et al. (2006, 189 

2009), this model is based on the transfer of mass and thus it is conservative. 190 

The steps involved in this work consisted in: i) building the CA model (described in Section 2); ii) 191 

investigating the frequency distribution of landslide areas resulting from the implementation of the model 192 

starting from a topographic surface (Section 3 and 4); iii) qualitatively and quantitatively investigating the 193 

changes undergone by the topographic surface (Sections 5); iv) exploring the possible relationships between 194 

the scaling behavior of landslide areas and the changes in topography (Section 6). Section 7 discusses the 195 

results and their implications in terms of landslide dynamics, the limitations of this study, and possible future 196 

developments. 197 

2. A cellular automata model for landslides 198 

2.1. Structure of the model 199 

The cellular automata model presented in this study was designed and written by the authors using the 200 

Matlab® software. It consists of a square lattice of square cells. Each cell is characterized by an altitude 201 

value, which can change during the evolution of the model through local interactions between neighboring 202 

cells. The initial state of the system is represented by the altitude values acquired from the Digital Elevation 203 

Model (DEM) of a real area. The lattice has a size of 320×320 cells, while the original DEM corresponds to 204 

an area located in the Umbria region (central Italy) and has a cell size of 25x25m. The area represents a 205 

mountainous morphology characterized by steep river valleys with slopes up to about 68° and flat surfaces at 206 

the top of the slopes. Overall, the area exhibits low drainage density and wide interfluve areas. The 207 

maximum altitude is of 1,412 m a.s.l (Fig. 1). We would like to specify the fact that it is not our objective to 208 

study landslide phenomena in this specific area. Rather, we use a real DEM in order to represent the natural 209 

variability of topographic surfaces, which has been shown to possess self-affine statistics over a wide range 210 

of scales (Turcotte, 1997). The advantage of using a real topography instead of a synthetic self-affine surface 211 

is that the latter typically lacks some important features of the earth’s surface, such as river valleys and 212 

morphological shapes resulting from a variety of processes, including tectonics (Hergarten, 2013). Moreover, 213 

real topographic surfaces exhibit deviations from scale invariance (Evans and McClean, 1995). 214 
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 215 

Fig. 1 DEM of the area used as initial topographic surface in the CA model. The black line indicates the cross-section of 216 
profiles shown in Fig. 9. 217 
 218 

The stability criterion for the cells is based on the local slope angle. The slope angle βc of each cell c is 219 

defined as the maximum slope gradient between the cell and its eight Moore neighboring cells (Wolfram and 220 

Packard, 1985). The slope threshold is defined as the slope angle above which cells are unstable. The model 221 

starts from stable initial conditions; that is, the initial threshold α0 for all the cells is higher than the 222 

maximum βc of the area. Then, at each step the threshold decreases by a quantity w, driving the system 223 

towards instability. In analogy with the real world, the decrease of the stability threshold can be thought of as 224 

representative of the weakening of soil caused by triggering events such as rainfall and snowmelt, which 225 

produce a decrease of the resistive forces of soil until one or more slope failures occur. If the slope threshold 226 

of a cell at a given time t has a value lower than or equal to αmin, the decrease is no longer applied. The value 227 

used for αmin is 5°, which implies that a quasi-flat area is always stable. A cell c is unstable when βc is higher 228 

than the slope threshold αc. When the cell c is unstable, its altitude ec decreases by a quantity Δec. The value 229 

of Δec is evaluated as the amount of altitude that c must lose so that βc after perturbation becomes equal to αc, 230 

that is, the quantity necessary to bring cell c back to a metastable state. The quantity Δec is discharged to the 231 

ni neighboring cells identified as receiving cells (ni, i = 1…, N), thus resulting in an increase of their altitude 232 

   . Accordingly, in order to evaluate Δec the model takes into account both the decrease of ec and the 233 

corresponding increase of     of the receiving cells. There can be between one and three receiving cells (1 ≤ 234 

N ≤3) and they are evaluated based on the slope gradients between the eight Moore neighboring cells and the 235 
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overcritical cell. The neighboring cell with the highest slope angle identifies the main landslide direction, 236 

which means that the avalanche follows the steepest descendent gradient. Then, if the two neighboring cells 237 

located at the two sides of the main landslide direction have an altitude that is lower than the altitude of c, 238 

they are also considered to be receiving cells. If N > 1, Δec is anisotropically discharged among the ni cells. In 239 

particular, the fraction       (0 ≤      ≤ 1) of Δec that each of the cells ni receives is proportional to the values 240 

of the slope angle between c and the cells ni. If N = 1, Δec is shifted in its entirety to the receiving cell in the 241 

direction of the maximum slope gradient (i.e.,     = 1). Thus, both the landslide direction and the transfer of 242 

mass are constrained by the local topographic features of the surface. After perturbation, the threshold αc of 243 

cell c is restored to its initial value α0. The instability of a cell may cause the instability of the neighboring 244 

cells, thus allowing the landslide to propagate within the system. At each model step t and for each cell c, the 245 

rules governing the dynamics of the model are summarized in Eqs. 1 and 2, which represent the driving rule 246 

and the transition rule, respectively. 247 

                  (1) 248 

                   

                          

                        
                                    

   (2) 249 

In the model, landslides are considered instantaneous compared to the time scale of the overall evolution of 250 

the system. Thus, when the condition described in the transition rule (Eq. 2) is verified for at least one cell of 251 

the lattice (i.e. when there is at least one landslide in progress) the driving rule (Eq. 1) is no longer applied 252 

until all the cells become stable again. 253 

Moreover, our model does not take into account a regenerating process such as uplift, since it is based on the 254 

assumption that the time scale at which the modeled landslides occur is much shorter than that of tectonic 255 

processes: the effect of these processes on the evolution of the system is negligible at the temporal scale 256 

considered and it does not significantly affect landslide dynamics. 257 

2.2. Implementation of the model 258 

The model was applied to the investigation of the frequency distribution of landslide areas. We used a series 259 

of values for the rate of weakening w. For each of these values we measured the areas of landslides that 260 
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occurred over time windows tw defined as a number of model steps. The area of a landslide is calculated as 261 

the number of adjacent cells affected by instability during a single event. For each landslide area series we 262 

investigated the scaling properties of the resulting cumulative frequency distribution. 263 

