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Abstract: Full-scale wind turbine is a mature technology and therefore several retrofitting techniques
have recently been spreading in the industry to further improve the efficiency of wind kinetic
energy conversion. This kind of interventions is costly and, furthermore, the energy improvement is
commonly estimated under the hypothesis of ideal wind conditions, but real ones can be very different
because of wake interactions and/or wind shear induced by the terrain. A precise quantification
of the energy gained in real environment is therefore precious. Wind turbines are subjected to
non-stationary conditions and therefore it makes little sense to compare energy production before
and after an upgrade: the post-upgrade production should rather be compared to a model of the
pre-upgrade production under the same conditions. Since the energy improvement is typically of the
order of few percents, a very precise model of wind turbine power output is needed and therefore it
should be data-driven. Furthermore, the formulation of the model is heavily affected by the features
of the available data set and by the nature of the problem. The objective of this work is the discussion
of some wind turbine power curve upgrades on the grounds of operational data analysis. The selected
test cases are: improved start-up through pitch angle adjustment near the cut-in, aerodynamic blade
retrofitting by means of vortex generators and passive flow control devices, and extension of the
power curve through a soft cut-out strategy for very high wind speed. The criticality of each test case
is discussed and appropriate data-driven models are formulated. These are employed to estimate
the energy improvement from each of the upgrades under investigation. The general outcome of
this work is a catalog of generalizable methods for studying wind turbine power curve upgrades.
In particular, from the study of the selected test cases, it arises that complex wind conditions might
affect wind turbine operation such that the production improvement is non-negligibly different from
what can be estimated under the hypothesis of ideal wind conditions. A complex wind flow might
actually impact on the efficiency of vortex generators and the soft cut-out strategies at high wind
speeds. The general lesson is therefore that it is very important to estimate wind turbine upgrades on
real environments through operational data.

Keywords: wind energy; wind turbines; Supervisory Control And Data Acquisition (SCADA);
retrofitting; performance evaluation

1. Introduction

Wind turbine technology and condition monitoring techniques [1] have been continuously
evolving and the operational unavailability of a wind turbine is estimated nowadays to be 3% of
its lifetime [2]. The target of 100% technical availability is therefore becoming realistic and this
motivates the research about further optimization of the efficiency of wind kinetic energy conversion.
The retrofitting of wind turbines improve the power production is therefore becoming a common
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practice. This kind of interventions has material and labor costs and producible energy is lost during
installation. For this reason, it is crucial to inquire if the performance upgrade justifies the cost of the
retrofitting. One key point is that the estimate of the guaranteed energy improvement is commonly
provided by the wind turbine manufacturer under the hypothesis of ideal operation conditions of the
wind turbines. Instead, the real operation conditions of wind turbines are commonly very different
from ideal ones, because of wake interactions [3–7] and/or terrain effects [8–11].

Wind turbines are subjected to non-stationary conditions because of the stochastic nature of the
resource and therefore it makes little sense to compare the energy production of a wind turbine before
and after an upgrade. Therefore, commonly, the power curve is studied [12], which is the relationship
between wind speed and power output, and the International Electrotechnical Commission (IEC) [13]
has established widely accepted standards for analyzing it. Basically, the power output of the wind
turbine is averaged on wind speed intervals (commonly 0.5 m/s); the dependency on environmental
factors is addressed by normalizing the wind speed to standard air density conditions. Further, data
describing the wind turbine operating under the wake of a nearby one are filtered away.

The study of the IEC power curve might not be precise enough to distinguish performance
improvements of the percent of Annual Energy Production (AEP). Furthermore, as happens in one
of the test cases of the present work, it might happen that the approach cannot be employed at all.
Other kinds of precision modeling of wind turbines power curve in principle might be employed for
studying wind turbine upgrades. This is in general a very fertile field in the scientific literature [14–17].
As regards these approaches, the main drawback for their application to the study of wind turbine
upgrades is that they are not versatile enough to be applied to the range of different criticality that the
study of wind turbine upgrades poses.

