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Abstract

Many countries are experiencing an increasing need of checking the safety of

existing structures. The assessment of structural capacity of RC structures

strictly depends on the in-situ compressive strength of concrete. The evalu-

ation of this property is typically carried out by means of destructive tests

on concrete cores taken from the structure. The experimental data is then

interpreted using a relevant code to obtain a design strength value according

to a required percentile and confidence. In this paper the principal inter-

national standards that deal with the statistical interpretation of data from

concrete core test are presented. Since it is reasonable to assume that con-

crete strength is a realization of a random field, the assumption of statistical

independence of core test data is questioned. An extension of the classical

theory of tolerance limits in the case of normally distributed correlated sam-

ples is thus proposed. Finally, application examples of this methodology are
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provided to illustrate some important implications of the spatial correlation

of core test values on concrete strength estimations.

Keywords: Existing Structures, In-situ Concrete Strength, Core Testing,

Spatial Correlation, Tolerance Limits

1. Introduction1

In the last decades many countries have experienced an increasing need of2

assessing the performances of old buildings and infrastructures. The evalua-3

tion of existing structures is becoming a prominent priority in many countries4

where strong earthquakes are frequent and where a great share of the built5

heritage dates back to just after the World War II, when no code prescrip-6

tions were available to protect the structures against the seismic action. An7

accurate evaluation of the existing structures may allow to plan and execute8

strengthening interventions to reduce causalities in case of earthquakes and9

to guarantee the functionality of strategic structures, such as hospitals, when10

such extreme events occur.11

The need of assessing existing structural systems may also be due to12

their aging and degradation. As an example, in the United States the var-13

ious Departments of Transportation have the duty of periodically checking14

the conditions of existing bridges. In case of necessity an evaluation of the15

residual load bearing capacity has to be performed either to post the bridge16

for load or to plan and execute a repair or strengthening intervention. The17

most recent data contained in the National Bridge Inventory Database sug-18

gest that about 10% of existing bridges in the United States are structurally19

deficient. It is thus clear how the evaluation of the safety of existing bridges20
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is a task that is as important and critical as guaranteeing the safety of new21

ones.22

Finally, in countries were an old built heritage is available, the need of23

both preserving and reusing the traditional constructions leads to the neces-24

sity of assessing the structural capacity against new load conditions.25

The result of all these different needs is that several countries have de-26

veloped codes specifically aimed at providing tools and guidelines for the27

assessment of existing structures. As an example, in Europe prescriptions28

for performing these kind of evaluations have been given in the Eurocode 829

[1], specifically to address the problem of checking the safety of old build-30

ings against earthquake-induced actions. In the United States, the American31

Concrete Institute released the ACI 562-16 [2] with the intention of providing32

minimal guidelines for the evaluation, repair and strengthening of existing33

RC structures. Similar indications have been released by AASHTO with the34

Manual for Bridge Evaluation [3] to give instructions specifically aimed at35

evaluating and rating the structural conditions of existing bridges.36

Any kind of in-depth structural evaluation must take into consideration37

the properties of structural materials. Compressive strength of concrete is38

surely one of the prominent factors which affects the overall safety of a RC39

structure. Any assessment begins with a survey of the structural system and40

of the existing documentation, which may contain information also on the41

materials that had been used for the construction. However oftentimes these42

documents have been lost or may be unreliable, so that an experimental43

evaluation of the material properties is almost always required.44

The assessment of in-situ concrete compressive strength is typically per-45
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formed extracting concrete cores from the structure and then by testing them46

in compression testing machines. This type of evaluation can be integrated47

by the use of non-destructive techniques, like SonReb tests, which however48

always require a proper calibration with destructive data to provide mean-49

ingful information and are particularly sensitive to external factors such as50

concrete carbonation [4, 5] and water content.51

Many uncertainties are involved in the evaluation of in-situ concrete core52

strength results and thus statistical tools are needed to interpret test data.53

This need is even more relevant for old RC structures and infrastructures54

built before the eighties, for which is known that the quality of the material55

and workmanship were far below the actual practice [6].56

Several standards have been published to give details on how a correct57

assessment of in-situ strength of concrete should be performed. Neverthe-58

less, these codes adopt different ways of interpreting the core strength test59

results, and some of them are even scarcely justified. Furthermore all exist-60

ing standards implicitly assume that the measured core strength values are61

independent one to each other, even though it is reasonable to think that62

in-situ concrete strength is actually a realization of a random field with a63

certain correlation function.64

One of the consequences of the assumption of independence of sample65

test values is that codes e.g. ACI 214.4R [7] suggest to choose core locations66

at random. In presence of spatial correlation however more rational sam-67

pling schemes should be developed to optimally extract cores so to maximize68

the amount of information on the field. With regard to this problem, recent69

researches [8, 9] are promoting the use of NDT data to select in a more ratio-70
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nal and representative way the sampling locations, rather than haphazardly71

choosing them.72

This work is thus aimed at providing a consistent statistical framework,73

within the statistical theory of tolerance limits, to investigate the influence74

of spatial correlation of core test values on the confidence of in-situ concrete75

strength assessment. In detail the objective has been the generalization of the76

tolerance factor method of the ACI 214.4R code to make it applicable to any77

correlation function. The advantage of this latter compared to other litera-78

ture approaches currently in use is that it is statistically well-supported and79

tunable, as the user can select the desired confidence level in the estimates.80

This basic framework might be used for the definition of more accurate81

assessment procedures which are able to take into account the levels of corre-82

lation of the material strength measurements. The proposed approach does83

not consider epistemic uncertainties, which may turn out to be not-negligible84

[10], but focuses its efforts in the reduction of the effects of aleatory uncer-85

