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Collapse displacements of masonry arch with geometrical 1 

uncertainties on spreading supports 2 

P. Zampieri, N. Cavalagli*, V. Gusella, C. Pellegrino 3 

This work is aimed at evaluating the collapse displacement of masonry arch 4 

subjected to spreading supports. This is achieved through a general application of 5 

the virtual works principle. The problem is described in a finite displacements 6 

formulation and investigated with a probabilistic approach, also considering the 7 

effects of the geometrical uncertainties. This aspect is related to the imperfections 8 

of the voussoirs, which affect the structural shape. The comparison between the 9 

numerical and experimental results, derived both by the literature and laboratory 10 

tests, confirms that the geometrical irregularities can significantly affect the 11 

results obtained on the nominal structural geometry. Moreover, the disagreement 12 

observed in the experimental tests is explained.  13 
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 16 

1. Introduction 17 

The masonry arch is one of the most commonly used structural components in the 18 

historical constructions. In the last centuries, the understanding of its behaviour has 19 

received a growing interest of architects, engineers and researchers, especially for the 20 

development of the scientific method. As for the more general cases of vaulted systems, 21 

the main function of a masonry arch is to bring the upper loads through specific ways of 22 

the structure to the ground, covering small or large spaces. The definition of the bearing 23 

capacity is a crucial task for the right dimensioning of an arch. In the case of restoration 24 

and/or retrofitting of existing buildings, bearing capacity is also fundamental for its 25 

check and validation. In the last decades, the scientific literature on this topic has 26 

considerably grown and the level of knowledge has significantly increased. In the 27 
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second half of the XX century, a fundamental contribution was provided by Heyman 28 

[1,2], who used limit analysis for the study of masonry structures with an efficient 29 

approach for the rapid evaluation of the structural limit conditions. In this work, 30 

conceivable simplified hypotheses were assumed: no-tensile material, infinite 31 

compressive strength and no-sliding condition at failure between the voussoirs. The 32 

method is based on the well-known safe theorem, which states that “if a set of internal 33 

forces in a masonry structure can be found that equilibrate the external loads, and which 34 

lie everywhere within the masonry, then the structure is safe – safe in the sense that it 35 

cannot collapse under those loads” [3]. After Heyman’s model, the upper bound and the 36 

lower bound methods or, alternatively, the limit equilibrium state analysis have been 37 

largely used. These methods were applied with several purposes, as the definition of the 38 

minimum thickness and/or the bearing capacity under vertical and lateral loads for 39 

different shapes of arches [4-11], the study of arches and vaults behaviour by using the 40 

thrust network analysis [12-15] or advanced numerical methods [16-19], the analysis of 41 

the strengthening effects through innovative materials [20-25] and many others. 42 

During its life, a masonry arch has to withstand several threats that could 43 

significantly reduce its bearing capacity. This problem can be mainly related to two 44 

aspects: (i) structural damages of the arch (e.g. openings or sliding between the 45 

voussoirs due to load actions) and/or material degradation (reduction of the arch 46 

thickness or the strength of materials); (ii) springing settlements. 47 

As far as it concerns the evaluation of structural and material degradation effects, 48 

in the last years several works have been focused on the assessment of the strength or 49 

stability reduction of a masonry arch due to its irregular geometry. The problem was 50 

investigated by modelling masonry arches taking into account the actual stones 51 
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dimensions [26,27]. Elsewhere, parametric studies were applied to investigate the 52 

influence of localized damages [28,29] or probabilistic approaches were used for the 53 

estimation of uncertainties effects on the bearing structural capacity considering 54 

horizontal loads, both in static [30] and dynamic conditions [31]. These works 55 

emphasized that in the most cases the reduction of the collapse conditions, with respect 56 

to the results obtained on the structures having nominal geometries, cannot be 57 

neglected. 58 

Regarding the study of the springing settlements effects, it can be stated that some 59 

aspects concerning the structural response of masonry arches – and more in general of 60 

masonry vaults – still present open problems. Differential settlements can be considered 61 

one of the main causes of collapse of vaulted structures [4], occurring for slow long-62 

term deformations, for example due to static loads, or very quickly dynamic behaviour 63 

of the building, as in the case of earthquake actions. In a study concerning settled 64 