The choice of the values to be used for w was constrained by the model outputs. In the next section it will be 264 

shown that in the model, landslide areas increase with w. Thus, the value of w affects the sizes of the 265 

resulting landslides as well as the shape of the size frequency distribution. Accordingly, the model outputs 266 

drove the selection of the values of w capable of representing the range of landslide sizes and the values of 267 

scaling exponents observed in the real world. In particular, we first tested a low value for w (w = 0.5). Then, 268 

we repeatedly ran the model by progressively increasing the value of w by 0.5, until values were reached for 269 

which the behavior of the system was similar to real world observations. In the range of w for which such 270 

similarity was observed, we reduced the distance between subsequent w values to 0.25, to investigate the 271 

behavior of the system in more detail. The values tested for w are 0.5, 1, 1.5, 2, 2.25, 2.5, 2.75. 272 

As explained in Section 2.1, the weakening w applied in the model through a decrease in the slope angle 273 

stability threshold is meant to correspond to the effect of rainfall or snowmelt events, which weaken the soil 274 

thus causing the instability of some sites of the system. In the real world, the rate of soil weakening depends 275 

both on the intensity of the triggering event and on the physical response of the soil (Iverson, 2000), which in 276 

turn depends on its physical properties. In our model we apply a constant rate of weakening in space and in 277 

time, which means to assume that the factors that create unstable conditions are constant in time, and that the 278 

only variable affecting the response of the system is topography, while all the other physical properties are 279 

homogeneous in space. Thus, a higher w can be associated with a higher rainfall intensity or snowmelt rate, 280 

or more generally with a higher rate of increase of the resulting pore pressure, under the assumption of 281 

homogeneous soil properties. 282 

To summarize, the way we implement the model allows us to study how landslide dynamics evolves when 283 

the system is subjected to a constant driving mechanism over time, with different predefined intensities. 284 

The time windows tw used for the model consist of 1,000; 2,000; and 5,000 model steps. Accordingly, tw 285 

represents the sum of the “landsliding steps”, that is, the steps at which the instability is communicated from 286 

the unstable cells to their neighbors, and the “weakening steps”, that is, the steps at which the decrease of the 287 

slope stability threshold is applied. This implies that for a given time window tw, the larger the areas of 288 
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landslides of the resulting landslide series, the higher the number of landslide steps in the tw-window, since 289 

the avalanche process involves a larger number of cells.  290 

Figure 2 shows an example of stability conditions (Fig. 2a) and of the pattern of the slope stability threshold 291 

(Fig. 2b) of the examined topography, after 1,000 steps and for w = 2. In Fig. 2a, yellow denotes the unstable 292 

cells at the 1,000
th
 step of the model. In Fig. 2b we observe that under the effect of the driving rule (Eq.1, 293 

taking w = 2), the slope threshold αc, which at time t = 0 is uniform for all cells of the matrix (Eq.1, with αc 294 

=75°; that is,      =3.7), has become strongly variable after 1,000 steps: its values vary from cell to cell, 295 

depending on the stability history of the cells during this time span. 296 

 297 

Fig. 2 Stability conditions of the matrix, at the 1,000th step of the model. a) unstable cells (yellow) and stable cells 298 
(blue); b) Map of the tangent of the slope stability threshold αc. 299 
 300 

3. Analysis of the probability of landslide areas obtained from the model 301 

In this section, we first describe results obtained with all the rates of weakening (w) tested, and then compare 302 

these results with the real world observations in order to define the range of w-values capable of reproducing 303 

the behavior of real landslides. 304 

For each number of iterations tw and for each w-value tested, the outputs from the model consist of a series of 305 

landslide areas Ai, expressed as a number of cells. These values were converted in in m
2
 according to the 306 

resolution of the original DEM, in order to facilitate the comparison between the results obtained from the 307 

models and the behavior of real landslides. 308 
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Figure 3 shows how the mean area of landslides (AL) of each landslide data series varies with the rate of 309 

weakening w (Fig. 3a) and with the number of model steps tw (Fig. 3b). In both graphs we observe that the 310 

higher the value of w the higher the mean area AL. In particular, the two parameters are linked to each other 311 

by a linear equation (Fig. 3a). The increase of AL with w is due to the spatial spread of instability, which 312 

increases with increasing rate of weakening. Indeed, according to the driving rule (Eq.1), a higher w implies 313 

a faster decrease of the slope threshold αc and thus a higher number of unstable cells with a higher 314 

probability to be in touch with each other. This results in larger landslide triggering areas, which 315 

consequently generate larger landslide bodies. Moreover, the wide spatial spread of instability can also cause 316 

the formation of coalescent landslides, which are identified in the model as a single landslide. Finally, a 317 

faster decrease of the slope threshold also implies that a larger mass must be lost from the unstable cell in 318 

order to restore equilibrium conditions. The increase of the landslide mass involved in the landslide process 319 

increases the probability for the neighboring cells that receive the mass to become in turn unstable and, as a 320 

result, landslide processes are more likely to generate large areas. 321 

 322 

Fig. 3 (a) For each number of model steps (tw = 1,000; 2,000; 5,000), mean area of landslides (AL) of the respective 323 
landslide areas data series as a function of  w, and the respective linear best fit. (b) For each  w, AL as a function of tw. 324 
 325 

The slope of the linear best fit in Fig 3a decreases with increasing tw, thus indicating that the largest 326 

landslides occur at the early stages of the evolution of the model, while the relative importance of smaller 327 
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landslides in the data series increases with tw, thus lowering the mean value of landslide areas AL. This aspect 328 

of the behavior of the system is well depicted in Fig. 3b, where we observe that AL decreases with tw, and that 329 

this decrease is higher for higher w. Since high values of w lead to large landslide areas, we can hypothesize 330 

that like in real systems, relatively smaller topographic adjustments occur in response to large landslides, 331 

thus decreasing the value of AL. 332 

The complementary of the cumulative frequency distribution of landslide areas obtained from the model for 333 

each w and tw tested, along with their scaling properties, are shown in Fig. 4. 334 

