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Abstract: In this paper we derive and solve nonlocal elasticity a model describing the elastic behavior of
composite materials, involving the fractional Laplacian operator. In dimension one we consider in (D) the
case of a nonlocal elastic rod restrained at the ends, and we completely solve the problem showing the
existence of a unique weak solution and providing natural sufficient conditions under which this solution is
actually a classical solution of the problem. For the model (D) we also perform numerical simulations and
a parametric analysis, in order to highlight the response of the rod, in terms of displacements and strains,
according to different values of the mechanical characteristics of the material. The main novelty of this
approach is the extension of the central difference method by the numerical estimate of the fractional
Laplacian operator through a finite-difference quadrature technique. For higher dimensions N ≥ 2 we study
more general problems for which the existence of weak solutions is proved via variational methods. The
obtained results provide an original contribute in the knowledge of composite materials with properties of
nonlocal elasticity.
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1 Introduction
In the last years the nonlocal elasticity theory has been used in wider and wider engineering applications
involving small-size devices and/or materials with marked microstructures. The driving force for develop-
ing advanced materials comes from society’s call of large composite structures having solid mechanical
features. This increasing need requires new engineering composite materials that work reliably and safely
at the frontiers of cutting edge technologies, and pushes towards material systems in support of energy
sustainability, [8].

The key tool in this theory is the analysis of the nonlocal interactions among different locations of the
body, in terms of elastic central long-range body forces proportional to the volumes or masses for composite
solids. In other words, in nonlocal phenomena, the displacement field u is not just reverting on its infinites-
imal average, but instead it is influenced by its values at many scales, according to an integral average of
the entire solid. As a feature of certain materials, nonlocality has been acknowledged in the literature since
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many years ago. In [7] it is shown that the elastic response of a material which presents distributed defects is
necessarily nonlocal. Also in plasticity and in damage phenomena nonlocal behavior naturally arises, see for
example [6, 24]. It is also worth noting that the homogenization of a composite with periodic microstructure
produces a material with a nonlocal behavior, see [9].

The nonlocal effects are captured, in the equilibrium equations, by an integral term which is the
resultant of all the long-range interactions. Hence, the corresponding equilibrium problem is ruled by one or
more integro-differential equations in terms of u, which can be often tackled with certain tools of fractional
calculus, cf. [12, 18, 19].

Fractional calculus is a branch ofmathematical analysis that studies the possibility of taking real-powers
of differentiation operators, generalizing the concept of integer-powers derivatives. An important point is
that the fractional derivative of order s ∈ ℝ+ at a point x has a local nature only when s is an integer. In the
noninteger setting, it is not possible to view the fractional derivative at x of a function u depending only on the
values of u very close to x, in the way that integer-power derivatives do. Therefore the theory should involve
some sort of boundary conditions, concerning information on the function further out. Of course there are
several ways of generalizing the differentiation operators to noninteger powers, leading to different results,
see e.g. [13].

In this paper we derive and solve nonlocal elasticity models for composite materials involving the frac-
tional Laplacian operator, since it is particularly useful in modeling materials exhibiting nonlocal behaviors
caused by the effects of long range interactions among particles. We adopt the formalization of nonlocal elas-
ticity proposed in [21, 22], which is particularly appealing because it allows us to use a continuum approach
as in classical elasticity. More specifically, in the context of civil and mechanical engineering, it is of great
interest to consider the nonlocal phenomena occurring in those elasticmediawhich canbemodeled as points
connected each other by springs. Unlike what has been done up to now in the literature, concerning the
1-dimensional case, the use of the fractional Laplacian represents a new different approach to face these
problems. One of the main advantages of this strategy is the possibility to generalize the analysis easily to
higher dimensions N ≥ 2. We should note though, in passing, that the fractional Laplacian operator occurs
in several other engineering contexts, such as frequency-dependent attenuation, [13], wave transmission in
nonlocal elasticity, [15], as well as in the so-called anomalous diffusion phenomena, [34, 42].

In the present paper, the fractional Laplacian operator (−∆)s, with s ∈ (0, 1), is defined pointwise by

(−∆)sφ(x) = F−1(|ξ|2sF (φ(ξ))) for all x, ξ ∈ ℝN , (1.1)

along any function φ in C∞0 (ℝN), N ≥ 1. In (1.1)

Fφ(ξ) = (2π)−N/2 ∫

ℝN

e−iξ⋅xφ(x) dx for all ξ ∈ ℝN ,

is the Fourier transform of φ ∈ C∞0 (ℝN) andF−1 is the inverse Fourier transform, see Sections 2–3 for further
details.

In the case N = 1, following somehow the approach used in [43], we give a detailed proof of the con-
nection between the fractional Laplacian, the Riemann–Liouville and the Caputo fractional derivatives of
order 2s, taking s ∈ (1/2, 1). Actually, inspired by [38], we consider the constitutive law for a 1-dimensional
rod of finite length 2L having properties of nonlocal elasticity, and we derive the balance law for the rod in
terms of (−∆)s, that is

{{
{{
{

−c u�� + κ (−∆)su + V(x)u =
f(x)
E in (−L, L),

u = 0 inℝ \ (−L, L).
(D)

We assume throughout the paper that c > 0 and κ ≥ 0. The cases c = 0 and κ > 0 can be treated in a similar
way. The term V(x)u represents an external spring,while f(x)denotes an applied load.Moreover, the potential
V is a nonnegative and boundedmeasurable weight and its stiffness is related to the position of the point along
the rod. Finally, E is the Young modulus of the classical elasticity.



G. Autuori, F. Cluni, V. Gusella and P. Pucci, Models for nonlocal composite materials | 357

For (D) we prove the existence of a unique weak solution and we provide natural sufficient conditions
under which the weak solution is actually a classical solution of (D), and vice versa we investigate when
classical solutions of (D) are weak solutions, cf. Section 2 for further details and comments.

In Section 3 we treat a nonlinear model for nonlocal elastic ideal infinite N-dimensional rods for any
N ≥ 1. Precisely, we consider

−c ∆u + κ(−∆)su + V(x)u = λ w(x)|u|p−2u + K(x)|u|q−2u inℝN , (Pλ)

with

2 < p < q < 2∗, 2∗ =
{
{
{

∞, if N ∈ {1, 2},
2N
N−2 , if N ≥ 3,

where λ > 0 is a physical constant and the weight w satisfies

w ∈ Lr(ℝN), with r = q
q − p . (1.2)

In passing from a road of finite length to one of infinite length, we assume that the potential V is a measurable
positive weight, with the property that there exist V1 and V2, with 0 < V1 ≤ V2, such that

V1‖u‖22 ≤ ∫

ℝN

V(x)|u|2 dx ≤ V2‖u‖22 for all u ∈ L2(ℝN). (1.3)

Here and in the following, for any exponent σ ∈ [1,∞) we denote by ‖ ⋅ ‖σ the usual norm of the Lebesgue
space Lσ(ℝN).

Moreover,K is a positivemeasurableweight forwhich there exist real numbersK1 andK2, with0 < K1 ≤ K2,
such that

0 < K1 ≤ K(x) ≤ K2 for all x ∈ ℝN . (1.4)

Let H1(ℝN) = (H1(ℝN), ‖ ⋅ ‖) be the standard Hilbert space, endowed with the norm

‖u‖ = (‖u‖22 + ‖∇u‖22)
1/2. (1.5)

When N = 1 solutions of (Pλ) of class H1(ℝ) are ground states in the sense that

lim
|x|→∞

u(x) = 0 (1.6)

by virtue of [10, Corollary 8.9]. From now on we assume that (1.3)–(1.4) hold, unless otherwise specified.

Theorem 1.1. There exists a threshold λ∗ > 0 such that for all λ ≥ λ∗ problem (Pλ) admits a nontrivialmountain
pass solution uλ in H1(ℝN). Moreover,

lim
λ→∞

‖uλ‖ = 0. (1.7)

For N ≥ 3 a problem closely related to (Pλ), but in the critical case q = 2∗, is treated in the forthcoming pa-
per [5]. While here, for N ≥ 2, we deal with

−c∆u + κ(−∆)su + V(x)u = K(x)|u|q−2u + f(x) inℝN , 2 < q < 2∗, (P)

where f is a perturbation of class L2(ℝN). For (P) we obtain the existence of nontrivial radial solutions under
(1.3) and (1.4), provided that V, K and f are radial.

Theorem 1.2. There exists δ > 0 such that for all f ∈ L2(ℝN), with ‖f‖2 ≤ δ, problem (P) admits a nontrivial
radial mountain pass solution u in H1(ℝN).

If 0 < ‖f‖2 ≤ δ, then (P) admits a second independent nontrivial radial solution v in H1(ℝN).

Theorem 1.2 is not contained in Theorem 1.1 even when f ≡ 0, since the case λ = 0 is not covered in
Theorem 1.1. An interesting open problem is to extend Theorem 1.2 in the nonradial case assuming only
(1.3) on V, and without changing the solution space H1(ℝN).
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The paper is organized as follows. In Section 2 we first derive the balance law equation for a nonlocal
elastic 1-dimensional finite rod in terms of a linear combination of the standard Laplacian operator and the
fractional Laplacian operator and attain the model (D). The existence of a unique weak solution of (D) is
proved in Theorem2.1, while in Theorem2.2we provide sufficient conditions under which theweak solution
of (D) is also a classical solution of (D). Finally, in Theorem 2.3 we show that every classical solution of (D)
is a weak solution of (D).

Section 3 is devoted to the study of the existence of (weak) solutions for (Pλ) and contains the proof
of Theorem 1.1, while in Section 4 we prove Theorem 1.2 for the existence of (weak) solutions for (P).

In Section 5 we provide numerical simulations of the nonlocal elastic rod modeled in (D). Moreover,
a parametric analysis is performed with the aim of understanding the role of the mechanical characteristics
of the material, with a special attention to their local and nonlocal effects.

Finally, in Section 6 we resume the obtained results and present an overview of comments and conclu-
sions on the validity of the proposed models, both from a theoretical point of view and from an applicative
perspective related to the numerical simulations developed in Section 5.