tainty in the estimates due to the spatial correlation of strength measure-86

ments.87

2. Current approaches88

In this section the most relevant standards that deal with the assessment89

of in-situ strength of concrete using cores are presented. The ACI 562-1490

[2] is one of the most widely recognized codes for the assessment of exist-91

ing structures. Its prescriptions on the evaluation of core test results are92

directly derived from the ACI 214-4R [7] that will be presented in the follow-93

ing section. For what it concerns European standards, the EN 13791:200794
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is the main document that deals with the assessment of in-situ concretes,95

even though Eurocode 8 [1] gives different prescriptions for what concerns96

the seismic evaluation of existing structures.97

2.1. ACI 214-4R98

The ACI 214-4R is a set of guidelines for the extraction of cores and99

interpretation of the compression test results. This document suggests two100

different approaches for the estimation of an equivalent in-situ strength value101

to be used for the evaluation of the structural capacity of an existing struc-102

ture.103

Given a set of n core test data xi with i = 1 . . . n, the ACI 214-4R sug-104

gests to correct these values to account for their different testing conditions105

(core diameter, length to diameter ratio, moisture content, damage due to106

drilling, etc.) multiplying the results by strength correction factors provided107

by the code itself. Since these factors have been empirically obtained by108

statistical interpretation of experimental results, they are subjected to a cer-109

tain statistical variability [11], which must be accounted for in performing110

the evaluations. This is accomplished taking into consideration the standard111

deviation sa of these correction coefficients, which is given by the code itself.112

After having homogenized the test values, the interpretation of the results113

can be carried out following two approaches. The first one is termed the114

tolerance factor method, as it is based on the statistical theory of tolerance115

regions. Following this approach the estimation fp,est of a given pth percentile116

fp of the in-situ concrete strength distribution with a desired confidence level117

is obtained as:118

fp,est = x̄s − kss (1)
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where x̄s is the mean value of the corrected test results, ss is their standard119

deviation and k is a coefficient that depends on the desired confidence 1− α120

(where α is the chosen probability of overestimating the given percentile)121

and on the number of samples n, under the hypotheses of independent and122

normally distributed samples. This coefficient can be evaluated [12] as:123

k = k(n, p, α) = t−1n−1,1−α(z1−p
√
n)/
√
n (2)

where t−1n−1,1−α(x) is the inverse non-central t distribution with n− 1 degrees124

of freedom evaluated in 1 − α and with non-centrality parameter x. The125

term zx represents the inverse cumulative distribution function of a standard126

normal distribution evaluated in x.127

If the variability due to the uncertainty in the strength correction factors128

is accounted for, the following expression should be used:129

fp,est = x̄s −
√

(kss)2 + (Zsa)2 (3)

where Z is a coefficient provided in the code as a function of the desired130

confidence level.131

Alongside this approach, the ACI 214.4R defines an alternate method132

that is mainly based on the research of Bartlett and MacGregor [13]. These133

Authors stated that the tolerance factor approach may be too conservative134

mostly for two reasons. First of all, in their opinion the measured core test135

values overestimate the actual variability of the in-place concrete strength136

[14], furthermore they believe that this approach is too precise for the re-137

quirements of actual design practice.138

As a consequence, the alternate method is less conservative. It is aimed139

at estimating the 10% percentile of concrete strength and it consists in a140
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two-step approach. First a 90% lower confidence limit for the mean x̄s,90 is141

estimated using an equation that is formally analogous to Eq.(3). Then this142

value is reduced to obtain the equivalent specified strength as:143

fc,eq = x̄s,90(1− 1.28Vws) (4)

where Vws is the within-structure coefficient of variation of concrete strength144

given by the code itself. This latter value has been experimentally obtained145

by interpreting literature data. This approach uses core test data only to146

obtain an estimation of the average in-place strength, whereas the additional147

variation of concrete strength within the structure is modeled using exper-148

imentally based literature values. The result is that the alternate method149

yields values that in general are significantly higher than those achieved by150

the tolerance factor approach.151

2.2. EN 13791:2007152

The European Standard EN 13791:2007 [15] gives prescriptions on the153

assessment of in-situ compressive strength in structures and in precast con-154

crete elements either by extraction and testing of concrete cores or by the155

use of indirect non-destructive methods.156

The assessment of the characteristic (i.e. relative to a 5% percentile) in-157

situ concrete strength by core testing is carried out following two different158

approaches depending on the number of available cores. Approach A must be159

used when at least 15 cores are available. In this case the in-situ characteristic160

strength estimation fck,est is given by:161

fck,est = min [x̄s −min(2, ss) · k2, xmin + 4] (5)
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where k2 is a coefficient typically assumed to be equal to 1.48, xmin is the162

minimum of the measured core strength values. In the previous equation all163

the values should be expressed in MPa.164

If 3 to 14 cores have been tested, then approach B is required. In this165

case the estimation is given by:166

fck,est = min (x̄s − k, xmin + 4) (6)

where k depends on the number n of cores.167

The criteria adopted by the EN 13791:2007 are clearly derived from the168

ones suggested in the European Standard EN 206 [16] for checking the com-169

pliance of concrete production. The purpose and hypotheses of this latter170

code are however different from that of the EN 13791. The philosophy behind171

the EN 206 is aimed at addressing and balancing two opposing interests: the172

consumer’s risk (erroneous acceptance of a non-compliant concrete lot) and173

the concrete producer’s risk (erroneous rejection of a conforming production).174

More details on the criteria of EN 206 can be found in the works of Taerwe175

[17] [18]. However, in the case of the assessment of in-situ concrete strength176

the objective and boundary conditions are completely different. The aim is177

no more that of checking the compliance of concrete production to a given178

design requirement, but simply to assess an existing material property. The179

figure of the producer doesn’t exists anymore and as such it is not justifi-180

able to put the basis of the evaluation on a theory that tries not to unduly181

penalize the producer.182
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2.3. Eurocode 8183