Overall, landslide areas increase with increasing w and vary from 2×10
3
 to 2×10

7
 m

2
, which are values 335 

comparable with the range observed for real landslide areas (Pelletier et al., 1997; Guthrie and Evans, 2004; 336 

Malamud et al., 2004), although the highest order of magnitude represented in most real datasets is of 10
6
 m

2
, 337 

while landslides obtained from the model reach 10
7
 m

2
. Such large landslides are not often present in 338 

landslide inventories, since they require particular conditions in order to occur, that is, very high slope 339 

gradients like those observed in deeply incised river valley, and high-intensity rainfall events (Korup et al., 340 

2007). Moreover, particular structural settings may favor the instability of large slope portions. In terms of 341 

slope gradients and rainfall intensity, these conditions match those of the system modeled. Indeed, the river 342 

valleys are up to 70° steep, and landslide areas with a magnitude of 10
7
 m

2
 are obtained when the highest 343 

values for the rate of weakening are applied (w=2.5 and w=2.75), which according to the interpretation given 344 

in Section 2.2, correspond to the highest intensities of the triggering event. Moreover, as explained above, 345 

coalescent landslides are identified in the model as a single landslide, thus leading to larger areas. 346 

The graphs in Fig. 4 show that the right tails of the frequency distributions of landslide areas always follow a 347 

power law trend (R > 0.99) (Eq.3).  348 

          (3) 349 

In Eq. 3, N is the number of landslides with area greater than or equal to A, and D is the scaling exponent. 350 

The scaling exponents D range from 2.67 to 5.75, with uncertainty intervals at the 95% confidence level 351 

between 0.07 and 0.19. Overall, scaling behavior is observed in ranges of landslide areas from 0.6 orders of 352 

magnitude (Figs.4d and 4f: series obtained at 1,000 model steps) to 2 orders of magnitude (Figs.4b and 4c: 353 

series obtained at 2,000 and 1,000 model steps, respectively). Later in this section we will show that only 354 

some of the D-values obtained are in the range detected for real landslides. 355 



15 
 

 356 

Fig. 4 Complementary of the cumulative frequency distributions (CFDs) of landslide areas (Ai in m
2
) obtained with a) w 357 

= 0.5, b) w = 1, c) w =1.5, d) w = 2, e) w = 2.25, f) w = 2.5, g) w = 2.75, for different time spans (1,000 model steps in 358 
red, 2,000 in green, and 5,000 in black). The dotted lines indicate the portions of the CFDs taken in consideration for 359 
the identification of the power law (dotted lines). For each power law the respective scaling exponent D is shown. 360 
 361 
 362 
 363 
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A flattening of the frequency distributions is observed when landslide areas are lower than 10
4
 m

2
 (Figs. 4a 364 

and 4b), thus indicating that small landslides are less frequent than predicted by the power law. A deviation 365 

from the power law at the smallest landslide sizes is also recognized in the CFDs obtained from real datasets. 366 

However, in the real world small landslides show a specific statistical behavior that is not observed in our 367 

CFDs: when non-cumulative frequency distributions are used, the interval corresponding to the smallest 368 

landslide areas is characterized by an opposite trend, with positive slope, followed by a rollover above which 369 

landslide areas start following the power law (Guzzetti et al., 2002; Guthrie and Evans, 2004; Malamud et 370 

al., 2004). Such a rollover is not present in the outcomes of this model: non-cumulative frequency 371 

distributions calculated for the same landslide data series for which the cumulative distributions are shown in 372 

Fig. 4a and 4b, exhibit a flattening rather than a rollover for the smallest sizes of landslide areas. As 373 

explained in Section 1, the rollover in real landslide inventories may be associated with a range of 374 

explanations, such as an underestimation of small landslides (Stark and Hovious, 2001; Brardinoni and 375 

Church, 2004), and the physics of processes controlling the occurrence of small landslides (Stark and 376 

Guzzetti, 2009, Milledge et al., 2014). In this regard, our model does not consider the physical parameters 377 

and processes invoked to explain the frequency distribution of small landslides, and it cannot be affected by 378 

the resolution of the data sources of the landslide inventory either. This could explain why the CFDs 379 

obtained do not exhibit a rollover. In our model, the only variable affecting landslide areas is the topography. 380 

Thus, the flattening that we observe for these series at the smallest landslide areas is expected to be related to 381 

the constraints represented by the topographic surface. 382 

The first part of the frequency distributions obtained with w from 2 to 2.75 (Figs. from 4d to 4g) exhibits a 383 

behavior that it is not the same with the one from real landslide inventories. In particular, although the 384 

smallest sizes of these series are in a range at which scaling behavior is observed in nature, in this part of the 385 

CFD the number of the modeled landslides is higher than that predicted by the power law. The difference 386 

can again be related to the fact that the only constraint to model dynamics is represented by topography: as 387 

we deduced from Fig. 3, topographic adjustments occur in response to the large landslides caused by high 388 

rates of weakening, thus leading to a high number of slope failures with smaller area. 389 

While model choices affect the first part of the area-frequency distributions, results indicate that the model is 390 

capable of reproducing the scaling properties of real landslides, when specific values for the parameters of 391 
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the model are used. The values of D were compared to those observed for real landslide inventories by taking 392 

as a reference the work by Van Den Eeckhaut et al. (2007), which provides an overview of the values of D 393 

observed for about thirty landslide inventories around the world, published in twenty-seven papers (please 394 

refer to Van Den Eeckhaut et al. (2007) for the related bibliography). According to this paper, for real 395 

landslide inventories the values of D range between 1.42 and 3.36, with many of them around 2.5. The 396 

landslide inventories considered are both historical and post-event. Since like most CA models, the one 397 

presented in this paper does not have a timescale, for the comparison of the model outputs with reality we 398 

preferred not to refer to a specific type of inventory, but rather to include both post-event inventories and 399 

historical ones, also considering that the main difference between historical and post-event inventories is 400 

observed in the frequency distribution of small landslides, which is not the focus of this study, while in the 401 

portion of the frequency distribution that exhibits power law scaling, the scaling exponent does not show any 402 

specific behavior for the two types of datasets. 403 

The comparison indicates that the power law decay of the modeled landslide areas is in accordance with that 404 

of real landslide inventories for rates of weakening between 2 and 2.75 (Figs. from 4d to 4g). Indeed, in this 405 

range of w the exponents are comprised between 2.47 and 3.26, while for lower values of w the exponent is 406 

too high compared to real values, thus indicating an underestimation of large landslides and suggesting that 407 

although power law behavior is observed for all the w applied, only the highest rates of weakening among 408 

those tested are capable of reproducing the action exerted by real landslide triggering events. The histogram 409 

in Fig. 5 shows the values of the D-exponent in literature. The D classes are 0.3 wide and the values in the x-410 

axis represent the middle value of each class. Most of the real observations are in the D class from 2.4 to 2.6. 411 