Techniques specifically devoted to the study of wind turbine upgrades are needed and this is the
main motivation of the present study. This work was a collaboration between academia and industry.
The industry is Renvico srl (www.renvicoenergy.com), owning and managing 335 MW of full-scale
wind turbines in Italy and France. Some wind turbines owned by Renvico have been retrofitted in
several ways. This study was a pilot test and the decision of extending the retrofitting to the other
wind turbines in the corresponding wind farms was based on the assessment, coming from this study,
of the real profit on the pilot test cases. The Supervisory Control And Data Acquisition (SCADA)
data from the retrofitted and non-retrofitted wind turbines from the wind farms of interest were
therefore shared with the University of Perugia. This academia–industry collaboration, as is shown
in the following sections, produced methods for the study of power curve upgrades, standing at the
frontier of the scientific debate as well as being integrable in the everyday industrial management
of wind turbines. This kind of studies on this subject, based on operational data, has very recently
been developing in the scientific literature. In [18], a kernel plus method is adopted for computing
wind turbine performance upgrades. In general, kernel regression is a non-parametric method: the
available measurements are employed for simulating an output after being weighted with a kernel
function (typically Gaussian). In [18], a modified version of the kernel is proposed (hence, named
kernel plus) for addressing dataset dimensionality and bias issues: it has a hybrid structure that
includes multiplicative kernel functions in an additive model. This method is employed for studying
pitch angle control optimization and aerodynamic retrofitting (vortex generators installation on the
blades [19]). As regards vortex generators, the numerical study of their effect has attracted a certain
attention in the scientific literature. In [20], three different blades equipped with vortex generators
have been designed and several stall and pitch regulated wind turbine models have been simulated
by means of Blade Element Momentum (BEM) theory. In [21], the physics of vortex generators on
wind turbine DU97-W-300 airfoil is studied through three-dimensional numerical models. In [22], the
S809 airfoil is analyzed. In [23], the effects of two types of flow control devices, vortex generators
and Gurney flaps, on the power output performance of a 5 MW wind turbine, is studied by means
of BEM theory. As regards vortex generators and the ex-post study of power production increase
through operational data, in [24], an academia–industry joint study is presented and production of
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two onshore test case wind farms is considered. On the one hand, SCADA data with 10 min sampling
time are employed and, on the other hand, high-frequency power data are employed. The estimates of
production improvement are shown to be similar.

Summarizing, in this work, three test-cases are presented and discussed:

1. Optimization of the pitch angle control system near the cut-in, for an improved start-up;
2. Blade retrofitting through the installation of vortex generators and passive flow control

devices; and
3. Extension of the power curve for very high wind speed, by raising the cut-out and high wind

speed cut-in.

Cases 1 and 2 were studied using the same kind of method: the estimate of the energy
improvement is basically computed by comparing the actual production in a post-upgrade period
against the simulation of how much the wind turbine would have produced under the same wind
conditions if the retrofitting had not been installed. To do this, a model of the pre-upgrade behavior is
needed. This was achieved by modeling the pre-upgrade power output of the retrofitted wind turbines
by means of an Artificial Neural Network (ANN). The main difference between Case 1 and Case 2 is
the selection of the inputs to the model. In particular, Case 2 is challenging because, after the upgrade,
the nacelle wind speed measurements are not reliable and therefore cannot be used as inputs to the
model. Further, the site is very complex [10,25] and it is difficult, albeit necessary, to use nearby wind
turbines as references for the environmental conditions. Despite the different complexity, the criticality
of Cases 1 and 2 is the same: modeling as precisely as possible the pre-upgrade power output of the
upgraded wind turbines.

As regards Case 3 and in general the comprehension of the power curve for very high wind, the
criticality is not in the precision of the power curve modeling, because at rated power the errors have a
lower relative importance. In this case, the issue is understanding the wind conditions and the logic
of the control system before and after the upgrade. This subject has deserved a certain attention in
the scientific literature; for example, in [26], the impact of the hysteresis phenomenon on the energy
production is studied. The hysteresis is a control system logic for preventing the wind turbine from
beubg subjected to severe dynamic loads: the wind turbine cuts out at a wind speed of the order of
25 m/s and cuts in again when the wind speed lowers several m/s, for example at 20 m/s. This latter
wind intensity is known as high wind speed cut-in, to distinguish it with respect to the cut-in, i.e.,
the minimum wind speed at which the wind turbine operates, which is of the order of 4 m/s. In [27],
control strategies to allow wind turbines to operate above the cut out are studied, based on the study
of the fatigue loads. In [28], an extension of the power curve for very high wind, similar to the one
analyzed in this work, is discussed.