The EN 1998, also named Eurocode 8, is that part of the European184

design codes that deals with the seismic design of structures. The part 3185

of Eurocode 8 [1] gives prescriptions for the evaluation of existing buildings186

subject to seismic actions. According to these guidelines, the evaluation of187

structural material properties should be obtained using both original design188

data, if available, and experimental tests data.189

The design strength value to be used in the structural analysis is simply190

given by the average value of test results divided by a confidence factor (CF)191

which depends on the knowledge level (KL) of the structure.192

fc,est =
x̄s

CFKL
(7)

However, the knowledge level depends not only on the amount of data193

relative to material properties, but also on the available information on the194

structural geometry and its detailing (size and layout of steel reinforcement).195

As a result the confidence factors are rather arbitrary and they range between196

1.35 (for the worst knowledge level KL1) and 1.00 (for the best knowledge197

level KL3).198

It is clear that this approach is mostly empirical, and it is questionable199

to assume, within a semi-probabilistic structural design framework, that the200

uncertainties on the knowledge of structural materials are taken into account201

using such a scarcely justified approach. Additionally it is not realistic to as-202

sume the absence of uncertainties (i.e. CF=1.00) in the case of KL3, since the203

state of perfect knowledge is practically unattainable. Research efforts aimed204

at benchmarking the appropriateness of the Eurocode confidence factors for205

specific case studies can be found in literature [19].206
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3. Generalization of tolerance factor method to the case of corre-207

lated samples208

In this section a generalization of the tolerance limit theory to the case209

of correlated samples is presented.210

3.1. Fundamentals of tolerance limits211

The theory of tolerance limits is a subset of the more general topic of tol-212

erance regions, which has been treated in depth, among others, by Guttman213

[20]. In very basic terms, if n random variables xi, i = 1 . . . n are defined214

so that R is their sample space and U their associated σ-Algebra, then a215

tolerance region is a statistic that maps the random point (x1, . . . ,xn) into216

a region S(x1, . . . ,xn) defined in U . The boldface notation from now on will217

be used to denote random quantities, whereas the uppercase notation is used218

for vectors and matrices.219

If the region is defined as:220

S(x1, . . . ,xn) = [L1(x1, . . . ,xn), L2(x1, . . . ,xn)] (8)

then S is defined a tolerance interval.221

If L1(·) is set to be equal to −∞ then the tolerance interval becomes222

S(x1, . . . ,xn) = [−∞, L2(x1, . . . ,xn)]. In the context of the estimation of223

a given p-percentile of concrete strength the random variables x1, . . . ,xn224

represent the random outcomes of the test on n concrete cores. What it is225

desirable is to obtain a value for L2 such that no more than a fraction p of226

the population of strengths is greater than L2 in 1− α percent of the cases.227
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Using a mathematical notation similar to that presented by Guttman [20],228

such a condition can be described as:229

Pr {Prx[x ≤ L2(x1, . . . ,xn)] ≤ p} = 1− α (9)

The inner probability operator represents the probability that a generic ran-230

dom variable x with the same distribution of the sample values but indepen-231

dent from these latter is lower than L2. Since L2(·) is a random function of232

the sample values, the inner probability is itself a random variable. If the233

stated condition holds, then L2(·) is called lower tolerance limit.234

The problem is thus to derive an expression for the lower tolerance limit235

L2(·). Traditionally this has always been expressed by an equation of the236

form:237

L2(α, p, n) = x̄s − k(α, p, n)ss (10)

where x̄s is the sample average and ss is the sample standard deviation. In the238

case of normally distributed samples Equation (9) can be rewritten, together239

with Equation (10), in a simpler form by dropping the inner probability240

operator:241

Pr {x̄s − k(α, p, n)ss ≤ fp} = 1− α (11)

where fp is the pth percentile that should be estimated and x̄s − k(α, p, n)ss242

is the lower tolerance limit estimator.243

The problem now is to find a proper expression for k so that Equation244

(11) holds. It is well-known that the exact solution to this problem in the245

case of independent samples is represented by Equation (2). Once k is known,246
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an estimation of the pth percentile with the desired confidence 1−α can thus247

be obtained by applying Equation (10), which is the same of Equation (1)248

given in the ACI 214.4R standard.249

Even if it can be questioned that a normal distribution is not the best250

choice to represent non negative quantities such as concrete compressive251

strength, this assumption is well-estabilished in literature and recent inves-252

tigations [21] confirmed that its use is acceptable to describe the in-situ253

concrete strength variability. Conversely, the assumption of independence of254

samples upon which Equation (2) relies is questionable. In the following this255

hypothesis will be removed to derive a generalization to the case of a known256

correlation law.257

3.2. Assumptions258

In the analyses it will be assumed that concrete strength is distributed259

as an homogeneous Gaussian random field with known correlation law.260

The assumption of Gaussianity, while representing an approximation as261

concrete compressive strength cannot assume negative values, is typically262

accepted both in the setting of concrete testing, as previously stated, and263

in the field of reliability analyses of concrete structures (see e.g. [22, 23,264

24, 25, 26]) and as such has been used in the developement of the current265

work. However if the use of lognormal fields is deemed to be necessary, the266

resulting tools will still be applicable even to this type of fields by a proper267

mapping of the data points to the associated normal field and assuming that268

the correlation function of this latter is known. An example of correlation269

function for the associated normal field has been given, for instance, by the270

Probabilistic Model Code [27], but at the present stage there is no agreement271
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on this aspect of concrete strength distribution, as it will be pointed out next272

in this paragraph. Non-Gaussian and non-lognormal random fields are not273

covered by the procedure since they are rarely used for modeling the spatial274

distribution of concrete strength.275

The assumption of homogeneity is again quite common in the context of276

reliability analysis of concrete structures [22, 23, 24, 26, 28, 27]. In certain277

cases this hypothesis may however turn out to be not appropriate, in par-278

ticular if concretes with very different properties are found in a structure or279

in the case of vertical structural elements. In particular, if the practitioner280