In Fig. 5, the arrow delimitates the range of D-exponents observed for the landslide series obtained from the 412 

model, with rates of weakening w between 2 and 2.75. The comparison with literature shows that in this 413 

range of w-values, the scaling behavior of landslide areas is well reproduced by the model: the scaling 414 

exponents of the modeled landslide series range from 2.5 to 3.2. 415 

 416 



18 
 

 417 

Fig. 5 Comparison of the percentage frequency (F) of the values of D observed within each D class, in literature (Tab. 1 418 
in Van Den Eeckhaut et al. (2007)) and for the landslide data series obtained with w from 2 to 2.75. The D classes are 419 
0.3 wide. 420 
 421 

In the next section we will show that the shape of the frequency distributions is not affected by the resolution 422 

of the DEM used, at least for the resolutions tested. This means that although the results presented in Fig. 4 423 

correspond to landslide areas expressed in m
2
 (based on the resolution of the original DEM of 25x25 m), the 424 

represented constraints exercised by topography on the landslide probability should correspond to a wider 425 

range of landslide areas than the one represented in the figure. 426 

We studied the way the scaling exponents depend on (i) the rate of weakening w and (ii) time tw. For this 427 

analysis, all the values of w were used, although only those higher than or equal to 2 lead to scaling 428 

exponents similar to the real ones (as shown above). This allows us to better explore the behavior of the 429 

system, which according to the results obtained and shown below and in the next sections, may be described 430 

by mathematical rules that can be fitted to the whole range of rates of weakening w tested. Graphs a, b, and c 431 

in Fig. 6 show that for each tw, D linearly decreases with an increasing rate of weakening w (R
2
 > 0.98), thus 432 

indicating that the faster the system is driven to instability the higher becomes the probability of large 433 

landslides. The decrease is described by: 434 

            (4) 435 

where    is a constant. 436 

This result indicates that a possible cause affecting the probability of occurrence of real landslide sizes is the 437 

rate at which the system is driven to instability, such as the rainfall intensity for rainfall triggered landslides. 438 

Fig. 6d indicates that when the rate of weakening w is lower than or equal to 1.5, D does not significantly 439 
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change over time.  Conversely, for higher w, D slowly increases with tw. However, the change of D over time 440 

is much lower than that produced by the rate of weakening: for tw equal to 5,000 model steps, the maximum 441 

temporal change of D is of 0.4 (Fig. 6d), while in the same time window, the change of D with w is of about 442 

2.7. This result will be discussed in section 7. 443 

 444 

Fig. 6 (a, b, c) For each tw (1,000; 2,000; 5,000 model steps), D as a function of the rate of weakening w, and the 445 
respective linear best fit. (d) For each w, D as a function of tw. 446 

4. Investigation of the effect of model choices and computational techniques 447 

The model is based on a lattice of 320×320 cells, and the DEM used to define the altitude values of cells has 448 

a resolution of 25×25 meters, thus implying that the smallest possible landslide in the model is of 625 m
2
 449 

(i.e, when the instability involves only one cell). We investigated the ways in which these choices affect the 450 

landslide area distribution, by keeping the same area as the initial surface for the model, but changing the 451 

DEM resolution to 10×10 meters (the DEM was built by Tarquini et al., 2007, 2012). Accordingly, the 452 

resulting lattice has a size of 800×800 cells and the smallest possible landslide area is of 100 m
2
. We used a 453 

low (w=1) and a high value (w=2.75) among the rates of weakening w applied in the model (1,000 model 454 

steps were used for this comparison) and obtained similar results for both of them. The outcomes of the 455 

model for w=2.75 are shown in Fig. 7. 456 
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 457 

Fig. 7 Portions of the cumulative frequency distributions (CFD) of landslide areas (Ai) that can be described by power 458 
laws (dotted lines) and their respective scaling exponents (D), for the series of Ai obtained with a DEM of 25×25 m 459 
(lattice size of 320×320 cells) and with a DEM of 10×10 m (lattice size of 800×800 cells) (tw=1,000;), with a rate of 460 
weakening of w = 2.75: a) Ai values as number of cells; b) Ai values in m

2
. 461 

 462 

Figure 7a) shows the power law fit of the CFD of landslide areas, with the latter expressed as a number of 463 

cells, that is, without converting these values in m
2
. The range of landslide areas obtained from the model is 464 

about the same for the two DEMs used, while the number of landslides is higher for the DEM of 10×10m. 465 