On the grounds of the above discussion anticipating some main issues analyzed in this work,
it is evident that SCADA-based approaches for the study of wind turbine power curve upgrades
must conjugate precision with adaptability to different types of criticality and to different availability
and quality of the data. The test cases presented in this work represent an interesting scenario of
possible problems and solutions and are therefore useful for the scientific community and industry as
well. Summarizing, the structure of the manuscript is as follows. In Section 2, the test case of pitch
angle optimization near the cut in is described. Section 3 is devoted to the test case of aerodynamic
wind turbine blade retrofitting through vortex generators and passive flow control devices. Section 4
is devoted to the test case of extension of wind turbine power curve above the cut-out. The wind
farms, the data sets, the methods and the results are described in Sections 2, 3 and 4 for each test case,
respectively. Finally, in Section 5, conclusions are drawn and further directions of the present work
are indicated.
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2. Case 1: Improved Start-Up Through Pitch Angle Optimization

2.1. The Wind Farm and the Data Sets

Five three-bladed upwind horizontal-axis wind turbines having 2.5 MW of rated power each
are installed in a gentle terrain in France. The rotor diameter with blades is 90 m and the hub height
is 80 m. The cut-in is 3 m/s and the cut-out is 25 m/s. The rotor rotational speed goes from 10.3
to 18.1 revolutions per minute (rpm) and at rated power it is 16.1 rpm. The gearbox is three-stage,
the generator is double fed asynchronous and the main brake is aerodynamic through pitch angle
adjustment.

Three wind turbines (T1, T2, and T3) have been retrofitted with a control system upgrade
improving the pitch position for low wind speed, near the cut-in. Two wind turbines (T4 and T5) have
not been retrofitted.

The data are collected by the control system with 10 min sampling time and transmitted via
an ISDN connection. The SCADA data sets are:

• Dbe f describes the wind turbines operating before the upgrade and goes from 1 May 2016 to
1 September 2017.

• Da f t describes T1, T2 and T3 operating after the upgrade and T4 and T5 operating without
upgrade and goes from 27 September 2017 (date of installation of the improved start-up system)
to 18 January 2018.

2.2. The Method

Since the retrofitting affects power output production near the cut-in, data were filtered
accordingly between 3 and 7 m/s. The wind speed is measured by the nacelle anemometer and
the undisturbed wind speed is reconstructed by the control system through the nacelle transfer
function. A subtle point regards how to filter out data characterized by wind turbine malfunctioning:
since the regime of interest is near the cut-in, a counter indicating if the wind turbine is ok (producing
if there is enough wind, potentially producing if there is not enough wind) was considered the most
adequate information for data filtering. For each wind turbine, data are kept when the turbine was
okay for 600 s out of 600.

The selected model is a feedforward ANN, with this structure:

• The output y(x) is the power produced by each wind turbine.
• The inputs are nacelle wind speed and wind direction (in the form of sin and cos of the nacelle

wind direction θ). Therefore, x1 = v, x2 = sin θ, x3 = cos θ.

The wind speed was renormalized according to the meteorological conditions to account for
effects due to the variation of the density of the air. The air density averaged on 10 min basis is:

ρ10min =
B10min

R0T10min
(1)

where B is the measured air pressure, T is the measured absolute air temperature, and
R0 = 287.05

(
J

kg·K

)
. For a wind turbine with active power control, the normalization is applied to the

wind speed, as follows [13]:

Vn = V10min

(
ρ10min

ρ0

) 1
3

, (2)

where ρ0 = 1.225 kg/m3 is the air density in standard conditions (at sea level and 15 ◦C).
The proposed method is as follows: a feedforward ANN architecture was selected and the number

of neurons was selected through the k-fold cross-validation [29] technique. The data set Dbe f was
divided J times randomly in (100-k)% of the data for training the model and k% for validating. k was
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selected to be 10 for this study, because the objective was validating the model for very short folds
to test its robustness. J was selected to be 300. For each value of the number of neurons, one has J
measurement data sets and J corresponding simulated data and the mean absolute error

δ̄j,p = |ŷvalidj,p
− yvalidj,p

|

for j = 1, . . . , J can be computed. Averaging over j obtained an estimate of the average absolute error
for a given number of neurons. With this procedure, five neurons were selected.