pushing structures, in particular arches and domes, Como [32] demonstrated “that, if the 65 

geometry changes are negligible, the structure will attain the minimum thrust state, 66 

saving its safety margin as in the perfect state”. Ochsendorf [33] analysed the collapse 67 

conditions of the masonry arch on spreading supports in horizontal direction as a 68 

function of the geometrical parameters, namely the curvature radius, the thickness and 69 

the angle of embrace. Experimental results pointed out that the hinges may move with 70 

the increase of the settlements before reaching the collapse. Galassi et al. [34] studied 71 

the response of masonry structures to settlements considering rigid blocks connected by 72 

unilateral contact and frictional links, through a non-linear numerical procedure 73 

experimentally validated. Starting from the work of Ochsendorf, Coccia et al. [35] 74 

developed an incremental procedure, based on the kinematic theorem applied to the 75 

deformed configuration. They aimed at attaining the collapse conditions of the masonry 76 
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arch with horizontal spreading supports by varying the geometrical parameters and the 77 

number of voussoirs. Zang et al. [36] analysed the masonry arch on spreading supports 78 

through a mesoscale modelling strategy, considering solid elements for bricks 79 

connected by interface elements for mortar joints. Constitutive models allow to consider 80 

the effects related to the possible presence of damages. Recently, Zampieri et al. 81 

analysed the effects of local pier scour in a multi-span masonry bridges [37] and the 82 

influence of no-horizontal springing supports of the masonry arch on the collapse 83 

mechanisms, with a numerical approach supported by experimental observations 84 

[38,39]. 85 

As pointed out by literature works, numerical simulations carried out on nominal 86 

geometry models seem to overestimate experimental results [4,33,35]. Starting from this 87 

point, this paper is aimed at investigating the role of geometrical irregularities, 88 

evaluated through a probabilistic approach, on the collapse conditions of a masonry arch 89 

subjected to spreading supports, which could be also related to abutments or piers  90 

deformations. In particular, the collapse conditions are studied through an incremental 91 

numerical procedure using the virtual works principle applied at the deformed 92 

configuration. For each deformed configuration, the limit equilibrium approach is used 93 

to assure the structural equilibrium and the strength condition defining the right hinges 94 

configurations. This condition occurs when the thrust line is contained inside the arch 95 

and passes through the hinge points. 96 

Considering two experimental tests, in this work it is demonstrated for the first 97 

time that the reduction of the ultimate displacement observed at collapse, can be related 98 

to geometrical uncertainties, if compared with numerical simulations. This aspect leads 99 

to the opportunity of introducing safety factors in order to take into account such effects 100 

also in engineering practice [30]. 101 
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2. Problem statement and numerical procedure 102 

2.1 Basic hypotheses 103 

Let us consider a circular masonry arch of radius r, thickness t and angle of embrace α 104 

made by n voussoirs under only its own weight in equilibrium state (Figure 1). The 105 

generic ith voussoir is subjected to the vertical force 106 

i ig Ad           (1) 107 

where γ is the specific weight, Ai the area of the ith voussoir and d the constant out-of-108 

plane depth. The arch is supposed to be fixed on a spreading support, in particular the 109 

left support without loss of generality (point 0 0 0( , )P x y  in Figure 2), and the direction of 110 

the settlement 0  identified by the angle θ with respect to the horizontal. Given the 111 

geometrical parameters, the Cartesian coordinates of a generic point belonging to the 112 

arch can be indicated as a function of the radius r, thickness t and angle of embrace α. 113 

As an example, with reference to the Oxy system indicated in Figure 1, the coordinates 114 

of the centre of mass of the ith voussoir are 115 

 cos cos 1
2

i
i ix r r i


  

 
     

 
      (2) 116 

 sin sin 1
2

i
i iy r r i


  

 
      

 
      (3) 117 

being   / 2     and /i n  . 118 

The passage form the initial unsettled configuration 0  to an equilibrated settled 119 

configuration k  induced by the spreading support is described by a kinematic 120 

mechanism consisting of a three-hinged rigid body chain. 121 
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 122 