The scaling exponents D of the power laws observed for the two DEMs are very similar, as well as their 466 

scaling ranges. This result shows that while the size of the lattice affects, as expected, the number of 467 

landslides (the higher the model size, the higher the number of cells available to become unstable, and the 468 

higher the number of landslides), it does not affect the shape of the distribution and the dynamics of the 469 

system. The same applies to the resolution of the original DEM, which according to the results obtained does 470 

not produce any significant effect on the value of the scaling exponent, for the two resolutions tested. This 471 

result suggests that the control of topography on the size frequency distribution of the modeled landslides is 472 

the same at the two scales of analyses used, and this may be explained by the scale-invariant character of 473 

topography (Frattini and Crosta, 2013). Accordingly, after converting landslide areas from number of cells to 474 

m
2
 (Fig. 7b) the only effect is a shift of the power laws along the x-axis. As a result, while the range of the 475 

scaling regimes for the landslide series obtained from the two DEMs are different, the values of their 476 

exponents do not change. This also indicates that a D-value of about 2.6 characterizes the scaling behavior of 477 

landslide areas in a range from about 2×10
5
 to 10

7
 (Fig. 7b), considering the scaling ranges observed for both 478 

the DEMs. 479 
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These outcomes also suggest that the fact that the model does not accurately represent the first part of the 480 

frequency distribution of real landslides (Section 3) is not due to the scale of analysis but rather, as 481 

hypothesized in the previous section, due to the choice of topography as the main way of describing the 482 

spatial variability of the system. 483 

 484 

5. Changes of the topographic surface modeled 485 

The initial topographic surface is subjected to changes caused by the mass distribution occurring during the 486 

time window tw. In the present section we investigate these changes focusing on different morphometric and 487 

geomorphological features of the landscape. We must remember that according to the dynamics of the 488 

model, these changes represent the evolution of an area only subjected to the action of the gravitational 489 

process and whose variability is only represented by topography. 490 

5.1 Topographic attributes 491 

Fig. 8 shows the difference in altitude between the final surface obtained at tw = 5,000 steps, and the initial 492 

one, for w equal to 1, 2 and 2.75, respectively. The difference is expressed in meters, according to the 493 

altitude values of the original DEM. Red zones indicate a decrease in altitude (areas affected by erosion), 494 

while blue zones indicate an increase in altitude (areas affected by deposition). When w grows from 1 (Fig. 495 

8a) to 2.75 (Fig. 8c), the difference in altitude increases. This is due to the observed property of the 496 

frequency distribution of landslides, which indicates that for the same tw the number of large landslides 497 

increases with increasing rate of weakening. Consequently, the higher w the larger the change of the surface 498 

configuration. 499 

 500 



22 
 

 501 

Fig. 8 Difference in altitude between the final surface obtained at tw equal to 5,000, and the initial one. a) w=1; b) w=2; 502 
c) w=2.75. 503 

 504 

In order to highlight the variation of specific topographic attributes a cross-section through the surface is 505 

made (Fig. 1). The section is traced so as to cross the main ridges and valleys to highlight the evolution of 506 

the slopes. Fig. 9 shows how specific topographic attributes change along the cross-section after an interval 507 

tw equal to 5,000 model steps and with w = 2.75, i.e. the situation in which we observed the more pronounced 508 

topographic changes. Fig. 9a displays the initial and the final topographic profiles. The comparison of the 509 

two profiles indicates that landslides that occurred over the time interval tw cause a decrease of the altitude of 510 

mountain ridges and the filling of valleys, thus producing a smoothing of the relief. Fig. 9b shows the initial 511 

and the final profile curvature (Pc) of the topographic surface (Moore et al., 1991), which describes the 512 

curvature of the surface along the direction of the steepest gradient. 513 

The curvatures were calculated using the algorithm in Spatial Analyst (ArcGIS10.0 © Esri), and are 514 

expressed in 10
-2

 m. Positive Pc values indicate concave curvatures, while negative values indicate convex 515 

ones. In the graph we observe that the Pc values of the final surface are closer to zero than those of the initial 516 

one, thus describing a decrease of both the convex and the concave curvature. Moreover, in the profile of the 517 

final curvature a general trend can be recognized, which consists in the shifting of the peaks corresponding to 518 

the maximum values of curvature toward lower values of linear distance (x-axis), compared to the peaks of 519 

the initial curvature profile. This could be due to a slope decline evolution, where the decrease of the slope 520 

angle is associated with a lateral movement of ridges and valley axes. 521 
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 522 

Fig. 9 Change of topographic attributes along the cross-section made in Fig. 1. The change is evaluated between the 523 
initial topographic surface and the final one, obtained at tw = 5,000 and with w = 1.5. a) Altitude; b) Profile curvature 524 
(Pc) in 10

-2
 m; c) Difference Δsl between the initial and final slope angle (in degrees). 525 

 526 

 527 
Fig. 9c displays the variation of the slope angle (Δsl) of the surface, calculated as the difference between the 528 

final and the initial slope. Overall, a decrease of the slope angle is observed, up to a maximum of about 21°. 529 

However, some exceptions can be noticed. A positive Δsl corresponds to the medium and lower slope 530 

portions, where the moved mass increases the slope angle. 531 

These results are in agreement with real-world observations, where landslides dampen local relief removing 532 

mass from upper slopes and depositing it on lower slopes, thus producing a decrease of mean slope relief and 533 
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relief variability, of slope angles and of their standard deviation (Korup, 2006; Korup et al., 2010). A more 534 

in-depth analysis of the change of the slope angles undergone by the relief will be addressed in Section 5.2. 535 

The evolution of the surface modeled also highlights that although the rules of the model apply to all cells of 536 

the lattice without discriminating between scar area, runout area and depositional area of landslides, this 537 

differentiation is intrinsically produced by the model. Indeed, the areas where we observe erosion represent 538 

the scar areas where landslides are triggered, i.e. where the instability is generated. These areas are located in 539 

the upper slope zones, which in real active mountain belts are the areas dominated by landslide erosion 540 

(Montgomery and Brandon, 2002; Korup et al., 2007). For the middle slopes we did not observe any 541 

significant change in altitude. Thus, they represent the runout areas of landslides where, in terms of the cells 542 

of the lattice, the instability is transferred from one cell to another but not generated. Finally, an increase in 543 

altitude is observed in the lower slopes overlooking the toe of slopes, which thus represent the depositional 544 

areas affected by the accumulation of landslide bodies. 545 

5.2 Statistical properties of the slope angles 546 

The topographic changes are driven by the dynamics of the model, which are controlled by the slope angles β 547 

of the area. In Fig. 9c we observed that like other topographic attributes, slope angles also change over time. 548 

We thus investigated the temporal evolution of the slope angles and their possible dependence on the rate 549 

with which the system is driven to instability, in order to compare the behavior of the surface with the one 550 

observed for the scaling exponents of the frequency distribution of landslide sizes. 551 