Subsequently, the selected model was employed as follows for estimating the energy improvement:
Dbe f is divided randomly in D0 (75% of Dbe f ) and D1 (25% of Dbe f ). For nomenclature consistency,
Da f t is equivalently named D2. The model was trained with the D0 data set and was employed to
simulate the power output using the D1 and D2 data sets. The residuals R between simulations (ŷ) and
measurements (y) were analyzed before and after the installation of the improved start-up. In other
words, one has to observe how the residuals change when the improved start-up has been installed.

For i = 1, 2, one computes

∆i = 100 ·
∑x∈Datai

(y(x)− ŷ(x))
∑x∈Datai

y(x)
= 100 ·

∑x∈Datai
R(x)

∑x∈Datai
y(x)

. (3)

Since ∆i is constructed with the relative discrepancies of power data each having the same
sampling time (10 min), the quantity ∆ = ∆2 − ∆1 also provides a percentage estimate of the energy
improvement. Further, a Student’s t-test can be performed to detect the difference in the residuals
R(x1) and R(x2). The t statistic is computed as

t =
R̄2 − R̄1

σR

√
1

N1
+ 1

N2

. (4)

In Equation (4), N1 and N2 are the number of measurements, respectively, in D1 and D2. R̄2 and
R̄1 are the average residuals between measurement and model, respectively, in D1 and D2 and σR is
given by

σR =

√
(N1 − 1)S2

1 + (N2 − 1)S2
2

N1 + N2 − 2
, (5)

where S1 and S2 are the standard deviations of the residuals in data sets D1 and D2.
Notice that the model can be run several times, with several different random choices of D0 and

D1. This allows having an average estimate of the energy improvement, as well as a standard deviation
providing reasonable upper and lower limits.

In this case, it is also possible to study straightforwardly the wind turbine power curve
for obtaining a mostly qualitative picture of the performance improvement. This was done and
a refinement with respect to the IEC guidelines was adopted: the considerable data population for
wind speed between 3 and 7 m/s (else, the adoption of the improved start-up would not justify the
installation cost) allows averaging the power output in wind speed intervals of 0.25 m/s without
compromising the statistical significance of the analysis.

2.3. The Results

In Figures 1–4, some power curves are reported. The data sets are, respectively, Dbe f and Da f t. T1,
T2, and T3 in Figures 1–3 are the three retrofitted wind turbines, while T4 has not been retrofitted.

In Figures 1–3, it arises clearly that the performances of T1–T3 improved with respect to before
the retrofitting and this is especially visible when compared against the power curve of turbine T4
(Figure 4) measured in the same periods.
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For each random selection of D1, the value of the t statistics (Equation (4)) is of the order of 10−11

for each of the retrofitted wind turbines, which supports quantitatively that D1 and D2 should not be
considered data sets coming from the same ensemble. This is a clear indication of the fact that there
has been an upgrade.

Figure 1. Power curve of wind turbine T1 before and after the retrofitting.

Figure 2. Power curve of wind turbine T2 before and after the retrofitting.

Figure 3. Power curve of wind turbine T3 before and after the retrofitting.
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Figure 4. Power curve of wind turbine T4 before and after the retrofitting of the T1–T3 wind turbines.

In Table 1, the results are reported for the average estimate of the energy improvement for T1, T2,
and T3 during the period D2. Notice that this estimate is a percentage referred to the amount of energy
produced during D2 from 3 to 7 m/s. Furthermore, notice that in this case the standard deviation of
the results can be considered negligible. It is shown below that this does not happen for the test case in
Section 3.

Table 1. Results for the estimation of energy production improvement from 3 to 7 m/s.

Wind Turbine ∆

T1 +4.35%
T2 +5.95%
T3 +3.76%

In Table 2, the values of ∆ in Table 1 are converted to percentages of improvement with respect to
the total energy produced during D2. This quantity is indicated with ∆E.

Table 2. Estimate of the energy improvement with respect to the overall production during D2.

Wind Turbine ∆E

T1 +0.51%
T2 +0.77%
T3 +0.49%

As a further comment, notice that the above estimate (Table 2) might not be representative of the
long-term wind intensity statistics because it refers to autumn and winter, when there is scarcity of
wind near the cut-in with respect to summer. For this reason, the results in Table 1 have been projected
to a twelve-month data set to obtain a simulation of the long-term improvement based on the estimate
in Table 1. The results are collected in Table 3.

Table 3. Long-term estimate of the energy improvement with respect to the overall production based
on the results in Table 1.

