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Abstract

In this paper, we present an application of a reconstruction method to thermographic images
employed to analyze the response of a masonry structure under seismic actions.

At first the theory of linear multivariate sampling Kantorovich operators are presented. By
means of the above operators, we are able to reconstruct images taken from thermographic survey
of masonry walls, and to enhance their quality. Digital image processing of reconstructed images
allows us to identify the mutual arrangement of the blocks (made of stones and/or bricks) and mortar
joints inside the wall portion analyzed, and therefore the texture of the masonry. Subsequently,
the texture has been used to estimate the equivalent elastic properties of the masonry by means
of homogenization techniques. Finally a real-world case-study is analyzed, taking into account
the mechanical properties estimated from reconstructed thermographic images and evaluating the
structural response in terms of modal analysis.

Keywords: Sampling Kantorovich operators, Digital image processing, Thermographic images,
Homogenization, Structural analysis.

1. Introduction

In recent years, several researchers highlighted the advantages of using thermography in civil
engineering applications [1, 2, 3]. Thermography is a remote sensing technique, performed by the
image acquisition in the infrared, and therefore belongs to the family of non-destructive test for
structures [4]. A survey of possible applications can be found in [5]. In particular, thermographic
images can be used to make non-invasive investigations of structures, to analyze the story of the
building wall, to make diagnosis and monitoring of buildings, and to make structural measurements.

The main use of thermography in civil engineering applications has been in the analysis of
energetic performance of buildings, in particular to detect heat bridges and to assess the behavior
at different seasons (see, for example, [6]); this is somehow similar to the heat transfer measurement
in wind tunnel [7]. Subsequently, the possibility of using thermography as a non-destructive test has
been acknowledged, with the further advantage of the possibility to analyze the building without
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contact and rapidly, with consequent advantages in terms of operativeness and costs. For instance,
thermography can be used to measure the moisture contents on surface and to detect imperfections
on the substrate [8], to reveal small defects on concrete elements [9], to assess actual conditions
and internal compositions of bridges [10]. Applications to evaluate the conditions of masonry and
historical structures are also available [11, 12].

Unfortunately, the direct use of thermographic images can produce errors due to their low
quality [13]. Therefore, several methods have been proposed in order to enhance the quality of
thermographic images [14, 15, 16].

In the present paper, thermographic images are used both to assess effective dimensions of
structural elements and for masonry texture, i.e., for the identification of the bricks and the mortar
in masonries’ images. The use of low quality images can induce errors when the image texture
algorithm is used: in particular, an incorrect separation between the bricks and the mortar can
occur. To enhance the quality of the thermographic images, reconstruction methods based on
the theory of sampling Kantorovich operators are employed, and they have proved very useful for
the applications here considered. The reconstruction methods are used to estimate the mechanical
characteristics of the masonry walls of a case-study. It is worth noting that the interest of the present
paper is not in the actual evaluation of the structural response of the case study to earthquake loads
but rather in the applicability of the proposed procedure and the advantages that can be achieved
in comparison with more traditional approaches. Furthermore, the proposed approach allows us to
estimate the mechanical characteristics of the masonries using non-destructive methods.

The structure of the paper is the following: in Sec. 2 a brief introduction to thermography is
given, with discussion of shortcomings when used for civil engineering applications; in Sec. 3 the
application of the theory of sampling Kantorovich operators to reconstruct and to enhance the
quality of thermographic images is presented: the reconstruction algorithm has been performed
using MATLAB. In Sec. 4 the methods to estimate the mechanical characteristics of masonry wall
using reconstructed thermographic images are described; in Sec. 5 an application to a case study is
proposed; eventually, results are discussed in conclusions.

2. Thermography and its applications to civil engineering

Thermography is a technique which allows to appreciate and measure the heat flux associated
with infrared radiation emitted from every body without direct contact, therefore it supplies a
non-invasive technique for investigating buildings. The thermography is therefore a remote sensing
technique, which exploit the fact that all the objects at a temperature above absolute zero emit
radiation in the infrared range (wave length of 700 nm–1mm, which corresponds to frequencies of
430THz–300GHz), which is located between the visible radiation (in particular the red component)
and the microwave range.

The result of a thermographic survey is a bi-dimensional image, which is a thermic mapping of
the heat flux of the body converted in temperature as will be detailed later. The measure of the
surface temperature is indirect, since the thermographic cameras are only able to measure the input
energy. Therefore, the quantity and quality of information which can be collected about the body
examined strongly depends on the quality of the bi-dimensional image obtained from thermographic
camera.

The radiation energy is measured by means of an infrared detector, which is able to absorb the
incident energy and convert it in an electric signal. The main characteristic of the detector used
in thermography is the reduced time elapsed from energy absorption to its conversion in electric
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signal, in the order of µs. The main parameters of the detector are its image resolution and intensity
resolution [17]. The image resolution is the ability to accurately detect and measure the surface
temperature of the bodies even if they have small size. The intensity resolution is the ability to
appreciate small temperature differences in the body.

As stated in the introduction, the thermographic images are largely used to make diagnosis and
monitoring of buildings. They can also be used for structural survey, for example in the location
and quantification of the resisting elements.

In the present paper, thermographic images will be used in the latter sense cited above, and
moreover to investigate the actual texture of the masonry wall, i.e., the mutual arrangement of
blocks and mortar joints. Anyway, the image resolution is often too low to achieve consistent
results, and therefore reconstruction techniques described in the following section will be used.

3. Image reconstruction by multivariate sampling Kantorovich operators

In this section, we recall the theory of multivariate sampling Kantorovich operators and we
describe their applications to image processing. In particular, we will apply these operators to
thermographic images, for which we will study the texture to perform structural analysis.

The sampling Kantorovich operators have been introduced in [18] in a univariate setting and in
[19] in a multivariate setting and they are related to the generalized sampling operators (see e.g.
[20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32]).

More in detail, the sampling Kantorovich operators (1), below defined, represent an averaged
version of the generalized sampling operators introduced by P.L. Butzer and his school at Aachen,
and they in turn furnish a rigorous theory of an approximate version of the classical Whittaker-
Kotelnikov-Shannon sampling theorem, very useful for the applications, see e.g. [20, 25, 33, 34, 35,
36]. In the Kantorovich case, instead of the evaluation of the signal f at the nodes k/w, k ∈ Z

n,
w > 0 (or tk/w in the case of a non-uniform sampling scheme, where (tk)k∈Zn is a suitable sequence),
we have an average of f on a small multi rectangle around k/w. Practically, more information is
usually known around a point than precisely at that point, and this procedure simultaneously
reduces time-jitter errors. The algorithm deduced from the theory based on sampling Kantorovich
operators, and discussed in Section 3.1, revealed to be very suitable for reconstruction processes,
even in comparison with other approaches. Furthermore, the definition of the sampling Kantorovich
operators is more suitable for the reconstruction of signals/images not necessarily continuous, and
this fact plays an important role in image processing. This is an added value of these operators
with respect to others, and in particular to the generalized sampling ones, since the latter depend
on single function values f(k/w), and therefore not suitable in case of discontinuous functions.