2 A linear model for a nonlocal elastic 1-dimensional rod
In the present section we introduce the problem of a 1-dimensional solid (a rod) with properties of nonlocal
elasticity, according to the definition of [21]. In doing this, we use the approach proposed in [38].

Let us consider the rod centered at zero of length 2L, so that x = −L and x = L are the coordinates of the
extremes, with periodic boundary conditions. Put I = (−L, L).

It is assumed that the constitutive law of the material is given by

σ = E(β1ϵ + β2k
L

∫
−L

ϵ(ξ)g(x − ξ) dξ −
x

∫
−L

V(ξ)u(ξ) dξ),

where σ = σ(x) is the tension, ϵ = ϵ(x) is the strain, V = V(x) is the stiffness associated to the restoring elastic
forces and u = u(x) is the displacement of the rod. The relation between the strain ϵ and the displacement u
is assumed to be the same as in the classical elasticity theory, that is

ϵ = u�, � =
d
dx . (2.1)

Furthermore, E is the Young modulus of the material and k is a positive constant typical of the material.
Moreover, β1 and β2 are physical coefficients such that β1 + β2 = 1, β1 and β2 ∈ [0, 1]. Therefore, σ depends
on the convex combination between the local and nonlocal contributions. If β2 = 0, the material is purely
local, while if β2 = 1, thematerial is purely nonlocal. Finally, g is an attenuation functionwhich characterizes
the nonlocal contribution to elasticity.

It is worth noting that the same expression for the constitutive law (except for the absence of the term
containing V(x)u) has been obtained in [39]. In particular, in [39], using simple mechanical concepts, the
author shows how nonlocal behavior is typical of a simple composite, constituted by alternating layers of
stiff and compliant phases.

On the other hand, the balance law is

σ� + f = 0,

where f = f(x) is the force (per unit volume) applied along the rod, and it is equivalent to

{{{{
{{{{
{

−β1ϵ� − β2k
L

∫
−L

ϵ�(ξ)g(x − ξ) dξ + V(x)u =
f(x)
E ,

ϵ(−L) = ϵ(L) = 0,

(2.2)
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where g is in L1loc(ℝ), the potential V is a measurable positive weight, with

0 ≤ V(x) ≤ V2 for all x ∈ I, (2.3)

and the strain ϵ ∈ C1(I).
Since the displacement u is also required to be 2L-periodic, relation (2.1) is equivalent to the integral

counterpart

u(x) =
x

∫
−L

[ϵ(t) − 1
2L

L

∫
−L

ϵ(τ) dτ] dt.

Hence, (2.2) in terms of u becomes

{{{{
{{{{
{

−β1u�� − β2k
L

∫
−L

u��(ξ)g(x − ξ) dξ + V(x)u =
f(x)
E ,

u(−L) = u(L) = 0, u�(−L) = u�(L) = 0,

(2.4)

with u ∈ C2(I). As in the model proposed in [38], the attenuation function g is of the form

g(ξ) = 1
Γ(2 − 2s)|ξ|2s−1

, 1
2 < s < 1, (2.5)

where Γ denotes the Euler function. The restriction 1/2 < s < 1 required for g justifies the physical validity of
the model, that is the fact that g produces an attenuation effect.

The first term on the left-hand side of (2.4) stands for the contribution coming from the classical elasticity
theory. Indeed, taking β1 = 1 and β2 = 0 we get the canonical elasticity law

−u�� = f
E .

Before proceeding, let us recall somedefinitions andproperties. Let s be a real number such that0 < s < 1
and 2 = [2s] + 1. Note that this choice of s fits with the restriction assumed in (2.5).

Following [27] and [28, Theorem 2.1], we say that

C
−LD

2s
x u(x) =

1
Γ(2 − 2s)

x

∫
−L

u��(ξ)
(x − ξ)2s−1

dξ, C
xD2s

L u(x) =
1

Γ(2 − 2s)

L

∫
x

u��(ξ)
(ξ − x)2s−1

dξ

are the forward and backward Caputo fractional derivatives of order 2s of u at x ∈ I.
Moreover, the forward and backward Riemann–Liouville fractional derivatives of order 2s of u at any point

x ∈ I are defined by

−LD2s
x u(x) =

1
Γ(2 − 2s) ⋅

d2

dx2

x

∫
−L

u(ξ)
(x − ξ)2s−1

dξ, xD2s
L u(x) =

1
Γ(2 − 2s) ⋅

d2

dx2

L

∫
x

u(ξ)
(ξ − x)2s−1

dξ,

see again [27, 28].
Now fix x ∈ I as above. Then

Γ(2 − 2s)−LD2s
x u(x) =

d2

dx2

x

∫
−L

u(ξ)
(x − ξ)2s−1

dξ =
d2

dx2

x+L

∫
0

u(x − ξ)
ξ2s−1

dξ

=
d
dx[

x+L

∫
0

u�(x − ξ)
ξ2s−1

dξ + u(−L)
(x + L)2s−1

]

=
x+L

∫
0

u��(x − ξ)
ξ2s−1

dξ + u�(−L)
(x + L)2s−1

+
(1 − 2s)u(−L)

(x + L)2s

=
x

∫
−L

u��(ξ)
(x − ξ)2s−1

dξ + u�(−L)
(x + L)2s−1

+
(1 − 2s)u(−L)

(x + L)2s
.
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Therefore,

−LD2s
x u(x) = C

−LD
2s
x u(x) +

1
Γ(2 − 2s) ⋅

u�(−L)
(x + L)2s−1

+
1

Γ(1 − 2s) ⋅
u(−L)

(x + L)2s
.

Similarly,

Γ(2 − 2s)xD2s
L u(x) =

d2

dx2

L

∫
x

u(ξ)
(ξ − x)2s−1

dξ =
d2

dx2

L−x

∫
0

u(x + ξ)
ξ2s−1

dξ

=
L

∫
x

u��(ξ)
(ξ − x)2s−1

dξ − u�(L)
(L − x)2s−1

+
(1 − 2s)u(L)
(L − x)2s

,

and so

xD2s
L u(x) =

C
xD2s

L u(x) −
1

Γ(2 − 2s) ⋅
u�(L)

(L − x)2s−1
+

1
Γ(1 − 2s) ⋅

u(L)
(L − x)2s

.

Thus, since u verifies the boundary conditions in (2.4), we get immediately in I

L

∫
−L

u��(ξ)g(x − ξ) dξ = C
−LD

2s
x u(x) + C

xD2s
L u(x) = −LD

2s
x u(x) + xD2s

L u(x).

We note in passing that the above relation between the Riemann–Liouville and the Caputo fractional deriva-
tives of order 2s have been somehow derived also in [2].

We next show that any solution u of (2.4) satisfies in I

(−∆)su(x) = −L
D2s
x u(x) + xD2s

L u(x)
2 cos(sπ) , 1

2 < s < 1,

where (−∆)s is defined in (1.1). To this end we shall use an argument appeared in [43].
Since (−∆)s is a pseudo-differential operator well-defined in the Schwartz space and (2.4) is solved in the

basic interval of periodicity, we have to extend u in the entireℝ, putting u = 0 outside I. Clearly this extension
is only of class C1(ℝ) by the boundary conditions (2.4), with u�� ∈ L1(ℝ) ∩ L2(ℝ) and supp u ⊂ I. With abuse
of notation we indicate by u both the periodic displacement in I as well as the canonical extension to the entire
ℝ by putting u = 0 outside I.

By (1.1) for N = 1 we have

(−∆)su(x) = 1
2π

∞

∫
−∞

e−ixξ |ξ|2s dξ
∞

∫
−∞

eiξηu(η) dη. (2.6)

Integrating twice by parts, by the boundary conditions in (2.4) and the fact that u�� ∈ L1(ℝ) ∩ L2(ℝ), we have
∞

∫
−∞

eiξηu(η) dη = −
1
ξ2

∞

∫
−∞

eiξηu��(η) dη.

In other words, by the Fubini theorem,

(−∆)su(x) = −
1
2π

∞

∫
−∞

u��(η) dη
∞

∫
−∞

eiξ(η−x)|ξ|2s−2 dξ. (2.7)

Without loss of generality, let us assume that η ̸= x, being x ∈ ℝ fixed, and put for simplicity ω = x − η. From
now on the restriction that 2s > 1 is crucial and gives

∞

∫
−∞

eiξ(η−x)|ξ|2s−2 dξ = L (iω) + L (−iω), (2.8)

where L is the Laplace transform of the function ℝ+ ∋ t Ü→ t2s−2. Observe that L is holomorphic in the
domain Ω = {z ∈ ℂ : Re(z) > 0}.



G. Autuori, F. Cluni, V. Gusella and P. Pucci, Models for nonlocal composite materials | 361

Clearly, for any h ∈ ℝ+,
L (h) = Γ(2s − 1)

h2s−1
. (2.9)

Consider
Ω ∋ z Ü→ z2s−1 = e(2s−1)Ln(z),

where Ln(z) = Ln(|z|) + iArg(z) is the principle value of the complex logarithmic function. It turns out that
z Ü→ z2s−1 is a single valued complex function which is holomorphic in Ω.

Since (2.9) holds in a set having one accumulation point in Ω, it follows that (2.9) is valid in the entire
open connected set Ω by the identity principle of holomorphic functions. Thus, (2.8) becomes

L (iω) + L (−iω) = Γ(2s − 1)
|ω|2s−1

[
1

i2s−1
+

1
(−i)2s−1

]

=
Γ(2s − 1)
|ω|2s−1

[i2s−1 + (−i)2s−1]

=
Γ(2s − 1)
|ω|2s−1

2 sin sπ

= −
π

|x − η|2s−1Γ(2 − 2s) cos πs

by the Euler identity and the fact that

Γ(2s − 1)Γ(2 − 2s) = −
π

sin2πs .