identifies the presence of concrete batches with different properties in the281

structure, he should conduct different investigations for each of the various282

concrete materials identified, a provision that is already given by e.g. the283

ACI 214.4R standard. The variability in space of the random field properties284

may however also be due to the action of gravity induced pressures during285

the concreting and hardening phases, a case that is typical of vertical ele-286

ments. It is recognized that this may cause a slight reduction of the average287

strength of concrete along the height. This aspect is typically ignored even288

in current codes for the assessment of concrete strength, and at best is taken289

into account by requiring the selection of a random sampling scheme. How-290

ever, in the current stage of development, this phenomenon is not taken into291

consideration, and it will be the object of future investigations.292

Finally, a discussion should be carried out on the assumption of a known293

correlation law. No information on this property of concrete strength are294

currently known with a satisfactory accuracy. Contradictory data and as-295

sumptions can be found in literature, and very few are based on experimen-296

14



tal evidence. Some of the references seem to suggest little to no correlation297

at typical minimum inter-core distances (e.g. [22, 29]), whereas other works298

hypothesized the presence of more marked correlation functions. One of the299

very few experimental study on compressive strength correlation laws is due300

to Rackwitz and Müller [30]. On RC slabs they recorded a spatial correlation301

of concrete strength decaying to approximately zero after approximately 10302

meters of relative distance between any two test locations, whereas on con-303

crete roads they observed a persisting correlation even at hundreds of meters304

of distance. Vu and Stewart [22] conversely assumed in one of their papers305

a very rapidly decaying linear correlation law with zero correlation after a306

relative distance of 0.5m, whereas in other works [23] the same authors mod-307

eled concrete compressive strength using a Gaussian correlation law with a308

correlation length of 2m. The same assumption has been used by Firouzi309

and Rahai [26], whereas Tang et al. [29] modeled concrete strength by mak-310

ing use of an exponentially decaying law with scale of fluctuation between311

0.4m and 4.0m. Finally, the well-known Probabilistic Model Code models312

concrete strength through the use of a lognormal, homogeneous random field313

assuming a correlation law for the associated Gaussian field that never de-314

cays below 0.5. In figure 1 the different assumptions on the correlation laws315

of concrete strength that can be found in literature are depicted. The cor-316

relation of the lognormal field assumed by the Probabilistic Model Code for317

a standard deviation of 5.25MPa has been obtained by using the concepts318

stated in [31], to map the correlation of the associated normal field to that319

of the lognormal one.320

By observing the figure, it is clear how at the present stage of knowl-321
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Figure 1: Comparison of several correlation functions associated to the spatial distribution

of concrete compressive strength that can be found in literature. The dashed line represents

data obtained from experimental campaigns.
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edge no conclusions on the nature and intensity of the correlation of concrete322

strength can be made. Thus it seems arguable the a-priori assumption of323

negligible correlation. Within this setting, the proposed methodology gener-324

alizes the tolerance factor approach of the ACI 214.4R [7] making it useful to325

be applied to potentially any correlation function. Even though the knowl-326

edge of the correlation law is still required, this weakness is similar to that327

occurring with current approaches which implicitly assume uncorrelated sam-328

ples (i.e. they assume a white-noise correlation function). The method thus329

offers more flexibility than current approaches with no further requirements.330

3.3. Notation331

Some notation needs to be introduced. It is assumed that n experimen-332

tal values xi with i = 1 . . . n are collected from an homogeneous Gaussian333

random field at locations ri with i = 1 . . . n. The mean of the field is de-334

noted by µ whereas its standard deviation is indicated with σ. Both these335

two latter values are assumed to be unknown. The random column vector of336

observations is denoted by X:337

X = (x1, . . . ,xn)T (12)

A 1xn row vector of weights W is defined as W = (n−1, . . . , n−1). The sample338

mean is thus given by:339

x̄s = n−1
∑

xi = WX (13)

The sample standard deviation can be expressed as:340

ss =

√∑
(xi − x̄s)2

n− 1
=

√
XT (In − 1W )X

n− 1
(14)
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where In is the nxn identity matrix and 1 = (1, . . . , 1)T is a nx1 column341

vector of ones.342

Since it is assumed that the random field is homogeneous, the correlation343

law, assumed to be known, is expressed as a function of the relative distance344

between any two points of the field:345

ρ(ri, rj) = ρ(ri − rj) (15)

The sample correlation matrix is thus given by:346

C =


ρ(r1 − r1) · · · ρ(r1 − rn)

...
. . .

...

ρ(rn − r1) · · · ρ(rn − rn)

 (16)

and the sum of its entries is denoted by c∗:347

c∗ =
∑
i,j

ρ(ri − rj) (17)

Finally, the term ρm is used to represent the average of the out-of-diagonal348

terms of the C matrix:349

ρm =

∑
i 6=j ρ(ri − rj)
n(n− 1)

=
c∗ − n
n(n− 1)

(18)

3.4. Theoretical derivation350

Equation (11) can be equivalently rewritten as:351

Pr

{
x̄s − µ
σ

− kss
σ
≤ fp − µ

σ

}
= 1− α (19)

Exploiting the properties of the normal distribution, the preceding is352

equivalent to:353

Pr

{
x̄s − µ
σ

− kss
σ
≤ zp

}
= 1− α (20)
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where it is recalled that zp is the pth percentile of the standard normal dis-354

tribution. A normal random variable z is now defined as:355

z =
x̄s − µ
σ

(21)

Equation (20) can then be rewritten as:356

Pr

{
z + z1−p
ss/σ

≤ k

}
= 1− α (22)

It is well-known [32] that the random vector X can be expressed by means of357

another vector Y of independent standard normal random variables using a358

proper decomposition of the correlation matrix. If the principal square root359

matrix decomposition is chosen, then X is given by:360

X = σC1/2Y + 1µ (23)