For each rate of weakening w and number of model steps tw (i.e., 1,000; 2,000; 5,000) we calculated the 552 

respective frequency distribution of β of the initial and the final topographic surface. Fig. 10 shows the non-553 

cumulative (Fig. 10a) and the cumulative (Fig. 10b) distributions of β for the initial surface and for those 554 

obtained with the maximum tw, equal to 5,000 model steps. For clarity, in Fig. 10a only the frequency 555 

distributions corresponding to w = 1, 2.5 and 2.75 are shown, since they offer a good description of the 556 

behavior of slope angles with increasing w. 557 

 558 
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 559 

Fig. 10 Non-cumulative (a) and cumulative (b) frequency distributions of the slope angle β for the initial topographic 560 
surface and for those obtained at the maximum tw, equal to 5,000 model steps, with w = 1, 2.5, 2.75, in graph (a), and 561 
with all the w applied in graph (b). 562 
 563 

 564 

The initial frequency distribution of β (black symbols in Fig. 10a) is representative of the topographic setting 565 

of the area, which is characterized by steep river valleys and flat surfaces at the top of the slopes. Because of 566 

this, in the slope angle series the intermediate classes are less represented than they would be in a Gaussian 567 

distribution, in favor of the frequency of classes corresponding to low and high slope angles. Landslide 568 

occurrence changes the shape of the curve. In comparison with the initial frequency distribution, for each w 569 

tested we observe a decrease of the frequency of the angles higher than about 40° and an increase of those 570 

lower than about 13° (Fig. 10a). Moreover, landslide processes emphasize the bimodal character of the initial 571 

topographic setting. The smoothing produced on the surfaces by landslides is still more evident in the 572 

cumulative frequency distributions (CFβ), where we observe that for each w the curve is shifted toward lower 573 

values of β. In order to quantify these changes, we calculated for each frequency distribution (thus 574 

considering all the tw and not just tw=5,000) the following statistical parameters: maximum (    ), mean (  ), 575 

standard deviation (  ), kurtosis (  ), skewness (   ). Figure 11 shows the change of each statistical 576 

parameter in time. Also in this case, only results corresponding to some w are displayed (w = 1, 2 and 2.75), 577 

for clarity purposes. 578 

 579 
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 580 

Fig. 11 Temporal change of the statistical parameters of the slope angle frequency distribution, for w = 0.5, 1.5, 2.75; tw, 581 
number of model steps;     , maximum;   , mean;   , standard deviation;   , kurtosis;    , skewness. 582 
 583 

The overall temporal behavior of these parameters consists of a decrease of their value over time, although 584 

exceptions and some differences in the way these values decrease can be observed. The values of    and    585 

decrease with increasing tw and this decrease is higher when the weakening is stronger. The parameter      586 

quickly decreases in the beginning (i.e., from t=0 to t=1,000) and then the decrease slows down. A similar 587 

behavior is observed for   , which is a measure of the peakedness or flattening of the distribution, when 588 

compared to a normal distribution. A particular behavior is observed for    , which quantifies the 589 

asymmetry of the distribution. Its temporal evolution depends on w: for w equal to 0.5, the parameter 590 

decreases over time, while for w values of 1.5 and 2.75 there is an initial decrease followed by an increase of 591 

the value. This increase is due to the fact that the change in topography takes place at a faster rate for higher 592 

w-values. Accordingly, and in agreement with Fig. 10a, the initial decrease of the asymmetry is due to the 593 

difference between the decrease of the frequency of high β values and the increase of the frequency of low β 594 

values, while the subsequent increase of the asymmetry is mainly due to the increase of the relative 595 

importance of the lower β, over time.  596 
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The values of the statistical parameters of slope angles of the final topography also depend on the rate of 597 

weakening. In particular, we have found that    and    are linearly linked with w according to the following 598 

equations: 599 

               (5) 600 

              (6) 601 

where     and    are the angular coefficients of the best fit lines and     and    are constants, which depend 602 

on tw (R
2
   0.99 for         and R

2
   0.97 for        ). The relationships are illustrated in Fig. 12. 603 

According to Eqs. 5 and 6, the higher the rate of weakening the lower the values of    and    of the final 604 

surface - that is, the higher the change of the topographic surface caused by landslides. 605 

 606 

Fig. 12 For each tw (1,000; 2,000; 5,000 model steps), (a) mean    and (b) standard deviation    of slope angles as a 607 

function of the rate of weakening w, and their respective linear best fit lines. 608 

 609 

6. Relation between topographic changes and scaling properties of landslide sizes 610 

In this section the relationship between topographic changes and the statistical behavior of landslide sizes is 611 

investigated. 612 

We observed that landslide phenomena produce a smoothing of the topographic surface, which results in a 613 

decrease of the main statistical parameters of the frequency distribution of β, in time (Fig. 11). Unlike β, the 614 

scaling exponent D of the frequency distribution of landslide does not show any specific trend over time 615 

(Fig. 6d). Thus, the probability of landslide sizes and the changes undergone by the topographic surface 616 
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exhibit different types of behavior over time. Instead, we observed that they manifest similar dependence on 617 

the rate of weakening w. In particular, we found that the scaling exponent D, the mean    and the standard 618 

deviation    of slope angles linearly decrease with increasing w (Figs. 6a, 6b, 6c and 12). Thus, by 619 

substituting in turn Eqs. 5 and 6 in Eq. 4 we obtain: 620 

           (7) 621 

 622 

             (8) 623 

 624 
where           and          are the angular coefficients of the best fit lines, and    and    are 625 

constants. Figure 13 shows the same result obtained by plotting, for each t, D as a function of    (Fig. 13a) 626 

and    (Fig. 13b) obtained for the same w. The best fit lines have R
2
   0.95 and R

2
   0.94, in Fig.13a and 627 

13b, respectively. 628 

 629 

 630 

Fig. 13 For each tw (1,000; 2,000; 5,000 model steps), D as a function of (a) the mean    and (b) the standard deviation 631 
   of slope angles of the topographic surface, and their respective linear best fit. For each point, w indicates the value of 632 
the rate of weakening at which D,    and    were obtained. 633 