Therefore, from (2.7) we get

(−∆)su(x) = 1
2 cos sπ ⋅

1
Γ(2 − 2s)

∞

∫
−∞

u��(η)
|x − η|2s−1

dη

=
1

2 cos sπ

L

∫
−L

u��(η)g(x − η) dη (2.10)

=
−LD2s

x u(x) + xD2s
L u(x)

2 cos sπ ,

as claimed.
In conclusion, if 1/2 < s < 1 and g is of the type (2.5), then problem (2.4) can be rewritten as

{{
{{
{

−c u�� + κ (−∆)su + V(x)u =
f(x)
E in I,

u(x) = u�(x) = 0 inℝ \ I,
(2.11)

with u ∈ C10(ℝ), supp u ⊂ I, u� ∈ L1(ℝ) ∩ L2(ℝ), u�� ∈ L1(ℝ) ∩ L2(ℝ) and the coefficients are c = β1 ∈ [0, 1]
and κ = −2β2k cos sπ ≥ 0, since k > 0, 1/2 < s < 1 and β2 ∈ [0, 1], with β1 + β2 = 1.

It is interesting to note that, in the case V ≡ 0, the equation in (2.11) is obtained in [41], when studying
a subgradient elasticitymodel of a latticewithweak spatial dispersion, by using a discrete approach and then
letting the interparticle distance go to zero, expanding the latticemodel to a continuousmodel. See also [29].

A somewhat related approach, which takes inspiration from [14] and [19], has been used also in the
recent paper [38] to provide a physical interpretation of (2.11) when V ≡ 0. More precisely, if V ≡ 0, prob-
lem (2.11) characterizes the behavior of a point-spring model which has four kinds of springs. One of these
springs has a local effect andderives from the classical elasticityHooke law,while the remaining three springs
model the nonlocal actions, and one of them connects directly the two extremes of the rod. As noted in the
Introduction, the additional term V(x)u represents the stiffness associated to further restoring elastic forces.

We recall that u indicates both the displacement in I as well as its canonical extension to the entireℝ, by
putting u = 0 outside I = (−L, L). In particular, (2.11) can be weakly solved in the larger Sobolev space H1

0(I),
using a standard density argument, provided that f ∈ H−1(I), where H−1(I) is the dual space of H1

0(I). For
simplicity, from now on in the section we assume the stronger requirement that f ∈ L2(I).
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By the Poincaré inequality ‖u‖∞ ≤ ‖u�‖1 for all u ∈ H1
0(I). Hence

‖u‖2 ≤ |I|1/2‖u‖∞ ≤ |I|1/2‖u�‖1 ≤ |I| ⋅ ‖u�‖2

for all u ∈ H1
0(I). We endow H1

0(I) with the equivalent Hilbertian norm

‖u‖ = ‖u�‖2. (2.12)

Similarly, Hs0(I) = (Hs0(I), [ ⋅ ]s), where

[u]2s = ∫
ℝ

|ξ|2s û2 dξ = ∫
ℝ

|(−∆)s/2u|2 dx, û = Fu,

by virtue of the Plancherel theorem. The embedding H1
0(I) í→ Hs0(I) is continuous, that is there exists Cs > 0

such that
[u]s ≤ Cs‖u‖ for all u ∈ H1

0(I). (2.13)

Inequality (2.13) is a direct consequence of [17, Proposition 2.2 and remark after Theorem 2.4].
We say that u is a weak solution of (D) if u ∈ H1

0(I) and u satisfies the identity

c⟨u�, φ�⟩2 + κ⟨u, φ⟩s + ∫
I

V(x)uφ dx =
1
E ∫
I

f(x)φ dx (2.14)

for all φ ∈ H1
0(I), where ⟨u�, φ�⟩2 = ∫ℝ u

�(x)φ�(x) dx and

⟨u, φ⟩s = ∫
ℝ

(−∆)s/2u(x)(−∆)s/2φ(x) dx. (2.15)

A classical solution u of (D) is a function u ∈ C2(I) satisfying the equation in (D) in the usual sense. In this case
clearly u�� ∈ L1(ℝ) ∩ L2(ℝ).

We are now able to prove

Theorem 2.1. Assume that c > 0, κ ≥ 0 and that V satisfies property (2.3). Then for all f ∈ L2(I), problem (D)
admits a unique weak solution u ∈ H1

0(I), which is obtained by the Dirichlet principle, that is u is the unique
global minimizer of

I(v) = 1
2(c‖v

�‖22 + κ[v]
2
s + ∫

I

V(x)|v|2 dx) −
1
E ∫
I

f(x)v dx

in H1
0(I).

Proof. The form
a(v, φ) = c⟨v�, φ�⟩2 + κ⟨v, φ⟩s + ∫

I

V(x)vφ dx

is bilinear and symmetric in H1
0(I) × H

1
0(I). Moreover, a is continuous by the Cauchy–Schwarz inequality and

(2.12)–(2.13), being for all (v, φ) ∈ H1
0(I) × H

1
0(I)

|a(v, φ)| ≤ c‖v�‖2‖φ�‖2 + κC2s ‖v�‖2‖φ�‖2 + V2|I|2‖v�‖2‖φ�‖2 = C‖v‖ ⋅ ‖φ‖,

where C = c + κC2s + V2|I|2. Furthermore, a is coercive in H1
0(I), since for all v ∈ H

1
0(I)

a(v, v) ≥ c‖v�‖22 = c‖v‖2,

where c > 0 by assumption. The functional

v Ü→ 1
E ∫
I

f(x)v dx

is linear and continuous in H1
0(I), namely it is an element of the dual space H−1(I) of H1

0(I). Hence, the asser-
tion follows as a direct application of the Lax–Milgram theorem, see [10, Corollary 5.8].
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Theorem 2.2. Suppose that the assumptions of Theorem 2.1 are satisfied. Assume furthermore that V and f are
also continuous in I and that s < 3/4. If the weak solution u ∈ H1

0(I) determined in Theorem 2.1 admits second
derivative u�� in I, with u�� ∈ L2(I), then u is a classical solution of (D), that is u is of class C2(I), satisfies the
equation in (D) pointwise in I and verifies the boundary conditions in (D).

Proof. Let u be a weak solution of (D), satisfying the assumptions of the theorem. Since u�� ∈ L2(ℝ), it fol-
lows that ξ Ü→ |ξ|2û(ξ) ∈ L2(ℝ) by [37, Theorem IX.27 (a)]. Clearly, u ∈ Hs0(I) í→ Hs(ℝ), being H1

0(I) í→ Hs0(I)
continuously, so that ξ Ü→ |ξ|s û(ξ) ∈ L2(ℝ).

Combining these facts, we get at once that ξ Ü→ |ξ|2s û(ξ) ∈ L2(ℝ). Therefore, the Plancherel theoremgives
that (−∆)su is in L2(ℝ).

We claim that actually (−∆)su = F−1(|ξ|2s û) is also continuous in ℝ, vanishes at infinity and is of
class L1(ℝ). To this end it is enough to show that ξ Ü→ |ξ|2s û(ξ) is in L1(ℝ). Indeed,

∫
ℝ

|ξ|2s|û| dξ ≤ ∫
{|ξ|≤1}

|ξ|2s|û| dξ + ∫
{|ξ|≥1}

|ξ|2(s−1)|ξ|2|û| dξ

≤ L1 + ( ∫
{|ξ|≥1}

|ξ|4(s−1) dξ)
1/2

(∫
ℝ

|ξ|4|û|2 dξ)
1/2

< ∞,

since |ξ|2s û ∈ C(ℝ), ξ Ü→ |ξ|2û(ξ) ∈ L2(ℝ), as shown above, and s < 3/4 by assumption. This completes the
proof of the claim.

For all φ ∈ C∞0 (I) by (2.15), (2.6) and the Plancherel theorem we get

⟨u, φ⟩s =
1
2π ∫
ℝ

̂(−∆)s/2u ̂(−∆)s/2φ dx =
1
2π ∫
ℝ

|ξ|s û |ξ|sφ̂ dξ

=
1
2π ∫
ℝ

φ̂ dξ ∫
ℝ

e−iξx(−∆)su dx =
1
2π ∫
ℝ

(−∆)su dx∫
ℝ

eiξxφ̂ dξ (2.16)

= ∫
ℝ

(−∆)suφ dx.

Since u satisfies the identity (2.14) and u�� ∈ L2(I), integrating by parts the first term in (2.14), we have by
(2.16) for all φ ∈ C∞0 (I)

∫
I

(−c u�� + κ (−∆)su + V(x)u −
f(x)
E )φ dx = 0,

where −c u�� + κ (−∆)su + V(x)u − f(x)/E ∈ L2(I). Therefore, −c u�� + κ (−∆)su + V(x)u = f(x)/E a.e. in I, and
since κ (−∆)su+V(x)u−f(x)/E ∈ C(I), actually the equality holds everywhere in I, that is u verifies the equation
in (2.11) pointwise in I = (−L, L). Furthermore, u�� ∈ C(I), since u�� = (κ (−∆)su+V(x)u−f(x)/E)/c and u ∈ C(I)
since u ∈ H1

0(I) by assumption and N = 1. Hence, u ∈ C2(I). Therefore u is a classical solution of (D).

Theorem 2.3. Suppose that the assumptions of Theorem2.1 are satisfied. Then every classical solution u of (D)
is a weak solution of (D).

Proof. Let u bea classical solutionof (D), so that u ∈ C2(I) satisfies (D) in theusual sense, u�� ∈ L1(ℝ) ∩ L2(ℝ)
and the boundary conditions in (D) are verified. Hence u ∈ H1(I) and so the classical solution u is in H1

0(I)
by the boundary conditions in (D) and [10, Theorem 8.12].

Since u is a classical solution of (D), multiplying the equation in (D) by any φ ∈ C∞0 (I), by (2.16) and
integration by parts we get

c⟨u�, φ�⟩2 + κ⟨u, φ⟩s + ∫
I

V(x)uφ dx =
1
E ∫
I

f(x)φ dx.