If Equation (23) is replaced in Equation (13) and in Equation (14) the fol-361

lowings are obtained:362

x̄s = σWC1/2Y +W1µ = σWC1/2Y + µ (24)

ss = σ

√
Y TC1/2(In − 1W )C1/2Y

n− 1
= σ

√
Y TBY

n− 1
(25)

In the latter equation the B matrix has been defined as:363

B = C1/2(In − 1W )C1/2 (26)

The spectral decomposition of the B matrix is given by:364

B = QTΛQ (27)
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where Λ is the diagonal matrix of the eigenvalues λi of B and Q is the365

eigenvector matrix. It results that:366

ss = σ

√
(QY )TΛQY

n− 1
(28)

It is useful to remark that by definition, B and (In − 1W ) are congruent,367

thus due to the Sylvester’s theorem of inertia they share the same number368

of zero eigenvalues. Since (In − 1W ) is not a full rank matrix then at least369

one of the eigenvalues λi of B will be equal to zero, let’s say λn = 0.370

Furthermore, is easy to show (see Appendix A) that the random variables371

of the vector QY are independent and normally distributed with zero mean372

and variance equal to one. This observation allows to derive the known373

result that the sample variance is distributed as a linear combination of n−1374

independent 1-dof Chi-Squared random variables χ2
1,i:375

s2s = σ2 (QY )TΛQY

n− 1
∼ σ2

n− 1

n−1∑
i=1

λiχ
2
1,i (29)

Recalling Equation (24), the random variable z defined in Equation (21)376

is expressed as:377

z = WC1/2Y (30)

Replacing Equations (28) and (30) in Equation (22), the following is378

obtained:379

Pr

{
WC1/2Y + z1−p√

(QY )TΛQY
≤ k√

n− 1

}
= 1− α (31)

Now an important result has been obtained. Equation (31) does not380

depend anymore on the unknown parameters of the field µ and σ, thus pivotal381
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quantities have been derived. It is convenient to express this latter equation382

in a slightly more complex but equivalent form:383

Pr

{(
WC1/2Y + z1−p

)√
n2/c∗√

(QY )TΛQY
≤ k

√
n2

(n− 1)c∗

}
= 1− α (32)

Since the only unknown quantity in this expression is k, this can be384

obtained by solving the equation for it. To do so, a new random variable u385

is defined as:386

u =

(
WC1/2Y + z1−p

)√
n2/c∗√

(QY )TΛQY
(33)

Its inverse cumulative distribution function evaluated at a generic value x is387

given by F−1x . Recalling Equation (18), the desired expression for k is thus388

finally given by:389

k = k(n, p, α, C) = F−11−α

√
(n− 1)[(n− 1)ρm + 1]

n
(34)

Unfortunately a closed form solution for F−1x is, in general, not available,390

so that it must be numerically evaluated. Equation (34) also allows to intu-391

itively understand the primary role that the average level of correlation ρm392

has on k. As the samples becomes more correlated (i.e. ρm increases), all393

other things being equal, k tends to grow, reaching in the limit +∞ if all394

the samples are completely correlated (a situation in which there is simply395

not enough information to make any kind of estimation on the variance of396

the field). Nonetheless, it is important to remark that the effect of corre-397

lation on the estimates cannot be completely described just in terms of the398

synthetic parameter ρm, as F−1x depends on the whole decomposition C1/2 of399

the correlation matrix.400
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It can further be shown that the presented theory is a generalization of the401

well-known Equation (2), which is obtained if C = In, as shown in Appendix402

B.403

3.5. Approximate expression for the lower tolerance limit404

Practical difficulties may arise evaluating k using the aforementioned ex-405

pression. In particular the necessity of numerical procedures for the eval-406

uation of the spectral decomposition of B and of the inverse CDF of u is407

certainly not convenient and may potentially limit the usefulness of the pro-408

cedure for practical applications. It is thus desirable to obtain approximate409

but simple expressions for k to overcome these complex computations. Re-410

calling Equation (29), the aim is to express the distribution of the sample411

variance as that of a single Chi-Squared random variable. This can be ac-412

complished by making use of the Welch-Satterthwaite approximation [33, 34],413

that for this special case takes the following form:414

n−1∑
i=1

λiχ
2
1,i ≈ aχ2

b (35)

where the scaling factor a and the degrees of freedom b of the single Chi-415

Squared distribution can be evaluated as:416

a =

∑n−1
i=1 λ

2
i∑n−1

i=1 λi
and b =

(∑n−1
i=1 λi

)2∑n−1
i=1 λ

2
i

(36)

Making use of the approximation (35) it is obtained that:417

(QY )TΛQY ≈ aχ2
b (37)
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Using the previous result within the definition of u given by Equation418

(33) and noting that WC1/2Y
√
n2/c∗ ∼ N(0, 1), the following is obtained:419

u ≈ 1√
ab

N(0, 1) + z1−p
√
n2/c∗√

χ2
b/b

(38)

It is however necessary to note that the normal standard distribution at420

nominator is, in general, not independent from the Chi-Squared distribution421

at the denominator because if the samples are correlated their mean and422

variance are, in general, not independent. However numerical simulations423

have shown that typically the degree of dependency is very modest and can424

be reasonably neglected (see Appendix C). If this assumption is made, then425

by definition of non-central t distribution Equation (38) becomes:426

u ∼ 1√∑n−1
i=1 λi

tb(z1−p
√
n2/c∗) (39)

where tx(y) is the non-central t distribution with x degrees of freedom and427

non-centrality parameter y. An approximate expression for k is finally given428

by:429

k ≈ t−1b,1−α

(
z1−p

√
n2/c∗

)√(n− 1)[(n− 1)ρm + 1]

n
∑n−1

i=1 λi
(40)