Now, we recall the definition of the multivariate sampling Kantorovich operators. In what
follows, we denote by tk = (tk1 , ..., tkn) a vector where each (tki)ki∈Z, i = 1, ..., n is a sequence of
real numbers with −∞ < tki < tki+1

< +∞, limki→±∞ tki = ±∞, for every i = 1, ..., n, and such
that there exists ∆, δ > 0 for which δ ≤ ∆ki := tki+1

− tki ≤ ∆, for every i = 1, ..., n.
A function χ : Rn → R will be called a kernel if it satisfies the following properties:

(χ1) χ ∈ L1(Rn) and is bounded in a neighborhood of 0 ∈ R
n;

(χ2) For every u ∈ R
n,

∑

k∈Zn

χ(u− tk) = 1;
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(χ3) For some β > 0,

mβ,Πn(χ) = sup
u∈Rn

∑

k∈Zn

∣∣χ(u− tk)
∣∣ ·

∥∥u− tk
∥∥β
2

< +∞,

where ‖ · ‖2 denotes the usual Euclidean norm.

The linear multivariate sampling Kantorovich operators are defined by

(Swf)(x) :=
∑

k∈Zn

χ(wx− tk)

[
wn

Ak

∫

Rw

k

f(u) du

]
, (x ∈ R

n), (1)

where f : Rn → R is a locally integrable function such that the above series is convergent for every
x ∈ R

n,

Rw
k :=

[
tk1
w

,
tk1+1

w

]
×

[
tk2
w

,
tk2+1

w

]
× ...×

[
tkn
w

,
tkn+1

w

]
,

w > 0 and Ak = ∆k1 ·∆k2 · ... ·∆kn , k ∈ Z
n. In [19], the following approximation theorem has been

proved, which shows the pointwise and uniform reconstruction of a multivariate signal or image
by means of the above operators (1). This result is fundamental for the following applications
developed in this paper.

Theorem 3.1. Let f : Rn → R be a continuous and bounded function. Then, for every x ∈ R
n,

lim
w→+∞

(Swf)(x) = f(x).

In particular, if f : Rn → R is uniformly continuous and bounded, then

lim
w→+∞

‖Swf − f‖
∞

= 0,

where ‖ · ‖∞ denotes the sup-norm, i.e., ‖f‖∞ := supx∈Rn |f(x)|.

In general, the edges of visible images are sufficiently countered, which means to have jumps of
the gray levels. From the mathematical point of view, this results in functions with discontinuities.
Therefore, it is also important to have at disposal a theory which allows us to reconstruct not
necessarily continuous signals. Hence, in order to obtain a reconstruction theorem for this kind of
signals, we study the sampling Kantorovich operators in the general setting of Orlicz spaces.

First, we recall some basic notions concerning Orlicz spaces, see e.g. [37, 38].
The function ϕ : R+

0 → R
+
0 is said to be a ϕ-function if it satisfies the following assumptions:

(ϕ1) ϕ (0) = 0, ϕ (u) > 0 for every u > 0;

(ϕ2) ϕ is continuous and non decreasing on R
+
0 ;

(ϕ3) limu→∞ ϕ(u) = +∞.

For a fixed ϕ-function ϕ, one can consider the functional Iϕ : M(Rn) → [0,+∞], where M(Rn)
denotes the set of all measurable functions f : Rn → R, of the form

Iϕ [f ] :=

∫

Rn

ϕ(|f(x)|) dx, (f ∈ M(Rn)) .
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The Orlicz space generated by ϕ is now defined by

Lϕ(Rn) := {f ∈ M (Rn) : Iϕ[λf ] < ∞, for some λ > 0} .

We can introduce in Lϕ(Rn), a notion of convergence, called "modular convergence", which induces
a topology (modular topology) on the space ([37, 38]). We will say that a net of functions (fw)w>0 ⊂
Lϕ(Rn) is modularly convergent to a function f ∈ Lϕ(Rn) if

lim
w→+∞

Iϕ [λ(fw − f)] = 0,

for some λ > 0.
As a last basic property on Orlicz space, we recall that Cc(R

n), the set of all continuous functions
having compact support, is modularly dense in Lϕ(Rn), see [39].

For further results and details concerning Orlicz spaces, the readers can see [40, 41, 42, 43, 44,
45, 46].

Now, we recall the following continuity property for our operators with respect to the modular
Iϕ, useful to prove the modular convergence result for the family of sampling Kantorovich operators
in Lϕ(Rn).

Theorem 3.2. Let ϕ be a convex ϕ-function. For every f ∈ Lϕ(Rn) there holds

Iϕ[λSwf ] ≤
‖χ‖1

δn ·m0,Πn(χ)
Iϕ[λm0,Πn(χ)f ],

for some λ > 0.
In particular, Sw maps Lϕ(Rn) in Lϕ(Rn).

The main modular convergence result in the setting of Orlicz spaces for the family (1) can be now
formulated as follows.

Theorem 3.3. Let ϕ be a convex ϕ-function. For every f ∈ Lϕ(Rn), there exists λ > 0 such that

lim
w→+∞

Iϕ[λ(Swf − f)] = 0.

For the sake of completeness we point out that the proof of Theorem 3.3 (see [19]) is based on the
following fundamental steps:

1. the density of space Cc(R
n) in Lϕ(Rn) with respect to the modular topology;

2. the modular continuity property for the operators Sw when f belongs to Lϕ(Rn) (Theorem
3.2);

3. the modular convergence of the family of the operators Sw when f belongs to Cc(R
n) (which

is a direct consequence of Theorem 3.1).

For further results concerning sampling Kantorovich operators, see e.g., [47, 48, 49, 50, 51, 52, 53,
54, 55].

The setting of Orlicz spaces allows us to give a unitary approach for the reconstruction since
we may obtain convergence results for particular cases of Orlicz spaces.

For instance, choosing ϕ(u) = up, 1 ≤ p < ∞, we have that Lϕ(Rn) = Lp(Rn) and Iϕ[f ] = ‖f‖pp,
where ‖ · ‖p is the usual Lp-norm. Then, from Theorem 3.3 we obtain the following corollary.
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Corollary 3.4. For every f ∈ Lp(Rn), 1 ≤ p < +∞,

lim
w→+∞

‖Swf − f‖p = 0.

The corollary above, allows us to reconstruct Lp-signals (in Lp-sense), therefore signals/images
not necessarily continuous.

Other examples of Orlicz spaces for which the above theory can be applied can be found e.g., in
[18, 19, 37, 38, 40]. The theory of sampling Kantorovich operators in the general setting of Orlicz
spaces allows us to obtain, by means of a unified treatment, several applications in many different
contexts.