Since u ∈ H1
0(I), a standard density argument shows that the above identity indeed holds for all φ ∈ H1

0(I).
Therefore u is a weak solution of (D).
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3 A nonlinear model for infinite nonlocal elastic N-dimensional
rods

In [43] (see in particular the details of the proof of Lemma 1) a precise expression for the nonlocal operator
(−∆)s is derived in dimension N = 1 and for an ideal infinite rod, under the homogeneous boundary condi-
tions u(−∞) = u(∞) = u�(−∞) = u�(∞) = 0 and under the assumptions that u� ∈ L1(ℝ) and u�� ∈ L1(ℝ). The
request u�� ∈ L1(ℝ) is fairly natural and already appears in [2], when u is defined inℝ.

From an exact mathematical point of view, problem (2.11) for an ideal infinite rod becomes

{{
{{
{

−c u�� + κ (−∆)su + V(x)u =
f(x)
E inℝ,

u ∈ C10(ℝ), u�� ∈ L1(ℝ) ∩ L2(ℝ).
(3.1)

In particular, (2.10) is converted into

(−∆)su(x) = 1
2 cos sπ ⋅

1
Γ(2 − 2s)

∞

∫
−∞

u��(η)
|x − η|2s−1

dη

=
1

2 cos sπ

∞

∫
−∞

u��(η)g(x − η) dη

= −∞
D2s
x u(x) + xD2s

∞u(x)
2 cos sπ .

Therefore every solution of (3.1) satisfies

lim
|x|→∞

u(x) = lim
|x|→∞

u�(x) = 0. (3.2)

In this section, we extend the linear model (3.1) to the nonlinear version (Pλ) given in the Introduction.
First recall that the space H1(ℝN) is the completion of C∞0 (ℝN) with respect to the Hilbertian norm ‖ ⋅ ‖

defined in (1.5). Similarly, Hs(ℝN), s ∈ (0, 1), is the Hilbert space, with norm

‖u‖s = (‖u‖22 + [u]2s )1/2, [u]2s = ∫

ℝN

|ξ|2s û2 dξ = ∫

ℝN

|(−∆)s/2u|2 dx, û = Fu,

by the Plancherel theorem.
The fractional Laplacian operator (−∆)s introduced in (1.1) can be equivalently defined by

(−∆)sφ(x) = CN,sP.V. ∫
ℝN

φ(x) − φ(y)
|x − y|N+2s

dy, (3.3)

see [17, Lemma 3.5], where
CN,s = s 22s

Γ(s + N/2)
πN/2Γ(1 − s)

. (3.4)

Furthermore, for all φ, ψ ∈ C∞0 (ℝN) the already cited Plancherel theorem gives

∫

ℝN

(−∆)sφψ dx = ∫

ℝN

|ξ|2sφ̂ψ̂ dξ = ∫

ℝN

(−∆)s/2φ(−∆)s/2ψ dx = ⟨φ, ψ⟩s ,

where for simplicity in notation φ̂ = Fφ, as before.
The embedding H1(ℝN) í→ Hs(ℝN) is continuous, that is there exists Cs > 0 such that

‖u‖s ≤ Cs‖u‖ for all u ∈ H1(ℝN). (3.5)

Clearly Cs is here a different number than in (2.13). The proof of (3.5) is a combination of the arguments given
in the proofs of [17, Propositions 2.1 and 2.2].
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From here on we assume that the potential V is a positive weight satisfying condition (1.3) given in the
Introduction. Assumption (1.3) guarantees that the embedding H1(ℝN) í→ L2(ℝN , V) is continuous, where

L2(ℝN , V) = {u : ℝN → ℝmeasurable : ∫

ℝN

V(x)|u|2 dx < ∞}

is the weighted Lebesgue space related to the positive potential V, endowed with the norm

‖u‖2,V = (∫

ℝN

V(x)|u|2 dx)
1/2
.

Similarly, the weighted Lebesgue space

Lp(ℝN , w) = {u : ℝN → ℝmeasurable : ∫

ℝN

w(x)|u|p dx < ∞}

has norm

‖u‖p,w = (∫

ℝN

w(x)|u|p dx)
1/p
.

By (1.2) and [36, Lemma 2.6] the embedding H1(ℝN) í→í→ Lp(ℝN , w) is compact. In particular, there exists
a positive constant Cw > 0 depending also on p such that

‖u‖p,w ≤ Cw‖u‖ (3.6)

for all u ∈ H1(ℝN).
In the same way also the weighted Lebesgue space

Lq(ℝN , K) = {u : ℝN → ℝmeasurable : ∫

ℝN

K(x)|u|q dx < ∞}

is equipped with the norm

‖u‖q,K = (∫

ℝN

K(x)|u|q dx)
1/q
.

We note in passing that the embedding Lq(ℝN , K) í→ Lp(ℝN , w) is continuous by (1.2), (1.4) and the fact
that p < q.

By (1.4) the embedding H1(ℝN) í→ Lq(ℝN , K) is continuous. This is a trivial consequence of the continu-
ity of the embedding H1(ℝN) í→ Lq(ℝN) and (1.4).

In the special case N = 1, then [10, Theorem 8.8] assures that ‖u‖∞ ≤ √2 ‖u‖ for all u ∈ H1(ℝ), so that,
by the interpolation theorem and the fact that 2 < q < ∞, it results

‖u‖q ≤ ‖u‖1−2/q∞ ‖u‖2/q2 ≤ 21/2−1/q‖u‖.

Consequently, ‖u‖q,K ≤ Cq‖u‖ for all u ∈ H1(ℝ) by (1.4), where Cq = K1/q2 21/2−1/q and Cq → 2−1/2 as q → ∞.
In any case,

Sq = inf
v∈H1(ℝ)
v ̸=0

‖v‖
‖v‖q,K

≥
21/q−1/2

K1/q2

=
1
Cq

> 0.

Similarly, when N ≥ 2, the embedding H1(ℝN) í→ Lq(ℝN) is continuous by [10, Corollaries 9.10 and 9.11]
and the fact that 2 < q < 2∗. By (1.4) there exists a constant Cq such that ‖u‖q,K ≤ Cq‖u‖ for all u ∈ H1(ℝN).
For N = 2, the results of [31, Section 1.4.8] and a short calculation give

Cq = 2−1+2/q(K2π)1/q√
q
e

and Cq → ∞ as q → ∞. However,

Sq = inf
v∈H1(ℝ2)
v ̸=0

‖v‖
‖v‖q,K

≥
1
Cq

> 0.
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In conclusion,
Sq = inf

v∈H1(ℝN )
v ̸=0

‖v‖
‖v‖q,K

> 0 (3.7)

for all N ≥ 1.
Problems (Pλ) and (P) can be weakly solved in H1(ℝN). A (weak) solution u of (Pλ) is a function of class

H1(ℝN) satisfying the identity

c⟨∇u, ∇φ⟩2 + κ⟨u, φ⟩s + ⟨u, φ⟩2,V = λ⟨u, φ⟩p,w + ⟨u, φ⟩q,K (3.8)

for all φ ∈ H1(ℝN), where ⟨∇u, ∇φ⟩2 = ∫ℝN ∇u∇φ dx and

⟨u, φ⟩s = ∫

ℝN

(−∆)s/2u(−∆)s/2φ dx, ⟨u, φ⟩2,V = ∫

ℝN

V(x)uφ dx,

⟨u, φ⟩p,w = ∫

ℝN

w(x)|u|p−2uφ dx, ⟨u, φ⟩q,K = ∫

ℝN

K(x)|u|q−2uφ dx.

Clearly ∇u = u� when N = 1.
If N = 1, then [10, Corollary 8.9] guarantees that any solution u ∈ H1(ℝ) satisfies the limit condition

(1.6). Furthermore, in this case if u�� exists and u�� is in L2(ℝ), then u ∈ H2(ℝ) and also (3.2) holds.
Problem (Pλ) has a variational structure and the underlying Euler–Lagrange functional Jλ : H1(ℝN) → ℝ

associated to (Pλ) is defined by

Jλ(u) =
1
2 (c‖∇u‖

2
2 + κ[u]

2
s + ‖u‖22,V ) −

λ
p ‖u‖pp,w −

1
q ‖u‖qq,K (3.9)

for all u ∈ H1(ℝN). Indeed, Jλ is of class C1(H1(ℝN)) and solutions of (Pλ) correspond to critical points of Jλ
in H1(ℝN).

In order to find a solution of (Pλ), we intend to apply the mountain pass theorem of Ambrosetti and
Rabinowitz [1] to the functional Jλ at a special level cλ,. We put for simplicity

m = min{c, V1}, M = max{c, κ C2s , V2}, (3.10)

where Cs is defined in (3.5). Of course, m > 0 by (1.3) and the fact that c > 0 by assumption. Throughout the
section we assume the validity of (1.2)–(1.4) and (3.10).

Lemma 3.1. For any λ > 0 there exist twopositive constants α and ρ such that Jλ(u) ≥ α > 0 for any u ∈ H1(ℝN),
with ‖u‖ = ρ, and there exists a radial function e ∈ C∞0 (ℝN), with Jλ(e) < 0 and ‖e‖ > ρ.

Proof. Fix λ > 0. By (3.9), (3.10), (3.6) and (3.7), for all u ∈ H1(ℝN)

Jλ(u) ≥
m
2 ‖u‖2 − λ

p ‖u‖pp,w −
1
q ‖u‖

q
q,K ≥ (

m
2 −

λCpw
p ‖u‖p−2 −

Cqq
q ‖u‖q−2)‖u‖2.

Taking ρ ∈ (0, 1] so small that m/2 − λCpwρp−2/p − Cqqρq−2/q > 0, we get that

Jλ(u) ≥ α = ρ2(m2 −
λCpwρp−2

p −
Cqqρq−2

q )

for all u ∈ H1(ℝN), with ‖u‖ = ρ.
Let u0 ∈ C∞0 (ℝN) be a radial function such that ‖u0‖ = 1. For all t > 0

Jλ(tu0) ≤
M
2 t2 − λ

p ‖u0‖pp,w tp .

Thus Jλ(tu0) → −∞ as t → ∞, since 2 < p and λ > 0. Take τλ > 0 so large that e = τλu0 has the property that
‖e‖ ≥ 2 and Jλ(e) < 0. In particular, ‖e‖ > ρ, being ρ ∈ (0, 1].