Wind Turbine ∆AEP

T1 +0.88%
T2 +1.39%
T3 +0.74%
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In Table 3, it arises that the long-term estimate of energy improvement shows significant
differences from turbine to turbine: for example, the improvement for T2 is estimated to be twice
that for T3. This would not be observable from the power curves in Figures 2 and 3 because they are
similar. Further, by weighting the power curves against a unique Weibull distribution for the site (as is
common in the estimate of Annual Energy Production), the difference from turbine to turbine would
not be highlighted. Therefore, the lesson is that being driven by data in the training of the model and
in its application is fundamental to observe the energy improvement with a fine grain.

3. Case 2: Aerodynamic Retrofitting Through Vortex Generators and Passive Flow Control
Devices Installation

3.1. The Wind Farm and the Data Sets

Seventeen three-bladed upwind horizontal-axis wind turbines having 2.3 MW of rated power
each are installed in a very complex site [10,25,30]. The rotor diameter with blades is 93 m and the
hub height is 80 m. The cut-in is 4 m/s and the cut-out is 25 m/s and the nominal wind speed
is 13–14 m/s. The rotor rotational speed goes from 6 to 16 rpm. The gearbox is three-stage, the
generator is asynchronous having synchronous speed of 1500 rpm and the main brake is aerodynamic
through pitch angle adjustment. T7 is the wind turbine that underwent aerodynamic blades retrofitting.
In Figure 5, the layout of the wind farm is reported. For the construction of the model for this test case
and for interpreting the results, it is important to notice the complexity of the terrain and the wind
turbine displacement.

The SCADA data are recorded with 10 min sampling time through a microprocessor controller
and are Wi-Fi Protected Setup (WPS)-transmitted via modem.

The following data sets are at disposal:

• Dbe f describes the wind turbines operating before the upgrade: it goes from 1 January 2016 to
01/07/2017.

• Da f t describes T7 operating after the upgrade and the rest of the wind farm operating without
upgrade: it goes from 1 September 2017 to 1 April 2016.

Figure 5. The layout of the wind farm for Case 2. In red, the retrofitted wind turbine is indicated (T7).
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3.2. The Methods

The production increase is estimated similarly in principle to the case in Section 2: by observing
how the difference between simulated and measured power output of turbine T7 behaves before and
after the installation of the aerodynamic upgrade. To do this, a model must be formulated. The output
y of the model is the power production of T7. In this case, the formulation of the model is more
complicated with respect to Section 2: it is hypothesized that the nacelle transfer function of turbine T7
has not been updated by the manufacturer after the installation of the flow control devices. Therefore,
the nacelle wind speed of T7 cannot be used as input for the model because the measurements during
the Da f t data set are not reliable. An argument for supporting this hypothesis is the following: in
Figure 6, the power coefficient Cp = P

1
2 ρAv3 as estimated from the SCADA data during the Da f t data set

is reported as a function of the wind speed. P is the measured power output, ρ is the air density on
site, A is the blade swept area and v is the undisturbed wind speed as reconstructed from the nacelle
wind speed through the nacelle transfer function. In Figure 6, the power coefficient measurements for
T7 and for a sample wind turbine (T2) from the rest of the wind farm are reported and it clearly arises
that the measurements for T7 are implausible because they are often of the order of twice the Betz limit.
Therefore, it must be argued that the wind speed measurements at T7 are implausible. This implies
that the straightforward power curve analysis according to IEC guidelines [13] cannot be performed
for turbine T7.

4 6 8 10 12 14
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0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

wind speed (m/s)

C
p

Power coefficient

 

 

T7

T2

Figure 6. The power coefficient Cp, as computed from the SCADA data, vs. nacelle wind speed: T7
and a sample wind turbine (T2), Da f t data set.

On the grounds of the above discussion, it is then necessary to adopt the wind turbines nearby
T7 as references for constructing the model. Due to the severe complexity of the terrain, it has been
considered more solid to use as reference the power output of the nearby turbines rather than the
nacelle wind speed.

The inputs x to the model are selected to be the powers of T1, T2, T3, T4, T5, T6, T8, and T9.
The selected model, as in Section 2.2, is a feedforward ANN and 12 neurons are selected by using the
same k-fold cross validation procedure as in Section 2.2.

The data sets were filtered on the condition of power output production from the T1–T9 wind
turbines using the production counter available in the SCADA data set: it was requested that each
wind turbine in the T1–T9 was producing for 600 seconds out of 600 in the time interval. Further, data
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were filtered on power production of T7 below the rated, because at rated power the upgrade has no
effect. Similar to what is reported in Section 2, the measurements corresponding to wind turbines
operating under the wake of a nearby turbine were not filtered away.