Finally, we show some examples of kernels used in order to define the multivariate sampling
Kantorovich operators and for which the above results can be applied. For the sake of simplicity,
from now on we consider the operators (1) in the case of a uniform sampling scheme, i.e., tk = k,
k ∈ Z

n.
As a first example, we can consider the univariate Fejér’s kernel defined by

F (x) :=
1

2
sinc2

(x
2

)
(x ∈ R),

where the sinc-function is given by

sinc(x) :=

{ sinπx

πx
, x ∈ R \ {0} ,

1, x = 0.

We can define the multivariate Fejér’s kernel by Fn(x) =

n∏

i=1

F (xi), x = (x1, ..., xn) ∈ R
n, which

satisfies the conditions upon a multivariate kernel, see e.g. [19, 24, 55, 56]. Since Fejér’s kernel
Fn has unbounded support, one needs an infinite number of mean values wn

∫
Rw

k

f(u) du in order

to evaluate the corresponding sampling Kantorovich series at any given x ∈ R
n. If the function f

has compact support, this problem does not arise, while, if the function has unbounded support,
one can only take a finite number of these mean values into account, so the infinite sampling series
must be truncated to a finite one, which leads to the so-called truncation error.

In order to avoid the truncation error, one can take kernels χ with bounded support.
Remarkable examples of kernels with compact support, can be constructed using the well-known

univariate central B-spline of order k ∈ N, defined by

Mk(x) :=
1

(k − 1)!

k∑

i=0

(−1)i
(
k
i

)(
k

2
+ x− i

)k−1

+

,

where the function (x)+ := max {x, 0} denotes the positive part of x ∈ R (see [18, 19, 47]). The
multivariate central B-spline kernel of order k ∈ N is defined by:

Mn
k(x) :=

n∏

i=1

Mk(xi), x = (x1, ..., xn) ∈ R
n,

and the functions Mn
k(x) satisfy all the conditions upon a multivariate kernel, see e.g. [19, 24, 55,

56].
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Finally, other important examples of univariate kernels are given by the Jackson-type kernels,
defined by

Jk(x) = ck sinc2k
( x

2kπα

)
, x ∈ R,

with k ∈ N, α ≥ 1, where the normalization coefficients ck are given by

ck :=

[∫

R

sinc2k
( u

2kπα

)
du

]−1

.

The multivariate Jackson-type kernels, used in this paper for the reconstruction process, are defined
by J n

k (x) :=
∏n

i=1 Jk(xi), x ∈ R
n; for more details, see e.g., [18, 36, 38, 57, 58]. For others useful

examples of kernels, see e.g., [18, 57, 59, 60, 61, 62, 63].

3.1. Applications to Image Processing

In this section, we show how the multivariate sampling Kantorovich operators can be applied to
reconstruct images, see [19, 56]. Every bi-dimensional gray scale image A (matrix) can be modeled
as a step function I, with compact support, belonging to Lp(R2), 1 ≤ p < +∞. The most natural
way to define I is:

I(x, y) :=

m∑

i=1

m∑

j=1

aij · 1ij(x, y), (x, y) ∈ R
2,

where 1ij(x, y), i, j = 1, 2, ...,m, are the characteristics functions of the sets (i−1, i]×(j−1, j] (i.e.
1ij(x, y) = 1, for (x, y) ∈ (i− 1, i]× (j − 1, j] and 1ij(x, y) = 0 otherwise). Note that the above
function I(x, y) is defined in such a way that, to every pixel (i, j) it is associated the corresponding
grey level aij . Then, we can now consider the family of bivariate sampling Kantorovich operators
(SwI)w>0 (for some kernel χ) that approximates I in Lp-sense. Now, in order to obtain a new
image (matrix) that approximates the original one, it is sufficient to sample SwI (for some w > 0)
with a fixed sampling rate. In particular, we can reconstruct the approximating images (matrices)
taking into consideration different sampling rates and this is possible since we know the analytic
expression of SwI.

If the sampling rate is chosen higher than the original sampling rate, one can get a new image
that has a better resolution than the original one’s. The above procedure has been implemented by
using MATLAB in order to obtain an algorithm based on the multivariate sampling Kantorovich
theory. The pseudo-code of the proposed algorithm is shown in Table 1.

In the next sections, examples of thermographic images reconstructed by the sampling Kan-
torovich operators will be given to show the main applications of the theory to civil engineering.

4. Mechanical characteristics of masonry texture

The images obtained from thermography and enhanced by the reconstruction process by us-
ing the sampling Kantorovich algorithm, with a scaling factor R > 1, are used to estimate the
elastic properties of the masonry taking into account the actual texture, achieving an appropriate
description of the mechanical behavior.

In particular, the steps of the procedure that lead to the estimation of the elastic properties of
the masonry starting from the (original or reconstructed) image are here briefly recalled and will
be described in more details in the next sections. At first, the separation of the phases, with the
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Objective: Reconstructing and improving the resolution of the original bivariate image I

by sampling Kantorovich operators based upon the bivariate kernel χ.

Inputs: Original image I (n× n pixel resolution), the parameter w > 0 and the

scaling factor R.

• Choice and definition of the kernel function χ.
• Definition of the size (n×R)×(n×R) of the reconstructed image.
• Computation of the matrices of the mean values (samples) of I

by means of the Kronecker matrix product.
• Definition of the vectors containing the arguments of χ.

Iteration: Summation over k of all non-zero terms of the form χ(wx− k) ·
[
w2

∫
Rw

k

I(u) du
]
,

for a suitable fixed grid of points x.

Output: The reconstructed image with resolution (n×R)×(n×R).

Table 1: Pseudo-code of the sampling Kantorovich algorithm for image reconstruction.

identification of the stones and the mortar joints, is achieved by means of techniques belonging to the
field of Digital Image Processing. The black-and-white image obtained is considered as a sample of
the masonry and it is used to estimate the elastic properties by means of homogenization performed
employing Finite Element Method; in particular, one finite element with appropriate mechanical
characteristics (corresponding to that of the mortar or the stone) is assumed for each pixel; two
kind of boundary conditions (essential and natural) are applied at the edge of the sample in order
to evaluate the effective stiffness proprieties. From these, the elastic moduli are estimated assuming
a mean isotropic behaviour of the masonry. Finally, the mechanical characteristics estimated for
the masonries by means of the previous procedure is used in a finite element model of the building
in order to estimate its modal properties (periods and modal shapes of vibration).

4.1. Separation of phases

The image is converted from gray-scale representation to black-and-white (binary) representa-
tion by means of techniques belonging to the field of Digital Image Processing (D.I.P.). The aim
is to obtain a consistent separation of the phases, that is a correct identification of the pixel which
belong to the blocks (bricks and/or stones) and those who belong to the matrix of mortar. In
particular, after the conversion of the image in black-and-white, the areas consisting of white pixels
are identified as blocks while the remaining areas of black pixels denotes the mortar joints. The
method used to obtain the black-and-white image of the wall has been described in [64] and it is
here briefly reminded.