From the proof of Lemma 3.1 it is evident that if e = τλ0u0 is selected at some λ0 > 0, then Jλ(e) < 0 for all
λ ≥ λ0. Moreover, ‖e‖ ≥ 2 > ρ for all ρ = ρ(λ) ∈ (0, 1] and for all λ ≥ λ0.
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Fix λ > 0 and put

cλ = inf
g∈Γ

max
t∈[0,1]

Jλ(g(t)), Γ = {g ∈ C([0, 1], H1(ℝN)) : g(0) = 0, g(e) < 0}.

Clearly, cλ > 0 by Lemma 3.1.
We recall that (uk)k ⊂ H1(ℝN) is a Palais–Smale sequence for Jλ at level cλ if

Jλ(uk) → cλ and J�λ(uk) → 0 in H−1(ℝN) (3.11)

as k → ∞. Furthermore, Jλ is said to satisfy the Palais–Smale condition in H1(ℝN) at level cλ if any
Palais–Smale sequence (uk)k ⊂ H1(ℝN) at level cλ admits a convergent subsequence in H1(ℝN).

Before proving the relatively compactness of the Palais–Smale sequences for Jλ, we introduce an asymp-
totic behavior of the levels cλ, as proved in the study of Kirchhoff fractional Dirichlet problems in [3, 23]. This
fact will be essential not only to get (1.7), but above all to overcome the lack of compactness.

Lemma 3.2. It results
lim
λ→∞

cλ = 0.

Proof. Fix λ0 > 0. Let e ∈ C∞0 (ℝN) be the radial function obtained in Lemma 3.1 for Jλ0 . Hence Jλ satis-
fies the mountain pass geometry at 0 and e for all λ ≥ λ0. Fix λ ≥ λ0. Then there exists tλ > 0 verifying
Jλ(tλe) = maxt≥0 Jλ(te). Hence, ⟨J�λ(tλe), e⟩ = 0 and so

Mtλ‖e‖2 ≥ tλ(c‖∇e‖22 + κ[e]
2
s + ‖e‖22,V ) = λ t

p−1
λ ‖e‖pp,w + tq−1λ ‖e‖qq,K ≥ λ tp−1λ ‖e‖pp,w . (3.12)

Therefore, {tλ}λ≥λ0 is bounded, since p > 2, λ ≥ λ0 > 0 and e depends only on λ0.
Therefore there exists τ ∈ ℝ+0 such that

lim sup
λ→∞

tλ = τ.

Clearly τ = 0. Otherwise,
lim sup
λ→∞

(λtp−2λ ) = ∞,

and this would contradict (3.12). In conclusion, τ = 0, so that

lim
λ→∞

tλ = 0. (3.13)

Consider now the path g(t) = te, t ∈ [0, 1], belonging to Γ. By Lemma 3.1

0 < cλ ≤ max
t∈[0,1]

Jλ(g(t)) ≤ Jλ(tλe) ≤
M
2 ‖e‖2t2λ ,

and letting λ → ∞ we get the assertion by (3.13), since e depends only on λ0.

Now, we are ready to prove the Palais–Smale condition at level cλ, adapting in a suitable way the main ideas
already used in Lemma 3.4 of [3] for a degenerate Kirchhoff fractional Dirichlet problem.

Lemma 3.3. There exists λ∗ > 0 such that for all λ ≥ λ∗ the functional Jλ satisfies the Palais–Smale condition
in H1(ℝN) at level cλ.

Proof. Take λ > 0. Let (uλk)k ⊂ H
1(ℝN) be a Palais–Smale sequence for Jλ at level cλ. In particular,

Jλ(uλk) −
1
p ⟨J

�
λ(u

λ
k), u

λ
k⟩ ≥ m(

1
2 −

1
p)‖u

λ
k‖

2 + (
1
p −

1
q)‖u

λ
k‖
q
q,K

≥ m(
1
2 −

1
p)‖u

λ
k‖

2.

Hence, (3.11) yields at once that as k → ∞

cλ + dλ‖uλk‖ + o(1) ≥ m(
1
2 −

1
p)‖u

λ
k‖

2.
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Therefore, (uλk)k is bounded in H
1(ℝN), being p > 2, and there exists uλ in H1(ℝN) such that, up to a subse-

quence, it follows that

uλk ⇀ uλ in H1(ℝN), in Hs(ℝN) and in Lq(ℝN , K),
∇uλk ⇀ ∇uλ in [L2(ℝN)]N , and uλk → uλ in Lp(ℝN , w),
uλk → uλ a.e. inℝN , ‖uλk‖ → αλ , ‖uλk − uλ‖q,K → ℓλ

‖∇uλk‖2 → gλ , [uλk]s → sλ , ‖uλk‖2,V → Vλ .

(3.14)

Furthermore, by (3.11)
cλ + o(1) ≥ m(

1
2 −

1
p)‖u

λ
k‖

2 + (
1
p −

1
q)‖u

λ
k‖
q
q,K . (3.15)

Thus, by (3.14) and (3.15) we have
cλ ≥ m(

1
2 −

1
p)α

2
λ . (3.16)

We first assert that
lim
λ→∞

αλ = 0. (3.17)

Otherwise lim supλ→∞ αλ = α > 0. Hence, by (3.16)

lim sup
λ→∞

cλ ≥ m(
1
2 −

1
p)α

2 > 0,

which is impossible by Lemma 3.2 and proves assertion (3.17).
Moreover, ‖uλ‖ ≤ limk ‖uλk‖ = αλ since u

λ
k ⇀ uλ, so that (3.7) and (3.17) imply at once

lim
λ→∞

‖uλ‖q,K = lim
λ→∞

‖uλ‖ = 0. (3.18)

By (3.14) and the fact that |uλk|
q−2uλk ⇀ |uλ|q−2uλ in Lq

�
(ℝN , K) by [4, Proposition A.8], where q� is the Hölder

conjugate of q, we have that u satisfies (3.8) for all φ ∈ H1(ℝN). Hence, uλ is a critical point of Jλ in H1(ℝN),
that is uλ is a solution of (Pλ). In particular, (3.11) and (3.14) imply that as k → ∞

o(1) = ⟨J�λ(u
λ
k) − J

�
λ(uλ), u

λ
k − uλ⟩

= c‖∇uλk − ∇uλ‖22 + κ[u
λ
k − uλ]

2
s + ‖uλk − uλ‖

2
2,V − λ ∫

ℝN

w(x)(|uλk|
p−2uλk − |uλ|p−2uλ)(uλk − uλ) dx

− ∫

ℝN

K(x)(|uλk|
q−2uλk − |uλ|q−2uλ)(uλk − uλ) dx (3.19)

= c(g2λ − ‖∇uλ‖22) + κ(s
2
λ − [uλ]2s ) + V2

λ − ‖uλ‖22,V − ‖uλk‖
q
q,K + ‖uλ‖qq,K + o(1)

= c(g2λ − ‖∇uλ‖22) + κ(s
2
λ − [uλ]2s ) + V2

λ − ‖uλ‖22,V − ‖uλk − uλ‖
q
q,K + o(1),

since (3.14) gives that
lim
k→∞

∫

ℝN

w(x)(|uλk|
p−2uλk − |uλ|p−2uλ)(uλk − uλ) dx = 0

and by (3.14) and the celebrated Brézis–Lieb lemma, see [11],

‖∇uλk − ∇uλ‖22 = ‖∇uλk‖
2
2 − ‖∇uλ‖22 + o(1) = g

2
λ − ‖∇uλ‖22 + o(1),

[uλk − uλ]
2
s = [uλk]

2
s − [uλ]2s + o(1) = s2λ − [uλ]2s + o(1),

‖uλk − uλ‖
2
2,V = ‖uλk‖

2
2,V − ‖uλ‖22,V + o(1) = V2

λ − ‖uλ‖22,V + o(1),

‖uλk − uλ‖
q
q,K = ‖uλk‖

q
q,K − ‖uλ‖qq,K + o(1)

(3.20)

as k → ∞.
Therefore, by (3.19) we have the main formula

ℓqλ = c(g2λ − ‖∇uλ‖22) + κ(s
2
λ − [uλ]2s ) + V2

λ − ‖uλ‖22,V ,

which, in particular, yields by (3.20) that

ℓqλ ≥ c lim
k→∞

‖∇uλk − ∇uλ‖22 + V1 lim
k→∞

‖uλk − uλ‖
2
2 ≥ m lim

k→∞
‖uλk − uλ‖

2, (3.21)



G. Autuori, F. Cluni, V. Gusella and P. Pucci, Models for nonlocal composite materials | 369

by (3.10) and the facts that sλ ≥ [uλ]s and κ ≥ 0. Using (3.14), (3.15) and (3.20) and letting k → ∞,
Lemma 3.2 and (3.18) give

0 = lim
λ→∞

cλ ≥ (
1
p −

1
q) lim

λ→∞
(ℓqλ + ‖uλ‖qq,K).

In particular,
lim
λ→∞

ℓλ = 0. (3.22)

By (3.21) and (3.7), for all λ ∈ ℝ+

ℓqλ ≥ m S2qℓ2λ .

Weclaim that there exists λ∗ > 0 such that ℓλ = 0 for all λ ≥ λ∗. Otherwise therewould exist infinitelymany λn,
with λn → ∞ as n → ∞, such that for all n

ℓq−2λn ≥ m S2q > 0,

which is impossible by (3.22). This proves the claim.
In conclusion, there exists λ∗ > 0 such that for all λ ≥ λ∗

lim
k→∞

‖uλk − uλ‖
q
q,K = ℓqλ = 0

and so by (3.21)
lim
k→∞

‖uλk − uλ‖ = 0,

as required.