As is reported in Section 2.2, the data set Dbe f was randomly divided into 75% of the data for
training (D0) and 25% for validation (D1) before the upgrade. The difference between measurement y
and simulation ŷ was studied before the upgrade (D1) and after the upgrade (Da f t also named D2 for
nomenclature consistency).

3.3. The Results

As discussed in Section 3.2, the unavailability of reliable nacelle wind speed measurements at T7
after the upgrade implies that the the power curve plot analysis cannot be performed.

To have insight into the performance improvement produced by the retrofitting, it is possible
to plot R(x1) and R(x2) on a sample model run: this allows appreciating how the residuals between
measurements and simulations vary after the retrofitting.

In Figure 7, the sets R(x1) and R(x2) are plotted after being averaged within intervals having
amplitude of the 10% of the rated power. Observing Figure 7, it arises that the performances are similar
before and after the upgrade approaching the cut-in, while the improvement is clearer approaching
rated power. In this case, with remarkable difference with respect to Section 2.3, the results vary from
model run to model run in a way that cannot be neglected: this is due to the complexity of the site and
to the fact that the most significant potential input to model, the power of T7 (the nacelle wind speed),
cannot be used for the the model. Therefore, the procedure was repeated several times, until the
standard deviation of the results reached a reasonable plateau. The average energy improvement was
computed as ∆ = 3.9%. In other words, the estimate is that T7 has produced, during data set D2 and
below rated power, 3.9% more than it would have done without retrofitting. The standard deviation
is computed as σ∆ = 0.4%: therefore, reasonable upper and lower limits of the energy improvement
are ∆+ = 4.3% and ∆− = 3.5%. Further, the probability that there has not been an improvement was
computed, using the t statistic, as being of the order of 10−14.
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D1 data set

D2 data set

Figure 7. The average differences R(x1) and R(x2) between T7 power measurements and simulation,
for data sets D1 and D2 on a sample model run.

Moreover, similar to what is reported in Section 2.3, it is possible to estimate how much ∆ amounts
with respect to the total energy produced by T7 during the D2 data set: the result is ∆E = 1.9%. Upper
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and lower limits are computed to be ∆E+ = 2.2% and ∆E− = 1.8%. Similar to Section 3.2, this result
was also converted into a long-term estimate and the results is that the increase in AEP is of the same
order of ∆E. Finally, it is important to notice that the reported results are of the order of one third lower
than the estimate provided by the wind turbine constructor under the hypothesis of ideal operating
conditions.

4. Case 3: The Extension of the Wind Turbine Power Curve Above the Cut Out

4.1. The Wind Farm and the Data Sets

The wind farm is the same mentioned in Section 3. Therefore, please refer to Section 3 for the
information about the wind turbines.

The SCADA data set, here on named D1, employed for the following analysis has 10 min sampling
time and goes from 1 January 2017 to 1 January 2018. This data set corresponds to a period during which
all the wind turbines of the farm were equipped with the high wind speed control system upgrade.

In Table 4, the nomenclature for the high wind speed analysis is reported.

Table 4. Nomenclature of the high wind speed control system management.

Nomenclature Wind Speed Regime

vbe f
in high wind speed cut-in before the control system upgrade

vbe f
out cut-out before the control system upgrade

vbe f
max shut-down before the control system upgrade

va f t
in high wind speed cut-in after the control system upgrade

va f t
out cut-out after the control system upgrade

va f t
max shut-down after the control system upgrade

Basically, vout is the average wind speed at which the control system stops the wind turbine; vin is
the high wind speed cut-in, i.e., the average wind speed below which the wind turbine restarts after a
cut-out; and vmax is the gust wind speed, i.e., the maximum wind speed at which the control system
stops the wind turbine. The SCADA data set at disposal includes minimum, maximum, average and
standard deviation of wind speed and power, with 10 min sampling time. Therefore, vin and vout were
monitored by looking at the average SCADA wind speed, and vmax was monitored by looking at the
maximum SCADA wind speed.