At first, the gray-scale image is converted in binary by means of thresholding. The method
proposed in [64] has been modified in order to compensate the effect of gradient of illumination in
the original image. In fact, since the thermographic images are based on the measure of heat flux,
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as described in detail previously, it is expected that, even if the material pattern is the same, the
luminance gradient is not uniform. In particular the adaptive thresholding has been used (see [65]).
The idea behind this approach is that, instead of computing a threshold using the information from
the entire image, the threshold is evaluated using smaller portions of the image; these sub-images
are likely to have an approximately uniform value of luminance. As a threshold, in the present case
the mean value of gray level of each portion of the image has been used.

Thereafter, morphological operators are used to enhance the quality of the separation of the
phases. In fact, the thresholding process generates an image which has several issues. In particular,
salt-and-pepper noise would be erroneously interpreted, from a mechanical point of view, as either
small portions of mortar inside the inclusions or very little stones inside mortar joints. Therefore
the filling of the areas is performed in order to fix these issues. Moreover, erosion and dilation
operators are applied in order to smooth the contours of the inclusions and to correct small defects
still present in the image. It is worth noting that the morphological operators, besides the change
of the boundaries of the inclusions, may change also the concentration of the phases, but this effect
is generally small (in the order of few percent). Moreover, this difference is due to small stones
scattered inside mortar joints, which are not real but due to thresholding process, and therefore it
is correct to eliminate them from the image.

The image obtained is characterized by a consistent separation of phases, where each stone is
surrounded by mortar joints and unrealistic conjunction of inclusions is avoided as much as possible.

An example of the results that can be obtained applying the previous method to both the original
termographic image and to the image enhanced by means of sampling Kantorovich operators, built
upon a Jackson type kernel, are shown in Fig. 1.

(a) (b)

Figure 1: (a) texture obtained using original thermographic image and (b) texture obtained using reconstructed
image.

It is worth noting that between the original and the reconstructed thermographic images there
are differences, other than in their resolution, also in their gray levels that greatly affects the
estimation of the texture, which is our main interest: this is due to the threshold algorithm which
operates in the range of gray levels which are modified and enhanced by the reconstruction process.

As can be observed, the elaboration of the original image generates unrealistic shape of the
inclusion and irregular mortar joints (Fig. 1 (a)), while in the case of enhanced image the stones
appear to be quite regular and, more meaningfully, the pattern is characterized by horizontal and
non-aligned vertical mortar joints (Fig. 1 (b)). Moreover, the original image tends to overestimate
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the percentage of mortar in the masonry. In fact, as a good building practice, the use of the
mortar should be reduced as much as possible, only to allow a correct positioning of the inclusions
(bricks and stones). This anomalous quantity of mortar affects the mechanical characteristics of
the equivalent material, as will be shown in the following application to the case-study. Both
these observations, together with the mathematical considerations previously discussed, lead us
to conclude that the image reconstructed by means of sampling Kantorovich operators is more
realistic, from an engineering point of view, than the original one.

4.2. Estimation of elastic properties

The masonry is an heterogeneous material with random micro-structure, given by the arrange-
ment of blocks and mortar joints identified in the previous section. The knowledge of the particular
arrangement for the masonry object of the analysis, i.e., the texture, allows the direct estimation
of the mechanical parameters of a homogeneous material equivalent to the actual masonry. The
equivalence is in the sense defined by [66]: when subjected to the same boundary conditions (b.c.),
the overall response in terms of mean values of stresses and deformations of the heterogeneous
material and of the equivalent homogeneous one is the same.

The procedure to estimate the elastic stiffness tensor, C, of the homogeneous equivalent material
has been presented in [67] and here briefly reminded.

The stress tensor σ and the strain tensor ε are expressed using Voigt notation:

σ = {σxx, σyy, σzz, σyz , σxz, σxy}
T , ε = {εxx, εyy, εzz , εyz , εxz, εxy}

T . (2)

The use of Voigt notation allows to express the stiffness 4th-order tensor C as a symmetric
square matrix with 36 elements in the following way:

σ = C ε (3)

The equivalence relation is given by:

〈σ〉 = CHom 〈ε〉,

where 〈σ〉 and 〈ε〉 are the spatial average on the domain Ω of σ and ε, given by:

〈σ〉 =
1

|Ω|

∫

Ω
σ dΩ, 〈ε〉 =

1

|Ω|

∫

Ω
εdΩ.

The stiffness elastic properties of the equivalent homogeneous material expressed by CHom,
which accounts for the effective texture of the micro-structure, can be estimated by a suitable choice
of boundary conditions. In general, if the domain Ω is not sufficiently large, the estimate of CHom

depends on the b.c. applied. Two type of b.c. are mainly used: (i) essential boundary conditions,
expressed in terms of displacements u = {ux, uy, uz}

T , where the estimate of CHom is denoted by

CE; (ii) natural boundary conditions, expressed in terms of surface forces f = {fx, fy, fz}
T , where

the estimate of CHom is denoted by CN. It is possible to prove (see [68]) that:

CN ≤ CHom ≤ CE,

where the order relation between two generic matrices X and Y expressed by X ≤ Y means that
zT X z ≤ zT Y z for any non-null vector z.
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The problem can be simplified if the hypothesis of plane-stress state are assumed, as it is usually
true in the case of masonry walls. The plane-stress state is characterized by:

σzz = σxz = σyz = 0,

while the remaining components are only function of x and y, where x and y are coordinate axis
lying in the plane of the wall.

In this case, the stress and strain tensors of (2) and the corresponding stiffness matrix of (3)
are given by:

σ = {σxx, σyy, σxy}
T , ε = {εxx, εyy , εxy}

T and C =




C11 C12 C16

C12 C22 C26

C16 C26 C66


 . (4)

and appropriate conditions at the boundary of the binary image concerning the portion analyzed
are applied in order to estimate the tensor C in (4). In order to solve the boundary value problem,
the Finite Element Method (F.E.M.) is used. In particular 4-node elements with plane stress
formulation are used, assuming that each pixel of the binary image is a finite element.

In particular, the following boundary conditions are used:

• Essential boundary conditions allows to obtain a uniform value of ε = ε0 over the domain of
an homogeneous material, and consist of the following displacements:

ux = ε0xx · x+ ε0xy · y (5a)

uy = ε0xy · x+ ε0yy · y (5b)

This allows to evaluate, by means of the F.E.M., the components of the stiffness matrix, CE.
For example, choosing ε0 = {1, 0, 0}T and therefore adopting ux = x, uy = 0, the first column

of CE is given by {〈σxx〉, 〈σyy〉, 〈σxy〉}
T , since {〈εxx〉, 〈εyy〉, 〈εxy〉}

T = {1, 0, 0}T [68]. Similarly

the second and third column of CE can be obtained with ε0 = {0, 1, 0}T and ε0 = {0, 0, 1}T

respectively.