 634 



29 
 

This result indicates that at each time span tw, the scaling exponent D that characterizes the probability of 635 

landslide sizes is linearly related, with a good approximation, to the values of the statistical parameters of the 636 

slope angles of the topographic surface where landslides occurred. In particular, the positive correlation of D 637 

with    and    respectively, shows that an increase of w (i.e., moving from the right extreme of the linear best 638 

fits to the left in Fig. 13) produces a decrease of D and thus an increase of the probability of large landslide 639 

sizes, which is linearly related to the decrease of the mean and standard deviation of the slope angles of the 640 

final surface. In other words, the statistical parameters of the modeled topography preserve information 641 

about the probability of landslide sizes that occurred during a specific tw and under the action of a specific w. 642 

The Eqs. 4 to 8 indicate that the way the values of D,    and    change with w may be described by linear 643 

mathematical laws, which respectively work for all the time spans tw tested and for which only the value of 644 

the linear fit parameters of the equation (slope and intercept) are different for the different tw. Both in Figs. 645 

13a and 13b we observe that going from tw = 1,000 to tw = 5,000 the steepness of the best fit lines decreases; 646 

that is, the angular coefficients m1 and m2 of Eqs. 7 and 8 decrease over time. This result indicates that the 647 

way D is linked to the topographic change depends on the time span. In the next section we discuss 648 

outcomes, implications and limitations of the results obtained, including time-related aspects. 649 

 650 

7. Discussion 651 

The frequency distribution of landslide sizes characterizes the probability of landslide of a given magnitude. 652 

A property of this distribution identified in many landslide datasets around the world is the characteristic 653 

power-law decay of the frequency from medium to large sizes. Although small slope failures are the most 654 

frequent ones in landslide datasets, larger landslides represent the main hazard in terms of associated risk.  655 

Despite its simple structure, the cellular automata model proposed in this paper has shown to be capable of 656 

reproducing key features of landslide processes related to the occurrence of medium to large slope failures. 657 

First, the distribution of landslide areas exhibits the typical scaling properties of real landslides, and a good 658 

agreement is observed for the values of the scaling exponents when a specific range of values is used for the 659 

parameters of the model. Given that in the model the topographic variability is the only component affecting 660 

the evolution of the system, this result suggests that the scaling properties of medium to large landslides 661 
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could actually arise due to topography, thus supporting the conclusions of Frattini and Crosta (2013), who 662 

hypothesized that the scaling behavior of landslide sizes could find an explanation in the scaling properties 663 

of topography. Furthermore, the comparison of the frequency distributions of landslide areas obtained by 664 

using DEMs with different resolutions for the same initial topographic surface showed that neither the shape 665 

of the probability distribution nor the value of the scaling exponent are significantly affected by the change 666 

from one resolution to another. This indicates that the constraints imposed by topography on the probabilities 667 

of landslide areas are about the same at the investigated spatial scales, of 10 m and 25 m, respectively. 668 

Moreover, we observed that although the model does not use specific rules to distinguish between the 669 

processes of erosion, transport and deposition of landslides as other models do (Guthrie et al., 2008), these 670 

different parts of landslides may be recognized in the resulting topography. Also, we found that landslide 671 

areas in the model increase with increasing rate of weakening. This result indicates that large landslides are 672 

more abundant when the intensity of the triggering mechanism is high, in agreement with findings from real 673 

geographic contexts (Saito et al., 2014). These similarities suggest that other properties observed for the 674 

model and discussed below may also describe properties of real systems. 675 

We found that the scaling exponent of the landslide area frequency distribution linearly decreases with 676 

increasing driving rate, thus indicating that the faster the system is driven to instability the higher becomes 677 

the probability of large landslides. This result supports the hypothesis of Piegari et al. (2009), who conclude 678 

that the frequency-size distribution of landslides is controlled by the rate of approaching instability more than 679 

by the type of triggering mechanism per se. This could actually explain why landslide inventories generated 680 

for different triggering mechanisms, like rainfall and snowmelt, exhibit similar frequency–size statistics of 681 

landslides (Pelletier et al., 1997; Malamud et al., 2004). Additionally, our results suggest that the value of the 682 

scaling exponent is controlled by the way the topographic variability characterizing the area combines with 683 

the temporal effectiveness of the mechanism generating instability. A behavior similar to that of the scaling 684 

exponent was observed for the mean and standard deviation of the local slope angles of the surface, which 685 

under the action of landslides linearly decrease with increasing rate of weakening. Moreover, we observed 686 

that for the same driving rate, the value of the scaling exponent does not significantly change in time, 687 

contrary to what happens for the main statistical values of the slope angles of the surface, which show a 688 

decrease over time. Finally, we found that for a given time window, the scaling exponent of landslide areas, 689 
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the driving rate, and the changes of the topographic setting are related to each other. In Section 2.2 we 690 

explained that the rate of weakening w in the model may represent, for example, the rate of snow melt or the 691 

intensity of rainfall, or more generally, the temporal effectiveness with which the triggering mechanism 692 

weakens the soil, such as the temporal increase of the pore pressure by water, under the assumption of 693 

homogeneous soil properties. While in the model tw is the sum of both the weakening steps and the 694 

landsliding steps, and although tw does not have a characteristic scale length, the higher tw is, the wider is the 695 

time window during which the system is driven to instability. Thus, a higher tw represents a longer 696 

application of the triggering mechanism in real systems. With reference to rainfall, it has been widely shown 697 

that the triggering of landslides can be related to rainfall intensity-duration thresholds (or analogously, 698 

cumulated rainfall - rainfall duration thresholds) (Guzzetti et al., 2007; Peruccacci et al., 2012, Salciarini et 699 

al., 2012). Our results suggest that for an area of given topography, while this threshold governs the 700 

triggering of landslides, the probability of landslide areas depends on the intensity of the triggering 701 

mechanism more than on its duration, which mainly affects the number of landslides. Indeed, we found that 702 

the value of the scaling exponent is much more sensitive to the rate of weakening than to time (as shown in 703 