4.2. The Methods

The estimation of the improvement in energy production was done through the analysis of
SCADA data of wind speed and production. The high wind speed upgrade extends the power curve
above the pre-upgrade cut out wind speed; therefore, in this wind speed interval, whatever production
measured post-upgrade is gained production because pre-upgrade the wind turbine would be stopped.
The downside is that, for wind speed between the post-upgrade cut-in and the pre-upgrade cut-out,
the power production is de-rated: according to the pre-upgrade logic, except for the case of wind
turbine in hysteresis, the production would be rated power, while, according to the post-upgrade logic,
the production is less than rated. Therefore, the energy balance is tricky: if a wind turbine experiences
high wind mainly in the unfavorable interval corresponding to de-rating, the upgrade might have a
negative effect.
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This can be understood by comparing qualitatively the power curves before and after the upgrade.
In Figure 8, a sample power curve before the installation of the upgrade is reported. In Figure 9,
a sample power curve after the installation of the upgrade is reported. In Figures 8 and 9, vertical lines
are reported in correspondence of vbe f

in and vbe f
out (dashed lines) and va f t

in and va f t
out (solid lines).
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Figure 8. A sample power curve before upgrade.
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Figure 9. A sample power curve after upgrade.

To compute the energy balance, the following conditions are therefore verified:

• if vbe f
in ≤ v ≤ vbe f

out and vbe f
max ≤ vmax ≤ va f t

max: the wind turbine has gained its measured production.

• if v > vbe f
out and vmax < va f t

max: the wind turbine has gained its measured production.

• if vbe f
in ≤ v ≤ vbe f

out and vmax < vbe f
max and the wind turbine would be in hysteresis according to the

pre-upgrade logic: the wind turbine has gained the measured production.
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• if vbe f
in ≤ v ≤ vbe f

out and vmax < vbe f
max and the wind turbine would not be in hysteresis according

to the pre-upgrade logic: the wind turbine has lost the difference between the rated and the
measured production.

As briefly discussed in Section 1, the criticality in this case is mainly in the comprehension
of the logic of the control system. It is therefore useful to compare the computation of the energy
improvement against a simulation of the energy improvement in the same data set. In this case,
the power curve for wind speed higher than vbe f

out is taken from the indications of the wind turbine
manufacturer and is here indicated as P. The following conditions are therefore verified:

• if vbe f
in ≤ v ≤ va f t

in and vbe f
max ≤ vmax ≤ va f t

max: the wind turbine should gain rated power.

• if va f t
in ≤ v ≤ vbe f

out and vbe f
max ≤ vmax ≤ va f t

max: the wind turbine should gain the power indicated by
the P model.

• if v > vbe f
out and vmax < va f t

max: the wind turbine should gain the power indicated by the P model.

• if va f t
in ≤ v ≤ vbe f

out and vmax < vbe f
max and the wind turbine would not be in hysteresis according to

the pre-upgrade logic: the wind turbine has lost the difference between the rated and the power
indicated by the P model.

• if vbe f
in ≤ v ≤ va f t

in and vmax < vbe f
max and the wind turbine would be in hysteresis according to the

pre-upgrade logic: the wind turbine should gain rated power.

• if va f t
in ≤ v ≤ vbe f

out and vmax < vbe f
max and the wind turbine would be in hysteresis according to the

pre-upgrade logic: the wind turbine should gain the power indicated by the P model.

4.3. The Results

In Table 5, the results are reported. The measured energy production improvement (Column 2) and
the simulated energy production improvement (Column 3), based on the measured wind conditions,
are reported. It is important to notice that the simulated energy improvement is of the order of twice
the measured one: 1.06% of the total production of the wind farm against 0.44%.

Table 5. Estimation of the measured and simulated energy production improvement: D1 data set.

Wind Turbine Measured Extra Production
(% of the Total Actual)

Simulated Extra Production
(% of The Total Actual)

T1 0.55 0.78
T2 0.63 0.76
T3 −0.07 1.73
T4 0.51 1.76
T5 0.91 2.48
T6 2.04 3.50
T7 0.65 1.49
T8 −0.01 0.18
T9 −0.04 0.49

T10 0.06 0.62
T11 0.31 0.32
T12 0.36 0.56
T13 0.50 0.57
T14 0.02 0.03
T15 0.00 0.14
T16 −0.02 0.67
T17 0.03 0.22

The mismatch between simulated and measured energy improvement (Table 5) stimulated
a further analysis about its causes. It was observed that the measured power output is very similar to
the simulated one according to the indications from the manufacturer, when the wind turbine operates
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in the high wind region. The point is that the wind turbine is not always operating in the high wind
region when it is expected to. An analysis of the wind turbine states during the shutdowns in the high
wind speed region has revealed that there are issues related to vibrations and to the control system
(spikes in the generator revolutions per minute). Therefore, the lesson is that, if a wind farm owner
intends to assess the theoretical profitability of the high wind speed power curve upgrade based solely
on the wind conditions measured at wind turbine nacelle, it must be taken into account that, doing
this, an upper limit is obtained and the actual improvement can be considerably lower, in a way that is
unpredictable without modeling the vibration and the control of the wind turbine, especially in such a
complex terrain as in the considered test case.