Proof of Theorem 1.1. Lemmas 3.1 and 3.3 guarantee that there exists λ∗ > 0 such that for all λ ≥ λ∗ the func-
tional Jλ satisfies all the assumptions of the mountain pass theorem in H1(ℝN). Hence, there exists a critical
point uλ ∈ H1(ℝN) for Jλ at level cλ for all λ ≥ λ∗. Since Jλ(uλ) = cλ > 0 = Jλ(0), we have that uλ ̸≡ 0. Finally,
the asymptotic behavior (1.7) holds thanks to (3.18).

4 The model (P)
In this section N ≥ 2 and as usually s ∈ (0, 1). We denote by H1

rad(ℝ
N) the closed subspace of H1(ℝN), con-

sisting of all the radial functions of H1(ℝN). Clearly H1
rad(ℝ

N) í→ H1(ℝN) í→ L2∗ (ℝN) continuously.
From now on we assume that the positive weights V and K satisfying (1.3)–(1.4) are also radial and we

continue to use the notation (3.10). Hence all the properties (3.5)–(3.7) are still valid. The perturbation
f ∈ L2(ℝN) is also assumed radial, without further mentioning.

Problem (P) has a variational structure and solutions of (P) correspond to the critical points of the under-
lying Euler–Lagrange functional J : H1(ℝN) → ℝ defined by

J(u) = 1
2 (c‖∇u‖

2
2 + κ[u]

2
s + ‖u‖22,V ) −

1
q ‖u‖qq,K − ∫

ℝN

f(x)u dx (4.1)

for all u ∈ H1(ℝN). Indeed, J is of class C1(H1(ℝN)) and v ∈ H1(ℝN) is a (weak) solution of (P) if

c⟨∇v, ∇φ⟩2 + κ⟨v, φ⟩s + ⟨u, φ⟩2,V = ⟨u, φ⟩q,K − ∫

ℝN

f(x)φ dx (4.2)

for all φ ∈ H1(ℝN). While u ∈ H1
rad(ℝ

N) is a (weak) radial solution of (P) in the sense of H1
rad(ℝ

N) if (4.2) holds
for all φ ∈ H1

rad(ℝ
N).

In order to find the critical points of J, we intend to apply both the mountain pass theorem of [1] and
the Ekeland variational principle given in [20]. For a wide selection of applications of critical point theory to
fractional elliptic differential problems we refer to the recent monograph [32].
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Lemma 4.1. There exist three positive numbers α, δ and ρ such that J(u) ≥ α > 0 for any u ∈ H1(ℝN), with
‖u‖ = ρ, and a function e ∈ C∞0,rad(ℝ

N), with J(e) < 0 and ‖e‖ > ρ, provided that ‖f‖2 ≤ δ.
In particular, J(u) ≥ α > 0 for any u ∈ H1

rad(ℝ
N), with ‖u‖ = ρ, provided that ‖f‖2 ≤ δ.

Proof. The proof is similar to that of Lemma 3.1. By the continuity of the embedding H1(ℝN) í→ Lq(ℝN , K)
and the Hölder inequality,

J(u) ≥ m
2 ‖u‖2 − 1

q ‖u‖qq,K − ∫

ℝN

f(x)u dx

≥
m
2 ‖u‖2 − 1

q ‖u‖qq,K − ‖f‖2‖u‖

≥ {(
m
2 −

1
q C

q
q‖u‖q−2)‖u‖ − ‖f‖2}‖u‖

for all u ∈ H1(ℝN). Hence J(u) ≥ α for all u ∈ H1(ℝN)with ‖u‖ = ρ, provided that ρ ∈ (0, 1] and δ are so small
that a = m/2 − Cqqρq−2/q > 0, 0 < δ < aρ and ‖f‖2 ≤ δ.

Take u0 ∈ C∞0,rad(ℝ
N) such that ‖u0‖ = 1. By (4.1) for all t > 0

J(tu0) ≤
M
2 t

2 −
1
q ‖u‖qq,K t

q − t ∫
ℝN

f(x)u0 dx ≤
M
2 t2 − 1

q ‖u‖qq,K t
q + ‖f‖2‖u0‖2t.

Thus J(tu0) → −∞ as t → ∞, being q > 2. Take τ sufficiently large so that e = τu0 has the property that
‖e‖ ≥ 2 and J(e) < 0. In particular, ‖e‖ > ρ, since ρ ∈ (0, 1].

The last part of the lemma is trivial.

We say that (uk)k ⊂ H1
rad(ℝ

N) is a Palais–Smale sequence for J if

(J(uk))k is bounded inℝ and J�(uk) → 0 in H−1rad(ℝ
N) (4.3)

as k → ∞. Furthermore, J is said to satisfy the Palais–Smale condition in H1
rad(ℝ

N) if any Palais–Smale
sequence (uk)k ⊂ H1

rad(ℝ
N) admits a convergent subsequence in H1

rad(ℝ
N).

Lemma 4.2. The functional J satisfies the Palais–Smale condition in H1
rad(ℝ

N).

Proof. Let (uk)k ⊂ H1
rad(ℝ

N) be a Palais–Smale sequence for J. Then, there exists C > 0 such that |J(uk)| ≤ C
and |⟨J�(uk), uk⟩| ≤ C‖uk‖ for all k. In particular,

C + C‖uk‖ ≥ J(uk) −
1
q ⟨J

�(uk), uk⟩

≥ m(
1
2 −

1
q)‖uk‖

2 −
1
q� ‖f‖2‖uk‖2

≥ m(
1
2 −

1
q)‖uk‖

2 −
1
q� ‖f‖2‖uk‖

for all k. Hence, the sequence (uk)k is bounded in H1
rad(ℝ

N). Therefore there exist a function u ∈ H1
rad(ℝ

N)
and a subsequence of (uk)k, still called (uk)k, such that

uk ⇀ u in H1
rad(ℝ

N) and in Hsrad(ℝ
N),

uk ⇀ u in L2(ℝN), ∇uk ⇀ ∇u in [L2(ℝN)]N ,
uk → u in Lq(ℝN , K), uk → u a.e. inℝN ,
|uk| ≤ ψ a.e. inℝN , with ψ ∈ Lq(ℝN , K),

(4.4)

by [30, Proposition I.1], being N ≥ 2.
For all φ ∈ C∞0,rad(ℝ

N) by (4.4) and the continuity of the embeddings H1
rad(ℝ

N) í→ H1(ℝN) í→ L2(ℝN , V)
we have

⟨J�(u), φ⟩ = ⟨J�(uk), φ⟩ − c⟨∇uk − ∇u, ∇φ⟩2 − κ⟨uk − u, φ⟩s

− ∫

ℝN

V(x)(uk − u)φ dx − ∫

ℝN

K(x)(|uk|q−2uk − |u|q−2u)φ dx = o(1) as k → ∞.
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Therefore, ⟨J�(u), φ⟩ = 0 for all φ ∈ C∞0,rad(ℝ
N) and by a standard density argument J�(u) = 0 in H1

rad(ℝ
N). In

other words, u is a critical point of J|H1
rad(ℝ

N ) in H1
rad(ℝ

N).
Now, by (4.2) it results that

0 = ⟨J�(u), u⟩ = c‖∇u‖22 + κ[u]
2
s + ‖u‖22,V − ‖u‖qq,K − ∫

ℝN

f(x)u dx (4.5)

and by (4.4) it follows that
∫

ℝN

f(x)u dx = lim
k→∞

∫

ℝN

f(x)uk dx

being f ∈ L2(ℝN). Thus, from (4.5) we get

lim sup
k→∞

(c‖∇uk‖22 + κ[uk]
2
s ) = lim sup

k→∞
(‖uk‖qq,K − ‖uk‖22,V + ∫

ℝN

f(x)uk dx)

≤ ‖u‖qq,K − ‖u‖22,V + ∫

ℝN

f(x)u dx

= c‖∇u‖22 + κ[u]
2
s

≤ lim inf
k→∞

c‖∇uk‖22 + lim inf
k→∞

κ[uk]2s

≤ lim inf
k→∞

(c‖∇uk‖22 + κ[uk]
2
s ),

since ‖uk‖qq,K → ‖u‖qq,K by (4.4), and
‖u‖22,V ≤ lim inf

k→∞
‖uk‖22,V (4.6)

by (1.3) and (4.4). Hence
lim
k→∞

(c‖∇uk‖22 + κ[uk]
2
s ) = c‖∇u‖22 + κ[u]

2
s .

Therefore, using again (4.5) and (4.6), we have

lim sup
k→∞

‖uk‖22,V = lim sup
k→∞

(‖uk‖qq,K − c‖∇uk‖22 − κ[uk]
2
s + ∫

ℝN

f(x)uk dx)

= ‖u‖qq,K − c‖∇u‖22 − κ[u]
2
s + ∫

ℝN

f(x)u dx

= ‖u‖22,V ≤ lim inf
k→∞

‖uk‖22,V ,

and so
lim
k→∞

‖uk‖22,V = ‖u‖22,V . (4.7)

Thus, (4.4) and (4.7) lead to

‖uk − u‖22,V = ‖uk‖22,V + ‖u‖22,V − 2 ∫

ℝN

V(x)uku dx → 0

as k → ∞. Finally, (1.3) implies
lim
k→∞

‖uk − u‖2 = 0. (4.8)

Similarly, as k → ∞
c‖∇uk − ∇u‖22 + κ[uk − u]

2
s → 0.

In conclusion, from the fact that c > 0 and κ ≥ 0, the above limit and (4.8) give

lim
k→∞

‖uk − u‖ = 0, (4.9)

as required.
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Fix f ∈ L2(ℝN), with ‖f‖2 ≤ δ, where δ > 0 is determined in Lemma 4.1, and put

ce = inf
g∈Γ

max
t∈[0,1]

J(g(t)), Γ = {g ∈ C([0, 1], H1
rad(ℝ

N)) : g(0) = 0, g(1) = e}.

Clearly ce > 0 by Lemma 4.1.
Lemma 4.2 yields that J satisfies the Palais–Smale condition in H1

rad(ℝ
N) in particular at the level ce. In

other words, any Palais–Smale sequence (uk)k in H1
rad(ℝ

N), with the property

J(uk) → ce and J�(uk) → 0 as j → ∞,

admits a convergent subsequence in H1
rad(ℝ

N).