Fig. 6). Conversely, what we found to be strongly time-dependent is the footprint left on the topographic 704 

surface by landslides. Moreover, we observed that the topographic setting of the area modeled preserves the 705 

information concerning the statistical distribution of landslide areas caused by a triggering event of given 706 

intensity and duration: based on the equations established above (Eqs. 7 and 8), by studying the topographic 707 

change of topography in the model, it would be possible to go back to the scaling exponent of the frequency 708 

distribution of landslide areas that caused that change. Some critical considerations must be added to the 709 

above. The model does not take into account river erosion and uplift, which are processes that allow for the 710 

rejuvenation of the system (Pucci et al., 2014) and landslide triggering. However, studies have shown that 711 

landslide erosion is not only the way in which hillslopes adjust in response to river channel incision. Rather, 712 

it plays an active role in shaping the landscape also independently of river processes and as a consequence of 713 

triggering mechanisms like rainfall (Korup, 2010; Reinhardt et al., 2015; Singh et al., 2015), and this role is 714 

mainly effective on smaller timescales (Korup, 2010). Thus, the choice whether or not to consider fluvial 715 

processes in the model should not affect the possibility to represent landslide dynamics and to investigate the 716 

scaling properties of this phenomenon. 717 
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Uplift is a long-term driving factor for landslide processes. Ignoring this process in the model implies that if 718 

we left the topographic surface free to evolve for a much larger number of model steps it would eventually 719 

become an almost flat surface. According to such a scenario, the surface would reach a maximum slope 720 

gradient equal to the one below which cells are always stable. This situation is not plausible in a dynamic 721 

geomorphological context affected by landslides. However, studies have shown that the rate of erosion by 722 

rivers and slope failures is regulated by the way the rate of uplift and the rate of precipitation interact with 723 

each other. Various scenarios have been described, where depending on the relative changes in uplift and 724 

precipitation the landscape evolves in different ways and with different erosion rates and mechanisms 725 

(Bonnet and Crave, 2006). The different types of system behavior have been described by defining, for 726 

example, specific uplift thresholds, which characterize the type of process that dominates the mountain range 727 

evolution, where slope failures occur in response to the rise of the surface (Ouchi, 2011, 2015). As explained 728 

above, in our model the driving rate could be thought of as representing the intensity of the landslide 729 

triggering mechanism, assuming constant intensity over time, and the higher the number of model steps, the 730 

longer the application of the triggering mechanism. Accordingly, although the model does not use a 731 

characteristic timescale, results from the model must be interpreted in the light of the possible maximum 732 

realistic duration of a triggering event, which can range from several days to several months depending on 733 

the climate of the area. Thus, we are studying the properties of the scaling behavior of landslides that 734 

occurred during one and the same erosion event, which happens in response to uplift – that is, the erosion 735 

operated by landslides in response to a rise of the topographic surface, which allows the equilibrium to be 736 

restored. In this context, while uplift affects the long-term evolution of landforms, for the single erosional 737 

event it only represents the underlying cause. Based on these considerations, it is reasonable to consider that 738 

the properties observed for the scaling behavior of landslides could actually describe real properties of 739 

landslide processes. This idea is also supported by real-world studies, which found scaling properties in 740 

landslide datasets compiled both for long time spans and after a single triggering event (Guzzetti et al., 2002; 741 

Guthrie and Evan, 2004; Malamud et al., 2004), thus suggesting that the scale-invariance of landslides does 742 

not appear in the system only as a consequence of its long-term evolution, but rather manifests itself in a 743 

landscape, whose configuration is the result of its evolutionary history. 744 
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As for the possible SOC behavior of landslides, in Fig. 6d we observed that at the lowest rates of weakening, 745 

that is, at the rates at which the change of topography caused by landslides is low, the scaling exponent is 746 

nearly stable over time. Conversely, at the highest rates of weakening corresponding to the most ample 747 

changes in topography, a change of the exponent trough time is observed. In summary, small topographic 748 

changes lead to small temporal changes in the scaling exponent, while more significant transformations in 749 

topography are associated with major variation in the values of the scaling exponent. This result indicates 750 

that the behavior of the model does not exhibit SOC dynamics, and this is due to the fact that rejuvenation 751 

processes such as uplift are neglected, thus implying that in the model, topography cannot tend toward a 752 

dynamical steady state, unlike what has been hypothesized for topography in nature (Bonnet and Crave, 753 

2003; Lague et al., 2003). 754 

 755 

8. Conclusions 756 

The cellular automata model (CA) proposed in this paper is capable of reproducing the power-law decay of 757 

the probability distribution of real landslide areas for a range of model parameter values. In analogy with the 758 

CA model by Hergarten and Neugebauer (2000), who firstly used a time-dependent variable in a CA model, 759 

our results confirm the key role that the temporal rate of weakening exerts in landslide dynamics. Model 760 

outputs provide insights into the variability of the scaling exponents observed in reality, indicating that the 761 

power-law scaling of medium to large landslide areas results from the interplay of the topographic spatial 762 

variability and the rate at which the system is driven to instability, which in the real world may be thought of 763 

as representing, for example, rainfall intensity. The fundamental difference between this model and the 764 

previous CA models used to study the frequency distribution of landslide areas consists of the topographic 765 

control of both the displaced mass and instability direction; our results point to topography as a major 766 

controlling factor in the probability of landslide sizes. Although the spatial variability of a real system is due 767 

to the combination of many interdependent factors, it is worth noting that the correspondence between the 768 

model outcomes and real landslide sizes is obtained by considering topography as the only factor defining 769 

the spatial variability in the system modeled. This result is consistent with the fact that the shapes of the 770 

landscape are dependent on geological and structural aspects of the relief, which constrain the type of the 771 

physical processes modeling the surface. To conclude, topography seems to be a good candidate to explain 772 
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the scaling properties of medium to large landslide sizes, thus supporting with numerical evidence 773 

hypotheses made in previous studies (Frattini and Crosta, 2013). 774 

Moreover, according to our results, the modeled topography not only provides explanations for the power 775 

law decay of landslide sizes, but also conserves the information about the scaling exponent of the probability 776 

distribution of areas of landslides that caused changes in its characteristics. 777 

Incorporating rejuvenation processes like uplift and river erosion in the model could support the further study 778 

of long term landslide dynamics, as well as the possible SOC behavior of these processes. 779 
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