If the matrix C̄ is defined as:430

C̄ = tr{C(In − 1W )} (41)

then the explicit calculation of the spectral decomposition of B is not neces-431

sary and can be replaced with the more simple evaluation of the trace of C̄432

and of C̄2:433

n−1∑
i=1

λi = tr(B) = tr{C1/2(In − 1W )C1/2} = tr{C(In − 1W )} = tr(C̄) (42)
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434
n−1∑
i=1

λ2i = tr(B2) = tr{C(In − 1W )C(In − 1W )} = tr(C̄2) (43)

4. Examples of application of the proposed methodology435

In this section two simple case-studies will be presented to investigate the436

different effects that a spatial correlation of samples may have on experimen-437

tal investigations.438

In the first case study the achieved confidence of estimation in presence of439

spatially correlated core strength values using the approaches of current stan-440

dards is investigated and compared to the aforementioned methods. Quanti-441

fying the loss of confidence versus the target one is not a trivial task, because442

it essentially depends on the nature of each single problem (the spatial config-443

uration of the cores, the specific distribution properties of concrete, etc.) and444

on the correlation properties of in-situ concrete, so that a single case study445

cannot cover all the possible situations. Despite these difficulties, the analy-446

sis of a simplified scenario still results to be helpful to identify the potential447

risks of neglecting the correlation of core test values.448

In the second case study it is shown how the presence of a spatial correla-449

tion may result in situations in which there is an hard limit on the accuracy450

of estimates regardless of the number of samples extracted. In such cases it451

results that there is no benefit whatsoever in further increasing the number452

of cores above a certain limit.453

4.1. Case study 1454

The first case study consists in the evaluation of a given percentile of455

concrete strength for a rectangular RC slab with a plan dimensions of 8x24m.456
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As a common practice in reliability analysis of RC structures, in-situ con-457

crete compressive strength is assumed to be a realization of a homogeneous458

Gaussian random field with squared exponential correlation law of the type459

ρ(x) = e−(x/d)
2
, where d is a parameter that has been assumed to vary be-460

tween 0.5m and 7.5m. The average concrete strength is set to be equal to461

35MPa and the coefficient of variation is 0.15. It is also assumed that 12462

cores are extracted in a grid layout with row and column spacing of 4m, as463

depicted in Figure 2.464

Figure 2: Case study 1 - Position of the concrete cores.

Correlated samples have been obtained using a very simple covariance de-465

composition method, and for each sample set an estimate has been obtained466
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applying the criteria of the different codes and the approaches proposed in467

the previous sections.468

Repeating the simulation 400000 times, a dataset of estimates has been469

obtained and applying a Monte-Carlo approach the confidence (as probability470

of underestimation of the actual percentile) has then been evaluated. The471

number of simulations has been estimated using the binomial proportion472

confidence intervals [35], i.e. by requiring the actual estimated percentile to473

be within 0.1% from the desired one with 95% confidence.474

For the ACI 214.4R the influence of the strength correction factors has475

been neglected by assuming sa = 0 and for the application of the alternate476

method it has been assumed that concrete samples were coming from a single477

batch. The chosen target confidence has been set to 90%.478

In Figure 3 is depicted the confidence achieved by applying the ACI479

214.4R code requirements in comparison with that of proposed theory and480

the approximate expression of Eq.(40).481

Analyzing the results it is clear how the alternate approach of ACI 214.4R482

consistently yields low confidence results regardless of the actual level of spa-483

tial correlation. This was expected as this method has been developed to484

produce less conservative results, but the drop in the theoretical achieved485

confidence appears to be so marked that it is Authors’ opinion that its ap-486

propriateness should at least be further investigated.487

The classic tolerance factor method instead produces exact or very good488

results when no correlation or a low level of spatial correlation among samples489

is present. Nevertheless, if the spatial correlation is consistent, its confidence490

can drop down to values significantly lower than the desired one.491
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Figure 3: Case study 1 - Actual confidence achieved in the estimation of the 10% per-

centile of concrete strength as a function of the correlation length d using the ACI 214.4R

approaches and the proposed exact and approximate theoretical formulations.
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The proposed theory as expected always produces a confidence equal to492

the target one regardless of the level of spatial correlation, if the correlation493

law is known. The approximate formulation, that allows avoiding complex494

numerical computations, still yields very good results that are on the safe495

side as the achieved confidence values are slightly higher than the target one.496

In Figure 4 the confidence in the estimation of the 5% percentile of con-497

crete strength achieved by the approach of EN13791 is depicted in comparison498

to the proposed theoretical formulations.499
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Figure 4: Case study 1 - Actual confidence in the estimation of the 5% percentile as a

function of the correlation length d achieved by the approach of EN 13791 and the proposed

exact and approximate theoretical formulations.

The theoretical formulation produces again a confidence exactly equal500

to the target one, while the approximate approach produces results that501

are very close to the desired confidence. However, the confidence in the502
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EN13791 estimates constantly remains below the 20% mark regardless of the503

investigated correlation length d. It is Authors’ opinion that the approach of504

the EN standard should be revised since such low confidences may produce505

concrete strength evaluations (and ultimately structural assessments) that506

are not consistent with the acceptable probability of failure that is behind507

the calibration of currently used Limit State approach.508

Different conclusions are drawn if the approach of Eurocode 8 is used.509

This code deals with the evaluation of the average strength and, as it has510

been stated, the actual estimation depends on the knowledge level. Since511

this latter depends on a variety of factors not all related to the experimen-512

tal testing of material properties, the outcomes corresponding to the three513

different knowledge levels have been investigated.514

From Figure 5 it is clear that if the best knowledge level (KL3) is reached,515

then the confidence actually drops because the corresponding confidence fac-516

tor is 1.00, which assumes that there are no uncertainties on the knowledge517

of the structure, a state that can never be achieved. If the knowledge level518

is lower, than the estimation of the average concrete strength is highly con-519

servative because the sample mean is divided by a factor 1.20 or 1.35 re-520

spectively for KL2 and KL3. This results in estimates that reach levels of521

confidence very close to 100%. Nevertheless, this result is still misleading522

since these very high confidence levels, that correspond to very low strength523

values, have the duty of taking into account also the uncertainties not re-524

lated to the knowledge of structural material. It is thus clear that for the525

case of EC8 and KL2 or KL3 is very hard to make any kind of judgment526

on the appropriateness of the empirical formulation. For what concerns the527
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Figure 5: Case study 1 - Actual confidence in the estimation of the average concrete