5. Conclusions

It is non-trivial to estimate the energy production improvement from wind turbines retrofitting.
The reason is basically that wind turbines operate under non-stationary conditions, because of the
stochastic nature of the wind. Therefore, it makes little sense to compare the energy production before
and after an upgrade: the post-upgrade production should rather be compared against a model of the
pre-upgrade production under the same conditions.

These issues have become common in the everyday practice of wind turbine management, but
their solution needs precision modeling of the power output of the wind turbines and requests
flexibility in adapting to the problem and to the quality of the data sets. Therefore, appropriate
methods are commonly at disposal of the scientific, rather than industrial, community. On these
grounds, this work has been organized as a collaboration between academia and industry and it is
hopeful that the outcomes stimulate further cooperation.

The objective of the study was meaningful test cases of wind turbine retrofitting through
operational data. They were selected to provide a reasonably comprehensive catalog and the criticality
of each case has been discussed such that the outcome of this work is not only in the results, but also
in the philosophy and in the methods.

The test cases selected in this work are:

1. Pitch angle optimization near the cut-in;
2. Aerodynamic optimization through the installation of vortex generators and passive flow

control devices; and
3. Extension of the power curve in the high wind region through a soft cut-out strategy, based on

the raising of the cut-out and high wind speed cut-in.

The first two cases were studied by modeling the power of the retrofitted wind turbines by means
of an ANN model. As regards Case 3, the energy improvement was computed by comparing the
pre-upgrade to the post-upgrade control system logic according to the measurements of power output
and of wind speed at the nacelle of the wind turbines.

Summarizing, the main findings for each test case are the following:

1. In this case, the data set at disposal made it possible to study the average power curve according
to the IEC guidelines and a certain production improvement near the cut-in was observed.
The added value of the proposed ANN method is in the fact that, being driven by the wind
statistics at each wind turbine, it is possible to distinguish more finely the behavior of each wind
turbine. The order of magnitude of the energy improvement is 1% (1.4% in the most profitable
wind turbine, and 0.7% in the least profitable one).

2. In this case, the data set at disposal did not make it possible to study the power curve according
to the IEC guidelines because the wind speed measurements at the upgraded wind turbine were
unreliable after the installation of the flow control devices. The method was therefore based on
the use of the power of a certain number of nearby wind turbines as inputs to model the power of
the upgraded wind turbine. The result is that the retrofitting had an impact of the order of 2.0%
of the AEP. This estimate is of the order of one third lower than the one provided by the wind
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turbine manufacturer. Since this wind farm is sited on very harsh terrain, this result supports
that complex flow conditions have an impact on the efficiency of passive flow control devices.

3. The extension of the power curve in the high wind region through a soft cut-out strategy was
estimated weighting an order of 0.5% of the AEP of the wind farm since it has been installed.
It was observed that this amount is of the order of half the expected, according to the measured
wind conditions at the nacelles of the wind turbines. The mismatch between measurement and
simulation is explained by the fact that there are frequent shutdowns, due to vibration and control
issues, when the wind turbine is expected to work at high wind speed. Since this wind farm
is sited on complex terrain, this is more evidence that the production upgrades considerably
depend on the conditions at a micro-scale level, especially when rather extreme conditions (wind
near the cut-out) come into play.

Further possible directions of the present work include the extension of the test cases and the
comparison of several approaches (it would be interesting, for example, to compare with the kernel
plus method of [18]). Moreover, some kinds of retrofitting, as for example Cases 2 and 3 of the
present work, call for an improved effort in the condition monitoring of the wind turbines: it would
be extremely valuable to model [31–33] and to study experimentally how the retrofitting affects the
mechanical behavior of the wind turbines, especially for very stressing external conditions as in the
case of high wind speed.
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