• Natural boundary conditions allows to obtain a uniform value of σ = σ0 over the domain of
an homogeneous material, and consist of the following tractions:

fx = σ0
xx · nx + σ0

xy · ny (6a)

fy = σ0
xy · nx + σ0

yy · ny (6b)

with nx, ny the direction cosines of the outer-pointing normal to the boundary, which allows to

evaluate, by means of the F.E.M., the components of the inverse of stiffness matrix,
(
CN

)(−1)
.

For example, choosing σ0 = {1, 0, 0}T and therefore adopting fx = nx, fy = 0, the first

column of
(
CN

)(−1)
is given by {〈εxx〉, 〈εyy〉, 〈εxy〉}

T , since {〈σxx〉, 〈σyy〉, 〈σxy〉}
T = {1, 0, 0}T

[68]. Similarly the second and third column of
(
CN

)(−1)
can be obtained with σ0 = {0, 1, 0}T

and σ0 = {0, 0, 1}T respectively.
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In case that CE and CN are sufficiently close, CHom can be estimated through the following
arithmetic mean (see [67]):

CHom =
1

2

(
CN + CE

)
. (7)

Since the behavior of the model is analyzed by means of modal analysis, in which the response
to earthquake action is driven by lateral displacements, and low-rise building are considered, is
possible to simplify the numerical analysis assuming the material is isotropic and a value of elastic
moduli intermediate among those corresponding to horizontal and vertical directions have been
used. The isotropic moduli can therefore be found through the components of the stiffness tensor
CHom given by (7) by means of the following:

ν =
2C12

(C11 + C22)
, (8a)

E =
(C11 + C22)

2

(
1− ν2

)
, (8b)

G=
E

2 (1 + ν)
. (8c)

The pseudo-code of the algorithm described in the present Section, that allows to find the rela-
tionship between the thermal image (original and reconstructed indifferently), the stiffness tensor
and eventually the elastic isotropic moduli of the material, is shown in Table 2.

Once the mechanical characteristics of the masonry have been estimated by means of (8a), (8b),
and (8c) using the proposed procedure, they can be used to model the building and perform the
structural analysis.

5. Application to a case-study

The procedure presented in the previous section has been applied to a real-world case-study; it
consists of a building located near Perugia, in central Italy.

The case-study is a typical detached country house of middle ’60s. It consists of two levels and
an attic and has a very simple architectural plan, consisting of a rectangle with sides 11 m and
11.4 m (see Fig. 2). The main front is eastward.

As usual for building of that age, the vertical structural elements consist in masonry walls. At
first level the masonry walls have thickness of 40 cm and are made of rounded stones, while at the
second level the masonry is made of squared tuff block and it has thickness of about 35 cm. The
horizontal structural elements consist in mixed reinforce concrete/brick slabs (known as “SAP” in
Italy) cast in a single direction. Both surfaces of the walls are plastered.

The loads acting on the building have been estimated according to the 2008 Italian Building
Code [69]. In particular, the building is placed in a medium risk seismic area, with an expected
peak ground acceleration for a 475-year mean return period earthquake of 0.161 g.

According to a preliminary visual survey, the structure does not have strong asymmetry between
principal directions and, the distribution of the masses is quite uniform.

The aim of the following sections is to investigate the enhancement in the understanding of
structural behavior which may be achieved by means of thermographic survey. All the models
described in the following have been analyzed by means of F.E.M. using a commercial code, and
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Objective: Estimating the isotropic elastic moduli E and ν of the masonry.

Inputs: Original or reconstructed thermographic image I (n× n pixel resolution) of the masonry.

• Separation of the phases by means of thresholding.
• Application of morphological operators to correct the issues due to the

thresholding and to obtain a sample of the masonry with consistent position
of stones and mortar joints.

• Modeling of the sample by means of Finite Element Method.
Each pixel is a 4-node Finite Element with stone’s or mortar’s mechanical
characteristics.
The model consists of n× n finite elements.

• Application of essential boundary conditions and estimation of CE.
At each node on the boundary of the model the displacements are applied
according to (5a) and (5b). First, second and third column of CE are obtained

using ε0 = {1, 0, 0}T , ε0 = {0, 1, 0}T and ε0 = {0, 0, 1}T respectively.
• Application of natural boundary conditions and estimation of CN .

At each node on the boundary of the model the forces are applied

according to (6a) and (6b). First, second and third column of
(
CN

)(−1)
are obtained

using σ0 = {1, 0, 0}T , σ0 = {0, 1, 0}T and σ0 = {0, 0, 1}T respectively.
• Estimation of the effective stiffness tensor CHom:

CHom = 1
2

(
CE +CN

)

• Estimation of the isotropic elastic moduli E, ν and G:

ν = 2C12

(C11+C22)
, E = (C11+C22)

2

(
1− ν2

)
, G = E

2 (1+ν) .

Iteration: Repeat for each different texture of masonry present in the building.

Output: The values of E, ν and G that can be used as elastic characteristics

of the masonries in a finite element model of the whole building.

Table 2: Pseudo-code of the algorithm that allows to find the relationship between the thermal image (original and
reconstructed) and the elastic isotropic moduli of the masonry.

employing finite elements of shell type made of material with isotropic behaviour to model masonry
walls.

The first model is constructed using information that can be gathered by the visual survey only.
In a second model, the information concerning the actual geometry of vertical structural ele-

ments acquired by means of thermographic survey have been used. In particular a rather strong
reduction in resisting section of the main front walls due to a partial filling of the openings has been
detected (see Fig. 3).

In the third model, also information about the actual texture of masonries of each level, as
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Figure 2: Plan and east front of case-study building.

Figure 3: View of east front in visible (left) and infrared (right) range.

can estimated from the analysis of reconstructed images, have been used. In particular, from
the thermographic images taken on the south front, two portions of masonry were extracted: one
belonging to ground level, which is made of chaotic masonry, and the other from second level, which
consists of almost periodic masonry (Fig. 4).

Figure 4: Portion of masonries analyzed in south front: chaotic masonry of ground level (left) and periodic masonry
of second level (right).

The schematic succession of the models is depicted in Fig. 5.
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Figure 5: Schematic description of three models.