Figure 1. Illustration of a masonry arch, divided in n voussoirs, with its geometrical 123 

parameters: radius r, thickness t and angle of embrace α. 124 

 125 

The mechanism can be analysed with the well-known hypotheses proposed by 126 

Heyman [1]: (i) mechanism condition, (ii) resistance criterion and (iii) equilibrium 127 

condition. The first condition (i) requires that the mechanism is only of rotational type, 128 

so that no sliding can occur at each joint; the second (ii) considers a material with 129 

infinite compressive strength and no-tensile strength; the third (iii) corresponds to the 130 

individuation of a thrust line – equilibrated with the external loads – everywhere 131 

contained inside the arch parts profile and passing through the hinges. The ultimate state 132 

of equilibrium is reached by progressively increasing the value of the displacement 0  133 

up to the loss of stability of the arch. This condition leads to the structural collapse with 134 

a mechanism which may involve either all the voussoirs, with a five-hinges symmetric 135 

mechanism, or a part of them, with the occurrence of an asymmetric configuration. In 136 

this case the collapse may develop starting from a four-hinges mechanism, or due to the 137 

alignment of the three hinges already present (three-hinges mechanism). 138 
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 139 

Figure 2. Virtual displacement diagrams applied to the masonry arch for the 140 

determination of the reaction force 0R . 141 

 142 

Let us consider the settlement 0  assigned in 0P  along θ direction and the 143 

resulting kinematically admissible displacement field  ,u v  of the structure, with u 144 

and v as displacement components in x and y directions respectively. The equation of 145 

the virtual works – employed in the small displacement field – provided by the 146 

equilibrated settled configuration k  and a virtual displacement field *k  having the 147 

same properties previously described (i.e. *

0

k  defined in θ direction and *k  148 

kinematically admissible) is 149 

* * *

0 0, ,k k k k kg R              (4) 150 

where k  and *k  are the stress and strain fields respectively, and 0

kR  is the reaction 151 

force acting on 0P  along θ direction. In the Equation (4), the notation ,  indicates the 152 

work calculus given by the system “ ” of forces or stresses, and the system “ ” of 153 
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displacements or strains [40]. Assuming that the elastic deformations can be considered 154 

everywhere negligible, the right side of Equation (4) vanishes 155 

*, 0k             (5) 156 

so that it is possible to calculate the reaction force along the settlement direction 157 

*

0 *

0

, k

k

k

g
R




           (6) 158 

Following the notation of Figure 2, the solution of the equilibrium problem is easily 159 

given by a system of equilibrium equations (three global equilibrium conditions and a 160 

balance equation around the point 2P ) expressed in the  matrix form [37] 161 

 Q r q             (7) 162 

where Q is the coefficient matrix 163 

   

   
0 3 3 0

2 3 3 2

1 0 1 0

tan 0 0 1

0 1

0 0

x x y y

x x y y



 
 

 
   
 

  

Q       (8) 164 

r is the vector of the unknown reaction forces 165 

0

0

3

3

V

M

V

H

 
 
 

  
 
  

r           (9) 166 

and q is the vector of the known terms 167 

03 0

0

03 03

23 23

k

V

k

H

F R

R

F b

F b

 
 

 
  

 
  

q          (10) 168 

in which 03F  and 23F  are the resultant vertical forces of the structural parts comprised 169 

between the points 0 3P P  and 2 3P P  respectively, 0 0 sink k

VR R   and 0 0 cosk k

HR R   170 
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are the vertical and horizontal components of the reaction 
0

kR , while 
03b  is the distance 171 

between 0P  and the line of action of 03F , and 23b  between 3P  and the line of action of 172 

23F . 173 

The problem solution is achieved through the following equation 174 

1 r Q q           (11) 175 

from which the horizontal component 0H  is derived through the relation 0 0 tanH V  . 176 

If Heyman hypothesis about the criterion resistance is satisfied, namely the thrust line is 177 

everywhere inside the arch profile in each block, the solution is admissible, otherwise 178 

the hinges must be moved and the solution is achieved by means of few iterations.  179 

As discussed above, the collapse condition can be reached for the arising of 180 

several types of mechanisms. Several authors asserted that the type of collapse 181 

mechanism depends on several features, in particular the arch geometry (e.g. the rise, 182 

the span and the thickness) and the settlement direction [4,33,35]. It is well-known from 183 

the literature that a three hinges mechanism suddenly develop with an even small 184 

settlement and then, with the increasing of the displacement, evolves up to the arch 185 

collapse. During this process, it is also possible to observe a change of mechanism, 186 

characterized by a movement of the hinges before the collapse. 187 

In this perspective, the description of the mechanism evolution requires a finite 188 

displacements formulation of the problem, in order to define the geometrical 189 

configuration of the kinematic structural mechanism, also considering the possible 190 

change of the hinges position, until reaching collapse. 191 

 192 

 193 

 194 
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2.2 Numerical procedure in finite displacement field 195 