strength as a function of the correlation length d achieved by the approach of EC8 and

the proposed exact and approximate theoretical formulations.
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influence of spatial correlation, this latter is practically absent, and the level528

of confidence depends almost only on the chosen confidence factors.529

4.2. Case study 2530

In this second case study the attention is focused on the number of cores531

to be drilled. In particular it is desired to find whether it exists a maximum532

number of cores above which it is pointless to go, and if so how this value is533

affected by spatial correlation. The analysis will be carried out on an ideal534

monodimensional structure of 50m of length, which may ideally represent,535

for example, an old multi-span RC slab bridge.536

It is supposed that n cores are collected along the longitudinal direction of537

the bridge at equal intervals determined in order to maximize the inter-core538

distance. This means that if 6 samples are collected they are spaced 10m539

apart one from each other, whereas if 11 cores are extracted their mutual540

distance is 5m.541

The number of samples may vary between 5 and 25, i.e. their spacing542

ranges from 8.3m to roughly 2.0m. It is also assumed that the in-situ concrete543

strength follows a Gaussian correlation law e−x
2/d2 with the parameter d544

starting from a very low value of 0.05m and then ranging between 0.5m and545

8.0m, so that the influence of the degree of correlation on the problem can546

be investigated.547

The mechanical properties of concrete strength are the same as those of548

case study 1, i.e. an average compressive strength of 35MPa and a coefficient549

of variation of 0.15.550

The analysis consist in simulating, for each considered number n of cores,551

2 millions of different correlated samples draws.552
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For the ith sampling with correlation length d, the average strength of553

samples is denoted by x̄s,i,d whereas their standard deviation is given by554

ss,i,d. The associated estimation f10,est,i,d of the 10% percentile f10 is then555

carried out using the aforementioned method:556

f10,est,i,d = x̄s,i,d − kss,i,d (44)

with k evaluated using equation (34) and fixing a confidence of 90%. Using557

a Monte-Carlo approach the average overestimation f̄10,+ of f10 is estimated558

by:559

f̄10,+ =

∑2·106
i=1 f10,est,i,d[f10,est,i,d > f10]∑2·106

i=1 1[f10,est,i,d > f10]
− f10 (45)

whereas the dispersion (i.e. the standard deviation) of the overestimating560

values is given by:561

s10,+ =

√√√√∑2·106
i=1 (f10,est,i,d − f10 − f̄10,+)2[f10,est,i,d > f10]∑2·106

i=1 1[f10,est,i,d > f10]− 1
(46)

The average percentile underestimation f10,− and the standard deviation of562

the estimations lower than f10 are similarly defined as:563

f̄10,− =

∑2·106
i=1 f10,est,i,d[f10,est,i,d ≤ f10]∑2·106

i=1 1[f10,est,i,d ≤ f10]
− f10 (47)

564

s10,− =

√√√√∑2·106
i=1 (f10,est,i,d − f10 − f̄10,−)2[f10,est,i,d ≤ f10]∑2·106

i=1 1[f10,est,i,d ≤ f10]− 1
(48)

In the four aforementioned equations the square brackets represent the Iver-565

son notation.566

In Figures 6 and 7 are respectively depicted the average overestimation567

error f̄10,+ and the standard deviation s10,+ of the overestimating values.568
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Figure 6: Case study 2 - Average overestimation f̄10,+ of the 10th percentile as a function

of the number of samples n and the correlation length d.
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Figure 7: Case study 2 - Standard deviation s10,+ of the estimations above the actual 10th

percentile as a function of the number of samples n and the correlation length d.
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From these figures it is clear that, as the sample spacing decreases (n569

increases) it becomes less convenient to increase the number of samples to570

reduce the amount of overestimation. If even a modest spatial correlation571

is present, it can be clearly seen from Figure 6 that there exists a number572

of cores (as a function of d) above which the average overestimation error573

(which is realized in 10% of cases) does not decrease anymore. At the same574

time even the dispersion of the overestimating values around their mean does575

not improve.576

Similar conclusions can be drawn if the attention is focused towards the577

underestimating values. In this case it is desirable that the underestimation578

is as close as possible to zero, so not to risk ending up using too conservative579

values. As shown in Figures 8 and 9, the results suggest that as the degree of580

correlation of samples increases, it is less and less useful to increase the num-581

ber of cores with a decreasing inter-distance, since below a certain spacing582

there is practically no advantage both in terms of average underestimation583

and dispersion of the underestimating values.584

As a result this second case study induces to believe that if even a mod-585

est degree of correlation is recorded then there is an ideal number of cores586

(and a linked inter-core distance) above which no useful improvements of the587

accuracy of estimations can be further achieved.588

5. Conclusions589

The analysis of some of the principal international approaches currently590

in use for the statistical interpretation of in-situ concrete core strength high-591

lighted the lack of a universally accepted method for the evaluation of this592
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Figure 8: Case study 2 - Average underestimation f̄10,− of the 10th percentile as a function

of the number of samples n and the correlation length d.
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Figure 9: Case study 2 - Standard deviation s10,− of the estimations below the actual 10th

percentile as a function of the number of samples n and the correlation length d.
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property. Most of these are based on empirical criteria generally not sup-593

ported by a solid theoretical background, and all of them rely on assumptions594

on concrete strength distribution which, even though commonly accepted, are595

not supported or universally accepted by current scientific literature. In par-596