The behavior under seismic actions can be estimated by means of response spectrum modal
analysis, which is the approach suggested by the Code. The main advantage of this approach is
that the structure is modeled by means of multiple elementary oscillators for which the response
to the earthquake action can be easily estimated. In this kind of analysis, the period and the
shape of each mode greatly influence the response. In particular the shifting in the period may
increase or decrease the modal acceleration and therefore the force distribution in the mode. As
a rule-of-thumb, the periods tend to increase as the mass involved in each mode increases and as
the elastic modulus of the materials decreases. Moreover, the presence of a significant torsional
component coupled with each translation mode could contribute to increase the internal forces in
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the structural elements. Finally, the distribution of the mass among the modes, expressed by means
of mass participating ratio, is also important since the seismic force is proportional both to modal
acceleration and to modal mass.
The effect of the previous factors will be discussed in detail for each of the models.

Model #1

The geometry of the vertical structural elements has been obtained by means of a visual survey.
As previously stated, the first level masonry is made by stones and mortar, while the second level
masonry is made by tuff bricks and mortar. In both cases the mortar joints thickness is of the order
of 5–10 mm.

The mechanical characteristics (Young’s modulus E, shear modulus G, Poisson ratio ν, weight
W ) used for the materials of both levels are reported in Tab. 3. In particular, for the first level
the values of the masonry classified as “split stone masonry with good texture” have been used,
adopting for E and G the superior of the ranges (1500–1980MPa and 500–660MPa respectively)
suggested by the code, since the masonry is quite recent and still in good conditions, and adopting
the factors due to the use of mortar with good mechanical characteristics, 1.3, and the presence
of transverse connection, 1.3. For the second level the values of the masonry classified as “soft
stone (tuff, etc.) ashlar masonry” have been used, adopting for E and G the mean of the ranges
(900–1260MPa and 300–420MPa respectively) suggested by the code due to the quality of the tuff
found in Central Italy which is a low/medium strength one (see, for example, table in [70]), and
adopting the factor due to the use of mortar with good mechanical characteristics, 1.5.

E G W
Nmm−2 Nmm−2 kNm−3

first level 3346 1115 20.0
second level 1620 540 16.0

Table 3: Mechanical characteristics in Model #1.

Model #2

The thermographic survey has been used to obtain detailed information about the actual ge-
ometry of masonry walls. In general the survey may reveal:

- the existence of openings which have been filled and subsequently hidden by the plaster;
- the reduction of the dimensions of an opening by partial filling.

In particular, the survey has shown that the openings of the ground level of the main front have
been partially filled, and therefore the structural dimensions of the adjacent walls have to be greatly
reduced. This in turn compels to reduce also the dimensions of the openings at the second level,
and therefore the contribution to the overall stiffness of the front is reduced.

It is worth noting that the revealing of a completely filled opening at the second level in the
south front is not very significant since it is aligned with the opening at ground level and therefore
does not modify the width of masonry walls.

The same mechanical characteristics for masonries used in Model #1 and reported in Tab. 3,
have been used.
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Model #3

In the last model, the geometry of the masonry walls is the same used for Model #2. Anyway,
the information obtained by the study of the actual texture of masonries at first and second level,
as shown in Fig. 4, have been used.

The images relative to these portions were enhanced by means of the reconstruction method
based on sampling Kantorovich operators, using a scale factor R = 6, and afterwards the elastic
characteristics of an homogeneous equivalent material were estimated. Anyway, the weight was
assumed equal to the values suggested by the code. The results are reported in the following,
together with those obtained using non reconstructed images, to make a comparison.

Chaotic masonry

The image reconstructed by means of sampling Kantorovich operators together with its black
and white version obtained by D.I.P. (which make up the texture algorithm) of the sample of chaotic
masonry is shown in Fig. 6 (a) and (b).

(a) (b)

(c) (d)

Figure 6: Images of chaotic masonry sample: (a) reconstruction by sampling Kantorovich operators, (b) texture
of the reconstructed image, (c) texture of the original (non reconstructed) image, (d) texture of the original (non
reconstructed) image obtained using a smaller window for adaptive thresholding.

It was assumed that the constituent phases have the mechanical characteristics reported in
Tab. 4. The Young’s modulus, E, and the Poisson’s coefficient, ν, have been estimated employing
values commonly found in literature. In particular, a value of E = 25000MPa was assumed for
natural stone, which, considering a strength to Young’s modulus ratio of 300 (see, for example, [71]),
corresponds to a compressive strength slightly larger than 80MPa, coherent to that of a medium-
strength limestone. The Young’s modulus of mortar has been estimated assuming a strength to
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E ν
Nmm−2

block (natural stone) 25000 0.20
mortar (M2.5) 2500 0.20

Table 4: Mechanical characteristics of components of chaotic masonry.

Young’s modulus ratio of 1000 as suggested for the masonry by the Italian Building Code [69].
Moreover, the focus of the paper is on the proposal of a procedure which could be applied in the
analysis of the vulnerability of existing buildings, and not in the specific values for the case at hand.
Anyway, some considerations on the influence of the Young’s moduli of the phases on the estimated
homogeneous values for the masonry are reported at the end of this section.

The stiffness matrices CN, CE and CHom estimated by means of the procedure previously
described are:

CN =




7419 1381 0
1381 6426 0
0 0 2482


 ,

CE =




8200 1429 0
1429 7233 0
0 0 2850


 ,

CHom =




7809 1405 0
1405 6830 0
0 0 2666


 .

Even if the values of CN are quite far from those of CE, and it is known that the estimation of
the equivalent material benefit of an increasing of the sample dimensions, it was assumed that the
values of CHom obtained, can be a good estimator C of the equivalent homogeneous material. As
can be appreciated, the equivalent homogeneous material has orthotropic behavior.

For comparison, the results obtained using the non reconstructed image, shown in Fig. 6(c), are
also reported:

C̃Hom =




7013 1290 0
1290 6589 0
0 0 2563


 .

The difference seems to be mainly due to different concentration of phases, in particular in the
non reconstructed image the percentage of area occupied by stones is about 51.1 %, while in the
reconstructed image it is about 55.4 %. In general, the equivalent elastic modulus is an increasing
function of the percentage of stones (which is stiffer).

In this sense, the reconstructed image is better than the original one since, from an engineering
point of view, is reasonable that the builder try to minimize the use of mortar employing a joint
thickness as small as possible to connect all the stones.

Moreover, the possibility of using the original, non reconstructed, image adopting a smaller
window for the adaptive thresholding has been considered. The resulting texture is shown in
Fig. 6(d): as can be appreciated, some of the smaller stones have disappeared. This is confirmed
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by the evaluation of C̃Hom:

C̃Hom =




6436 1138 0
1138 5627 0
0 0 2195


 ,

where, as previously noted, the difference seems to be mainly due to different concentration of
phases, which passes from 55.4 % in the reconstructed image to 47.0 % of the present case. There-
fore, simply reducing the size of window to be used in the adaptive thresholding do not bring to
reasonable results.

The obtained values of the mechanical characteristics E and G of the homogeneous equivalent
material are reported in Tab. 5.