Proof of Theorem 1.2. First we prove that (P) admits a nontrivial radial mountain pass solution u ∈ H1
rad(ℝ

N)
at level ce. Lemmas 4.1 and 4.2 guarantee that J satisfies all the assumptions of the mountain pass theorem
in H1

rad(ℝ
N). Hence there exists a Palais–Smale sequence (uk)k in H1

rad(ℝ
N) for J at the critical value ce.

Now, Lemma 4.2 implies that, up to a subsequence, (uk)k converges to some u in H1
rad(ℝ

N). Moreover,
J(u) = ce > 0 = J(0). Therefore, u is a nontrivial critical point of J|H1

rad(ℝ
N ) in H1

rad(ℝ
N).

Let us now assume that f is nontrivial, that is 0 < ‖f‖2 ≤ δ. In constructing a second independent
nontrivial radial solution of (P) we somehow follow the main ideas contained in [35]. We first claim that
it is possible to find φ ∈ C∞0,rad(ℝ

N) such that

∫

ℝN

f(x)φ dx > 0,

being f nontrivial. Indeed, by density, there exists (fk)k ⊂ C∞0,rad(ℝ
N) such that fk → f in L2(ℝN) as k → ∞.

Hence, for a fixed k sufficiently large we have ‖fk − f‖2 ≤ ‖f‖2/2, and so

∫

ℝN

f(x)fk dx ≥ −‖fk − f‖2‖f‖2 + ‖f‖22 ≥
‖f‖22
2 > 0.

The claim is proved taking φ = fk ∈ C∞0,rad(ℝ
N).

Now, for any t > 0 it results that

J(tφ) ≤ M
2 ‖φ‖2t2 − 1

q ‖φ‖
q
q,K t

q − t ∫
ℝN

f(x)φ dx.

This implies that for a fixed t0 ∈ (0, 1) sufficiently small J(t0φ) < 0 and ‖t0φ‖ < ρ, with ρ given in Lemma 4.1.
Clearly t0φ is in C∞0,rad(ℝ

N). Therefore

c0 = inf{J(ω) : ω ∈ Bρ} < 0, Bρ = {ω ∈ H1
rad(ℝ

N) : ‖ω‖ < ρ}.

By the Ekeland variational principle and Lemma 4.1 there exists a sequence (uk)k ∈ Bρ such that

c0 ≤ J(uk) ≤ c0 +
1
k and J(ω) ≥ J(uk) −

1
k ‖ω − uk‖

for all ω ∈ Bρ. In particular, for all ν ∈ H1
rad(ℝ

N), with ‖ν‖ = 1, and for all k ∈ ℕ, we have for t > 0 sufficiently
small

J(uk + tν) − J(uk)
t ≥ −

1
k .

Since J ∈ C1(H1
rad(ℝ

N)), the last inequality gives at once that

‖J�(uk)‖X� ≤
1
k for all k ∈ ℕ,

where X� denotes the dual space of H1
rad(ℝ

N). Hence (uk)k is a bounded Palais–Smale sequence for J in
H1
rad(ℝ

N). Thus Lemma 4.2 assures the existence of some v ∈ H1
rad(ℝ

N) such that J�(v) = 0 and J(v) = c0 < 0.
Moreover, v is actually inBρ byLemma4.1 and so v is the second radial solutionof (P) in the sense ofH1

rad(ℝ
N)

and v is independent of the mountain pass solution u constructed in the first part.
Therefore, u and v are two nontrivial critical points of J|H1

rad(ℝ
N ) in H1

rad(ℝ
N) when f is nontrivial.

We claim that u and v are two critical points of J in the entire H1(ℝN), that is solutions of (P) in the sense
of definition (4.2).
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The Hilbert space H1(ℝN) is a uniformly convex and reflexive Banach space, so that to show the claim it
is enough to apply the principle of symmetric criticality due to R.S. Palais as stated in [16, Proposition 3.1].
Indeed, here E = H1(ℝN), Σ = H1

rad(ℝ
N) and

G = {g : H1(ℝN) → H1(ℝN) : g(u) = u ∘ A, A ∈ SO(N)},

where SO(N) is the special orthogonal group of the N × N orthogonal matrices A such that

AAT = I, A∗ = A, det A = 1.

The claim is a consequence of [16, Proposition 3.1], since J(u ∘ A) = J(u) for all u ∈ H1(ℝN) and for all
A ∈ SO(N).

Indeed, fixed u ∈ H1(ℝN), for all A ∈ SO(N), recalling that V, K, f and u are radial, we have

‖∇(u ∘ A)‖22 = ∫

ℝN

|∇(u(Ax))|2 dx = ∫

ℝN

|∇(u(x�))|2 dx� = ‖∇u‖22,

‖u ∘ A‖22,V = ∫

ℝN

V(x)|u(Ax)|2 dx = ∫

ℝN

V(x�)|u(x�)|2 dx� = ‖u‖22,V ,

‖u ∘ A‖qq,K = ∫

ℝN

K(x)|u(Ax)|q dx = ∫

ℝN

K(x�)|u(x�)|q dx� = ‖u‖qq,K ,

∫

ℝN

f(x)u(Ax) dx = ∫

ℝN

f(x�)u(x�) dx�,

since |x| = |Ax| = |x�| and det A = 1. Moreover, by [40, Chapter IV, Theorem 1.1], we get

[u ∘ A]2s = ∫

ℝN

|(−∆)s/2(u ∘ A)|2(x) dx = ∫

ℝN

|ξ|2s|û ∘ A|2(ξ) dξ

= ∫

ℝN

|ξ|2s|û|2(Aξ) dξ = ∫

ℝN

|x�|2s|û|2(x�) dx�

= ∫

ℝN

|(−∆)s/2u|2(x�) dx� = [u]2s .

Therefore, for all u ∈ H1(ℝN)

J(u ∘ A) = 1
2 (c‖∇(u ∘ A)‖22 + κ[u ∘ A]2s + ‖u ∘ A‖22,V ) −

1
q ‖u ∘ A‖qq,K − ∫

ℝN

f(x)(u ∘ A)(x) dx = J(u)

for all A ∈ SO(N), as stated. This completes the proof.

As a final comment to the proof of Theorem 1.2 we remark that even if Theorem 1.1 and its Corollary 1.2 in
[40, Chapter IV] are stated for functions of class L1(ℝN), a standard density argument extends these results
in L2(ℝN), as actually used above.

5 Numerical simulations for (D)

In this section we provide numerical computations for problem (D) which has completely been solved from
a pure analytical point of view in Section 2.

Before starting, we recall that model (D) describes the displacement u = u(x) of a finite rod of length 2L,
restrained at the boundary, under the effects of external forces acting along the axis. More precisely, f = f(x)
represents an external force per unit volume, while V(x)u stands for a restoring elastic force whose stiffness
could possibly depend on x. The quantity E is the Young modulus of the material; the constants c > 0 and
κ ≥ 0 satisfy

c = β1 and κ = −2β2k cos sπ,
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where β1 and β2 = 1 − β1 are the weights described in Section 2, and k is a further constant related to the
nonlocal nature of the material.

Due to the extreme difficulty in defining an explicit analytical expression for u, numerical methods could
help infindingapproximated solutions of theproblem. Inparticular,we look for adiscrete formof theproblem
seeking the values ui = u(xi) reached by u in a finite number of points xi ∈ [−L, L]which are equidistant with
step h = 2L/(n − 1), namely

xi = −L + ih, i = 0, 1, . . . , n − 1.

The terms in the equationof (D) are evaluated as follows. The secondderivative of the solution u�� is expressed
by means of the central finite difference formula, that is

u��i =
ui+1 − 2ui + ui−1

h2
.

To estimate (−∆)su, thanks to the main formulas (2.10) and (3.3), we are able to follow the discretization
procedure proposed in [26]. More precisely, using the notation of [26], we compute

(−∆h)sui =
∞

∑
j=1

(2ui − ui+j − ui−j)wj =
∞

∑
j=−∞

(ui − ui−j)wj , (5.1)

where the weights wj are determined explicitly by the semi-exact quadrature rules related to themain weight
function given in (3.3), that is ν(ξ) = C1,2s|ξ|−1−2s, ξ ∈ ℝ \ {0}, s ∈ (1/2, 1), where C1,2s is defined in (3.4). We
refer to [26] for further details.

A simple truncation of the sum in (5.1) at a finite value M ≥ n − 1 of the index j gives as in [26]

(−∆h)sMui =
Mh

∫
−Mh

[u(xi) − u(xi − y)]ν(y) dy + u(xi) ∫
|y|>Mh

ν(y) dy

=
M
∑
j=−M

(ui − ui−j)wj +
C1,2s
s(Mh)2s

u(xi),

since Mh ≥ 2L. As remarked in [26], the procedure converges to the finite differences method when s → 1.
Hence, the discrete version of the equation in (D) is transformed into the problem of finding the values

ui such that
{{
{{
{

−cu��i + κ(−∆h)sMui + V(xi)ui =
f(xi)
E for i = 1, . . . , n − 2,

u0 = un−1 = 0.
(5.2)

The goal is to find the zeros of the above system of n functions in n variables. To this end we use the Python
programming language. In particular, we employ the function “fsolve”, based on Powell’s hybrid method as
implemented in MINPACK (see [33]).

The main ideas of the Powell hybrid method, as reported in [25], are briefly resumed in the following.
Problem (5.2) can be rewritten as

P(U) = 0, U = (u0, u1, . . . , un−1), P : ℝn → ℝn .

Start from an estimate U0, and find the next estimate to the solution

U0 + ∆U,

where ∆U is derived from
(γ I + JT(U0)J(U0))∆U = −J(U0)P(U0),

where γ is a suitable positive parameter, and I is the unit n × n matrix. Moreover, in order to increase effi-
ciency, the Jacobian matrix J is approximated by means of a Broyden update with the formula

J(U0 + ∆U) = J(U0) +
(V − J(U0)∆U)∆UT

∆UT∆U
, V = P(U0 + ∆U) − P(U0),

instead of recalculating J.
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We underline that the choice of the Powell hybrid method is motivated by the fact that it could be
employed to perform numerical simulations also for more general problems than (D), as (Pλ) and (P), since
it is particularly suited also for nonlinear systems.