ticular, the assumption of independence of in-situ concrete strength is not597

supported with sufficient evidence by the existing literature. Many authors598

and even well-known references such as the Probabilistic Model Code are599

currently modeling the spatial strength distribution of this material using600

widely different assumptions on the levels of spatial correlation.601

Given this state of the art, it has been considered useful to set up a602

sound statistical framework to perform evaluations of concrete strength valid603

regardless of the assumed level of correlation. The developed approach is a604

generalization of the well-known tolerance factors method used by the ACI605

214.4R to make it suitable to be applied to any level of correlation. At this606

stage the theory relies on the hypothesis of concrete strength distributed607

as an homogeneous Gaussian random field with known correlation function,608

which are usually accepted in the context of structural reliability. As the609

theoretical formulation is quite complex in the case of a generic correlation610

function, simpler approximate expressions have been derived.611

The approach allows to properly take into consideration the reduction in612

the level of information on the underlying field that occurs when the strength613

values are spatially correlated. However further experimental studies are re-614

quired to carefully evaluate the actual spatial stochastic properties of concrete615

strength distribution before a practical application of these formulas can be616

made. Nonetheless, this evaluation is highly desirable regardless of the ac-617
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tual approach to the interpretation of core test data that is being used, as it618

cannot be a-priori assumed that the correlation is negligible as it is currently619

done.620

In the second part of the work some case studies have been presented621

to highlight some of the potential implications that might occur in the case622

the levels of correlation turn out to be not-negligible. A first case study623

suggested that if a significant spatial correlation is present then the use of624

current approaches may result in very high probability of overestimation of625

the desired percentile, thus exposing the consequent structural evaluations626

to reliability issues. The proposed theoretical formulations instead allowed627

to obtain evaluations matching or very close to the desired confidence levels.628

The second case study investigated the influence of the number of cores629

(and the consequent inter-core distance) on the accuracy of the evaluations630

on a mono-dimensional structure if a spatial correlation of in-situ concrete631

strength is present. The results seem suggesting that in presence of even a632

modest correlation there exist a minimum core inter-distance, depending on633

the degree of correlation, below which the accuracy cannot improve anymore.634

This observation may have practical consequences on the estimation of the635

desired number of cores to extract in real-world scenarios.636
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Appendices637

Appendix A638

From the definition of covariance, the covariance matrix RQY of the ran-639

dom vector QY is given by:640

RQY = E
[
(QY − E[QY ]) (QY − E[QY ])T

]
(49)

Since the random variables in Y are independent standard normals their

mean E[Y ] is the nx1 null vector, and their covariance matrix is the identity

matrix In. It results that:

RQY = E
[
QY Y TQT

]
= QE[Y Y T ]QT = QInQ

T = QQT = In (50)

In the last equation the orthogonality of the eigenvector matrix Q has been641

exploited. As a result it is thus clearly shown that the random variables of642

the QY vector are independent standard normal random variables.643

Appendix B644

If the samples are uncorrelated then C = In, and consequently it results645

that:646

WC1/2Y
√
n2/c∗ = WY

√
n ∼ N(0, 1) (51)

Furthermore B = In−1W is a circulant matrix with n− 1 eigenvalues equal647

to 1 and one eigenvalue equal to zero. Thus:648

√
(QY )TΛQY ∼

√∑
n−1
i=1 λiχ

2
1,i =

√
χ2
n−1 (52)
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Replacing Equations (51) and (52) in Equation (32) it results:649

Pr

N(0, 1) + z1−p
√
n√

χ2
n−1

n−1

≤ k
√
n

 = 1− α (53)

Since in the case of independent samples the sample mean and standard650

deviation are independent, the distributions at nominator and denominator651

are independent one to each other and thus the first term of the inequality652

of Equation (53) follows a non-central t-distribution with n − 1 degrees of653

freedom and non-centrality parameter z1−p
√
n.654

Pr
{
tn−1(z1−p

√
n) ≤ k

√
n
}

= 1− α (54)

Using the properties of the inverse cumulative distribution function for the655

non-central t-distribution the probability operator can be dropped and it656

results that:657

k = t−1n−1,1−α(z1−p
√
n)/
√
n (55)

This latter expression is exactly the same of Equation (2).658

Appendix C659

By making use of Equation (29) and noting that WC1/2Y
√
n2/c∗ ∼660

N(0, 1), Equation (33) can be rewritten in the following form:661

u =

(
WC1/2Y + z1−p

)√
n2/c∗√∑n−1

i=1 λiχ
2
1,i

(56)

The previous form is analogous to the one of Equation (33), but it should be662

noted that the linear combination of χ2 distributions at denominator is, in663

general, not independent from the normal distribution at nominator, as they664
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are function of the sample mean and variance which, in the case of correlated665

samples, are typically not independent. The degree of dependency however666

appears to be very weak, and this can qualitatively be observed for instance667

by plotting and comparing the CDFs associated with the random variable668

of Equation (33) and with that of (56) having assumed in this latter the669

independence between distributions at nominator and denominator.670

As the distribution of u depends on the number of samples, on their671

relative position, on the required percentile and on the correlation function672

several analyses have been carried out. However, as examples, only two673

of these will be presented here, the first one related to a scenario with 3674

samples and a required percentile p = 0.5 and the second one regarding a675

case with 15 samples and p = 0.1. In figure 10 the empirical CDFs for the676

two aforementioned cases are plotted. They have been obtained by using 10677

millions samples, a value estimated using the same criteria stated in section678

4.1 so to that the empirical percentile is approximately within 0.03% from679

the actual one with 95% confidence.680

From the charts it can be seen how the assumption of the independence681

between the sample mean and variance has a negligible effect on the distribu-682

tion of the random variable u. Consequently this hypothesis has been judged683

acceptable in the setting of the approximate method presented in section 3.5.684
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