E G W
Nmm−2 Nmm−2 kNm−3

reconstructed image 7050 2957 20.0
non reconstructed image 6556 2756 20.0

Table 5: Mechanical characteristics of chaotic masonry in Model #3.

In the case of chaotic masonry a study of the sensitiveness of equivalent homogeneous parameters
to mechanical parameters of the constituent phases has been made. The results, obtained using the
reconstructed image, are reported in Tab. 6.

Eblock

20000 25000 30000

Emortar

2000 5640 6063 6412
2500 6530 7050 7481
3000 7333 7949 8459

Table 6: Modulus of Young of the equivalent homogeneous material corresponding to different Young’s moduli of
constituent phases.

As can be appreciated, the error which is made using a non reconstructed image instead of a
reconstructed one is of the same order as a 20% error on the stones’ elastic modulus, as shown
in Tab. 6. Therefore, even if the elastic moduli of the phases should be known with sufficiently
accuracy, for example by means of non-destructive methods as drilling test and rebound hammer,
using a non reconstructed image may nevertheless lead to significant errors on the estimation
of equivalent elastic moduli. This confirm the convenience of using image reconstruction in the
estimation of mechanical characteristics of masonry textures.

Periodic masonry

The image reconstructed by means of sampling Kantorovich operators together with its black
and white version obtained by D.I.P. (texture algorithm) of the sample of periodic masonry is shown
in Fig. 7.

It was assumed that the constituent phases have the mechanical characteristics reported in
Tab. 7. The Young’s modulus, E, of tuff has been chosen according to values reported in [70] and
valid for material found in Orvieto zone, which is nearby the location of the case-study building.

The stiffness matrices CN, CE and CHom are:
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(a) (b) (c)

Figure 7: Images of periodic masonry sample: (a) reconstruction by sampling-Kantorovich operators, (b) texture of
the reconstructed image, (c) texture of the original (non reconstructed) image.

E ν
Nmm−2

block (tuff) 1700 0.20
mortar (M2.5) 2500 0.20

Table 7: Mechanical characteristics of components of periodic masonry.

CN =




2099 412 0
412 2053 0
0 0 821


 ,

CE =




2105 413 0
413 2056 0
0 0 823


 ,

CHom =




2102 412 0
412 2054 0
0 0 822


 .

As can be appreciated, the equivalent homogeneous material has a mechanical behavior which is
almost isotropic. Moreover the values of CN and CE are very close, so it can be assumed that Hill’s
criterion is satisfied.

For comparison, the results obtained using the non reconstructed image, shown in Fig. 7(c), are
also reported:

C̃Hom =




2136 419 0
419 2091 0
0 0 837


 .

In this case, the percentage of area occupied by stones of the non reconstructed image is about
53.7 %, while that one of the reconstructed image is about 58 %; also in this case the rising of the
percentage of the stiffer phase (which in this case is the mortar) increases the equivalent elastic
moduli. Nevertheless, the effect of reconstruction is less important than in the case of chaotic
masonry, which is therefore more sensible to the the correct assessment of the texture.

The obtained values of equivalent mechanical properties are reported in Tab. 8.
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E G W
Nmm−2 Nmm−2 kNm−3

1996 833 16.0

Table 8: Mechanical characteristics of periodic masonry in Model #3.

5.1. Comparison of results and discussion

In Tab. 9 the periods of the first three modes are reported. For all the models, the first mode is
in East–West direction, along the y axis, the second is in North–South direction, along the x axis,
and the third is mainly torsional. Anyway, the second mode is not a pure translational one since
the asymmetry in the walls distribution adds to the mode a torsional component.

T1 T2 T3

s s s

Model #1 0.22 0.15 0.13
Model #2 0.22 0.14 0.13
Model #3 0.18 0.13 0.11

Table 9: Periods of the first three modes.

As can be noted, the first two models have the same period for the fundamental mode in y
direction; nevertheless, in x direction there is a slight difference due to the reduction on masonry
walls width discovered by means of thermographic survey.

The periods of third model show a reduction of about 30%, this was expected since even if the
geometry is the same of the second model, the homogenization gave greater value of equivalent
elastic moduli.

An important issue which is addressed by the Code is torsional deformability, expressed by the
ratio rmin/ls, where rmin is the minimum radius of gyration and ls is the polar inertia radius. The
Code state that if the ratio is lower than 0.8 the structure is torsionally deformable, and therefore
special caution has to be used and possibly the distribution of the masses and/or the distribution
of structural elements should be modified.

The value of rmin/ls is reported in Tab. 10.

rmin/ls
Model #1 1.082
Model #2 1.068
Model #3 1.059

Table 10: Torsional deformability of three models.

It can be noted that all the models have value of rmin/ls > 0.8, and therefore they are not
torsionally deformable. Anyway, both the reduction of masonry walls width in main front and
the increasing in the value of elastic moduli tend to decrease the value of rmin/ls and therefore to
increase the sensitivity to torsional deformation.

Finally, the mass participating ratio of the first three modes, indicated with M1, M2 and M3,
for the two principal direction of seismic action is shown in Tab. 11.
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Seismic action along x Seismic action along y
M1 M2 M3 M1 M2 M3

Model #1 0.00 0.64 0.13 0.73 0.00 0.00
Model #2 0.00 0.51 0.27 0.73 0.01 0.00
Model #3 0.00 0.46 0.26 0.68 0.01 0.00

Table 11: Mass participating ratio of the first three modes for two direction of seismic action.

As already discussed previously, for seismic action in x direction the structure response is
dominated by second mode, which is a coupled torsional/flexural mode; for seismic action in y
direction the response is dominated by first mode, which is almost pure flexural.

It is also worth noting that Model #3 shows a reduced mass participating ratio for the funda-
mental mode in each direction, and therefore a greater number of modes should be considered in
the evaluation of seismic response in order to achieve a suitable accuracy.

6. Concluding remarks

Starting from thermographic images of portions of masonry walls, the reconstruction process
by means of the sampling Kantorovich operators allowed to increase their resolution and therefore
it was possible to estimate the mechanical characteristics (Young’s modulus and shear modulus)
of homogeneous materials equivalent to actual masonries, taking into account the texture (i.e.,
the arrangement of blocks and mortar joints). These materials were used to model the behavior
of a case study under seismic action. Moreover, the same thermographic survey that allowed to
investigate the texture of the masonries was also used to detect the actual geometry of masonry
walls, enhancing the quality of the model with respect to that based on visual survey only.
In particular the proposed approach suggests a procedure to overcome some difficulties that arise
when dealing with the vulnerability analysis of existing structures, which are: i) the knowledge of
the actual geometry of the walls (in particular the identification of hidden doors and windows);
ii) the identification of the actual texture of the masonry and the distribution of inclusions and
mortar joints, and from this iii) the estimation of the elastic characteristics of the masonry. It is
noteworthy that, for item i) the engineer has limited knowledge, due to the lack of documentation,
while for items ii) and iii) he usually use tables proposed in technical manuals and standards which
however give large bounds in order to encompass the generality of the real masonries. Therefore
by means of a single thermographic survey, together with the methods previously proposed, it is
possible to gather information about all these three critical items.