5.1 The case of a discontinuous force f

In this section we apply the numerical procedure described before to two cases, taking somehow inspiration
from [14, 19].

Case study #1. We consider the rod loaded by two forces having equal magnitude and opposite direction
(and therefore the resultant force is zero) applied close to the mid-span, as shown in Figure 1.

Figure 1. Rod loaded by two forces having equal magnitude and opposite direction.

Let A be the cross section area of the rod. The applied forces F0 have been modeled assuming a uniform
load on a rod portion spanning a length equal to h/2 before and after the application point of the force

f(x) =
{{{
{{{
{

F0/Ah, x ∈ [−2h, −h],
−F0/Ah, x ∈ [h, 2h],
0, elsewhere.

The values adopted for the parameters are

β1 = 0.5, β2 = 0.5, s = 3/4,
E = 14400MPa, k = 0.015mm2s−2, V = 0,
F0 = 1000N, A = 100mm2, h = 2.

The values obtained for the displacements u and the strain ϵ are shown in Figure 2.
The obtained results are in good agreement with those reported in [19].
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Figure 2. Displacements u and strain ϵ for the Case study #1.
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Figure 3. Rod loaded with a force at mid-span.

Case study #2. As before, let us consider the rod of length 2L, centered at zero andwith cross section area A.
Here we consider an applied force F0 at the mid-span, as shown in Figure 3.

The force F0 has been modeled assuming a uniform load on a portion spanning a length h before and
after the application point of the force

f(x) =
{
{
{

F0/Ah, x ∈ [−h, h],
0, elsewhere.

The values adopted for the parameters are

β1 = 0.5, β2 = 0.5, s = 3/4,
E = 14400MPa, k = 0.071mm2s−2, V = 0,
F0 = 360N, A = 100mm2, h = 2.

The values obtained for the displacements u and the strain ϵ are shown in Figure 4.
The obtained results are in good agreement with those reported in [14].
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Figure 4. Displacements u and strain ϵ for the Case study #2.

5.2 The case of a continuous force f

Let us consider the distributed continuous external force

f(x) = f0 e−x
2/2(L/16)2

schematized in Figure 5. The following values have been used

β1 = 0.5, β2 = 0.5, s = 3/4,
E = 72000MPa, k = 0.5mm2s−2, h = 2,
f0 = 36Nmm−3,

Two constant levels for the function V have been considered, namely V = 0 and V = 0.0005. The values
obtained for the displacements u and the strains ϵ are shown in Figure 6.
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Figure 5. Rod loaded with a distributed continuous force f .
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Figure 6. Displacements u and strains ϵ for the case of a continuous force f .

We remark that when V = 0 the results obtained for the displacement u and the strain ϵ are very similar
to the analogous one got for the Case study #2 treated in the Section 5.1 for a discontinuous force f . In fact,
the external force F0 considered in the Case study #2 of Section 5.1 can be seen as the limit of the distributed
force f used here when the interval of x in which f is significantly different from zero becomes very small.

5.3 Parametric analysis

In this subsectionwe perform a parametric investigation on the problem (D) in order to highlight the different
response of the rod under the action of the continuous external force f introduced in Section 5.2, both in the
nonlocal and in the purely local setting. The mechanical characteristics are

E = 72000MPa, k = 0.5mm2s−2, V = 0,
f0 = 36Nmm−3, h = 2.

Moreover, we recall that
c = β1, κ = −2β2k cos sπ.

Changing β1 and β2. First, we have considered the behavior of the rod according to different values of the
parameter β1 ∈ [0, 1]. In the purely local case β1 = 1 (and therefore β2 = 0) problem (D) becomes

{{
{{
{

−u�� + V(x)u =
f(x)
E in (−L, L),

u = 0 inℝ \ (−L, L).
(5.3)

If V ≡ 0, then the solution of (5.3) is
u(x) = û(x) + Ax + B,
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Figure 7. Parametric analysis on varying β1, with V = 0.

where

û =
√π
256 f0 L

2(
e−128x2/L2

√π
+
27/2x erf(27/2x)

L ), A = −
1
2L [û(L) − û(−L)], B = −

1
2 [û(L) + û(−L)],

and the error function is defined as

erf(x) = 2
√π

x

∫
0

e−t2dt.

The obtained displacements and strains are shown in Figure 7. Note that the graphics corresponding to the
case β1 = 0.5 coincide exactly with the ones plotted in Figure 6.

As can be observed, for a fixed value of k, for example k = 0.5, in the nonlocal setting (β1 < 1) the dis-
placement u is smaller than in purely local case β1 = 1. The interesting point is that the values of u decrease
as far as β1 does, that is as far as the nonlocal effect increases.

Moreover, the different behavior of the strains, induced by nonlocality, can be clearly observed. Indeed,
if β1 = 1, the strain of the rod is constant in the region where f reaches values very close to zero, that is in the
set where f is negligible from an engineering point of view. On the contrary, the rod with effective nonlocal
properties (β1 < 1) is such that the strain ϵ reaches its greatest values (in magnitude) at the end points and
at the mid-span of the rod.

Under the action of a continuous external force f , it is particularly interesting to consider also the con-
tribute of an effective positive constant potential V. The solution of problem (5.3) is now given by

u(x) = f0√π
4√kρ

{
e√kx[erf(√k−2ρL2√ρ ) + e2√kL erf(√k+2ρL2√ρ )]

e2√kL−k/4ρ + e−k/4ρ

+
e−√kx[erf(√k−2ρL2√ρ ) + e2√kL erf(√k+2ρL2√ρ )]

e2√kL−k/4ρ + e−k/4ρ

− ek/4ρ−√kx[erf(
√k − 2ρL
2√ρ

) + e2√kx erf(
√k + 2ρx
2√ρ

)]},

where
ρ = (

8√2
L )

2
.

The results, obtained for V = 0.0005, are shown in Figure 8.
Considerations similar to those of the case V = 0 can be done.

Changing s. The analysis has been enlarged with numerical simulations concerning the variation of the
fractional exponent s. In this context, the values β1 = 0.5 and β2 = 0.5 have been fixed, while the other
parameters are set as in the previous case. In particular, note that the chosen value of k implies that if s → 1,
then −cu�� + κ(−∆)su → −u�� and therefore the purely local behavior is obtained.

The results are shown, in terms of displacements u and strains ϵ, in Figure 9 for the case V = 0 and in
Figure 10 for the case V = 0.0005.
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Figure 8. Parametric analysis on varying β1, with V > 0.
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Figure 9. Parametric analysis on varying s, with V = 0.
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Figure 10. Parametric analysis on varying s, with V > 0.

It is interesting to note an evident increase of the strain ϵ near the end points and at the mid-span of the
rod, when s is close to 1/2.

Changing k. A further investigation we present here concerns the effects on u and ϵ deriving from different
values of k. Such effects are schematized in Figure 11. In particular, we note that the value k = 0.353 has
been chosen according to

c = κ â⇒ β1 = −2β2k cos sπ â⇒ k = −
1
2 cos 34π.

In this case, we obtain a solution which does not coincide with the one obtained in the local case, and this
difference may be used to assess the influence of the fractional Laplacian in problem (D). As it is shown in
Figure 11, the displacements and the corresponding strains increase as the value of k decrease.

Concerning Figure 11, we recall that the purely local case refers to problem (5.3).
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Figure 11. Parametric analysis on varying k, with V > 0.

Changing V. Finally, the action of the restoring force V has been studied and the corresponding results are
presented in Figure 12. As it was expected, since the term V(x)u represents an elastic restoring force, the
displacements and the strains decrease as the value of V increase.
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Figure 12. Parametric analysis on varying V.

6 Conclusions and perspectives
Composite materials are acquiring an important role in the development of innovative solutions which are
environmentally sustainable and energetically efficient. The possibility to design the characteristics of these
composites, using the properties of the single phases and their mutual arrangement, is precious and leads
to significant outcomes. However, the resulting material, when considered at the macro-scale, is often char-
acterized by nonlocal properties, in the sense that the stress at a point depends not only on the strain at the
point but also on the strain at distant points. For materials exhibiting nonlocal behavior, the models of the
classical mechanics are not sufficient and a new investigative approach turns to be necessary.

In this paper, following the approach proposed by Eringen, a nonlocal constitutive model for a rod
has been obtained. The equation governing the problem contains a term involving the fractional Laplacian
operator which accounts for the nonlocal part of the response. It has been shown that the problem of the rod
subjected to external forces has a unique weak solution, and under reasonable conditions the weak solution
is actually a classical solution of the problem. Moreover, the model has been extended to a nonlinear multi-
dimensional problem depending on a real parameter λ, for which nontrivial solutions have been determined
for all λ behind a threshold λ∗ > 0.

In order to estimate the solution of problem (D), numerical simulations have been produced. In partic-
ular, the problem has been discretized by mean of finite differences. The fractional Laplacian term has been
evaluated following the approach due to Huang and Oberman. The obtained results have been validated by
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comparison with the exact solution known in the purely local case andwith previous results in the literature.
The numerical investigations have highlighted the importance of the role of the parameters in the nonlocal
model, especially for what concerns the order s of the fractional Laplacian and the interactions between the
local and nonlocal nature of the material.

The analysis carried out allows us to enlarge the present knowledge about always more efficient and
energetically sustainable structural systems, employed in technical fields, trough the of linear and nonlin-
ear models describing the elastic behavior of innovative composite materials. The obtained results could be
useful in the identification of the mechanical characteristics of a composite material exhibiting a nonlocal
behavior and in developing models to fit experimental data. The proposed approach seems to open new
perspectives for the investigation and the analysis of other interesting engineering problems, concerning
effective applications. The procedure appears to be particularly fruitful in the field of the mechanics of nano-
materials, plane problems with eventual radial symmetry (circular plates, pipes) and nonlinear systems.
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