Moreover, it has been shown that the uncertainties due to the lack of knowledge of the exact
texture are of the same order of those due to an insufficient mechanical characterization of the
constituent phases, and therefore the use of reconstruction techniques on thermographic images is
useful to avoid an excessive approximation on the estimation of equivalent mechanical characteristics
of the masonry. It is worth noting that, while the experimental estimation of the Young’s modulus
of an existing masonry usually requires rather invasive tests (such as double flat-jack tests), using
the proposed procedure (operating on thermographic images reconstructed by means of sampling
Kantorovich operators which are used to estimate the equivalent elastic moduli on the base of the
actual texture) it is sufficient to estimate the mechanical characteristics of the constituent phases
with non-destructive tests (such as, for example, drilling test and/or rebound hammer).
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[41] M.A. Krasnosel’skǐi, Ya.B. Rutickǐi, Convex Functions and Orlicz Spaces, P. Noordhoff Ltd. - Groningen - The

Netherlands, 1961.
[42] W.M. Kozlowski, Modular Function Spaces, (Pure Appl. Math.) Marcel Dekker, New York and Basel, 1988.
[43] L. Maligranda, Orlicz Spaces and Interpolation, Seminarios de Matematica, IMECC, Campinas, 1989.
[44] M.M. Rao, Z.D. Ren, Theory of Orlicz Spaces, Pure and Appl. Math., Marcel Dekker Inc. New York-Basel-Hong

Kong, 1991.
[45] C. Bardaro, G. Vinti, Some Inclusion Theorems for Orlicz and Musielak-Orlicz Type Spaces, Annali di Matem-

atica Pura e Applicata, 168 (1995), 189–203.
[46] M. M. Rao, Z. D. Ren, Applications of Orlicz Spaces, Monographs and Textbooks in Pure and applied Mathe-

matics, vol. 250, Marcel Dekker Inc., New York, 2002.
[47] G. Vinti, L. Zampogni, Approximation by means of nonlinear Kantorovich sampling type operators in Orlicz

spaces, Journal of Approximation Theory, 161 (2009), 511–528.
[48] C. Donnini, G. Vinti, Approximation by Means of Kantorovich Generalized Sampling Operators in Musielak-

Orlicz spaces, PanAmerican Mathematical Journal, 18 (2) (2008), 1–18.
[49] G. Vinti, L. Zampogni, A Unifying Approach to Convergence of Linear Sampling Type Operators in Orlicz

Spaces, Advances in Differential Equations, 16 (5-6) (2011), 573–600.
[50] G. Vinti, L. Zampogni, A unified approach for the convergence of linear Kantorovich-type operators, in print in:

24



Nonlinear Advanced Studies (2014).
[51] F. Ventriglia, G. Vinti, A unified approach for the convergence of nonlinear Kantorovich type operators, Com-

munications on Applied Nonlinear Analysis, 21 (2) (2014), 45–74.
[52] C. Bardaro, I. Mantellini, On convergence properties for a class of Kantorovich discrete operators, Numerical

Functional Analysis and Optimization, 33 (4) (2012), 374–396.
[53] D. Costarelli, G. Vinti, Order of approximation for sampling Kantorovich operators, to appear in: Journal of

Integral Equations and Applications (2014).
[54] D. Costarelli, G. Vinti, Order of approximation for nonlinear sampling Kantorovich operators in Orlicz spaces,

Commentationes Mathematicae, Special number dedicated to Prof. Julian Musielak, 53 (2) (2013), 271–292.
[55] F. Cluni, D. Costarelli, A.M. Minotti, G. Vinti, Applications of sampling Kantorovich operators to thermographic

images for seismic engineering, in print in: Journal of Computational Analysis and Applications (2014).
[56] D. Costarelli, G. Vinti, Approximation by Nonlinear Multivariate Sampling Kantorovich Type Operators and

Applications to Image Processing, Numerical Functional Analysis and Optimization, 34 (8) (2013), 819–844.
[57] P.L. Butzer, R.J. Nessel, Fourier Analysis and Approximation, I, Academic Press, New York-London, 1971.
[58] P.L. Butzer, W. Engels, S. Ries, R.L. Stens, The Shannon sampling series and the reconstruction of signals in

terms of linear, quadratic and cubic splines, SIAM Journal on Applied Mathematics, 46 (1986), 299–323.
[59] D. Costarelli, R. Spigler, Approximation by series of sigmoidal functions with applications to neural networks,

to appear in: Annali di Matematica Pura e Applicata, (2013) DOI: 10.1007/s10231-013-0378-y.
[60] D. Costarelli, R. Spigler, Approximation results for neural network operators activated by sigmoidal functions,

Neural Networks, 44 (2013) 101–106.
[61] D. Costarelli, R. Spigler, Multivariate neural network operators with sigmoidal activation functions, Neural

Networks, 48 (2013), 72–77.
[62] D. Costarelli, R. Spigler, Convergence of a family of neural network operators of the Kantorovich type, Journal

of Approximation Theory, 185 (2014) 80–90.
[63] D. Costarelli, Interpolation by neural network operators activated by ramp functions, Journal of Mathematical

Analysis and Application, 419 (1) (2014) 574–582.
[64] N. Cavalagli, F. Cluni, V. Gusella, Evaluation of a Statistically Equivalent Periodic Unit Cell for a quasi-periodic

masonry, International Journal of Solids and Structures, 50 (2013), 4226–4240.
[65] R. Gonzales, R. Woods, Digital Image Processing, Prentice-Hall NJ - USA, 2002.
[66] R. Hill, Elastic properties of reinforced solids: some theoretical principles, Journal of the Mechanics and Physics

of Solids, 11 (1963), 357–372.
[67] F. Cluni, V. Gusella, Homogenization of non-periodic masonry structures, International Journal of Solids and

Structures, 41 (2004), 1911–1923.
[68] J. Aboudi, Mechanics of Composite Materials: A Unified Micromechanical Approach, Elsevier, Amsterdam,

1991
[69] 2008 Italian Building Code — Norme Tecniche per le Costruzioni (in Italian), published on the Official Gazette

of the Italian Republic nr. 29 of 4/2/2008, 2008.
[70] M. Ottaviani, Proprietà geotecniche di tufi vulcanici italiani (in Italian), Rivista Italiana di Geotecnica, 3/88

(1988), 173–178.
[71] C.J. Sachpazis, Correlating Schmidt Hardness With Compressive Strength and Young’s Modulus of Carbonate

Rocks, Bulletin of the International Association of Engineering Geology, 42 (1990), 75–83.

25