The structural problem introduced in the previous section, regarding the research of the 196 

ultimate condition of an arch subjected to a spreading support, is solved through an 197 

incremental numerical procedure based on increasing values of the assigned settlement. 198 

The search algorithm of the ultimate condition, developed in the finite displacements 199 

field, consists of three main steps. 200 

The first step is dedicated to the identification of the kinematic mechanism 201 

corresponding to the initial unsettled configuration 0  (Figure 2). Through an iterative 202 

procedure, it is possible to identify a virtual displacement field 0*  associated to a 203 

kinematically admissible mechanism. The procedure, based on the three Heyman 204 

hypotheses previously recalled, allows to obtain an equilibrated system in which the 205 

thrust line is tangent to the arch profile at the three hinges ( 0 0 0

1 1 1( , )P x y , 0 0 0

2 2 2( , )P x y  and 206 

0 0 0

3 3 3( , )P x y ) associated to the mechanism. The Equation (4) of virtual works, taking into 207 

account the assumption (5), becomes 208 

0* 0 0*

0 0, 0g R             (12) 209 

so that the reaction force is obtained by 210 

0*

0

0 0*

0

,g
R




           (13) 211 

Given the hinges position in the initial configuration 0 , it is possible to study 212 

the settled configuration k  (second step) characterized by a settlement 0 0 0( , )k k ku v , 213 

applied at 0 0 0( , )P x y , which components are 214 

0 0 cosk ku             (14) 215 

0 0 sink kv             (15) 216 

 217 
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 218 

Figure 3. Graphical representation of the kinematic mechanism in the generic 219 

settled configuration k . 220 

 221 

Also in this step, the right mechanism in the k  configuration, resulting by the 222 

application of the settlement 0 0 0( , )k k ku v , is reached through an iterative procedure, 223 

assuring the validity of Heyman’s conditions. In fact, the position of the hinges 224 

1 1 1( , )k k kP x y , 2 2 2( , )k k kP x y  and 3 3 3( , )k k kP x y  may not coincide with 0

1P , 0

2P  and 0

3P  of 0 , 225 

due to the possible occurrence of the change mechanism phenomenon previously 226 

described. 227 

The mechanism, illustrated in Figure 3, is defined by the motion of three hinged 228 

bodies, namely I, II and III, in the finite displacements field resulting by the assigned 229 

settlement 0 0 0( , )k k ku v . The rotational parameters  0 0

II III,   and  II III,k k   – which 230 

identify the placement of the body II and III in the unsettled 0  and settled k  231 

configuration respectively – are related to the settlement components through the 232 

following relations 233 

 0 0 0 0 0

0 1 1 1 II II III III II II III IIIcos cos cos cosk k k k k k ku u x x b b b b             (16) 234 

0

0 1 1 1 II II III IIIsin sink k k k k k kv v y y b b             (17) 235 
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where 
IIb  and 

IIIb  are the distances 
1 2PP  and 

2 3P P  respectively, evaluated both in the 236 

unsettled or settled configuration. 237 

The Equations (15) and (14) lead to the expressions of the rotational parameters 238 

 II III,k k   evaluated in the deformed configuration 239 

 II III III

II

1
arcsin sin sink k k k

k
b

b
   

 
  

 
      (18) 240 

 0 0 0 0

III II II III III II II 0

III

1
arccos cos cos cos cosk k k k

k
b b b

b
     

 
    

 
   (19) 241 

The incremental values of the rotational parameters  II III,k k    associated to the 242 

passage from the unsettled 0  and settled k  configurations are directly obtained by 243 

the relations 244 

0

II II II

k k               (20) 245 

0

III III III

k k              (21) 246 

Given the above Equations (14)-(21), the displacement components of each point of the 247 

arch in the settled configuration can be obtained. With reference to the body I, the 248 

horizontal and vertical components, k

iu  and k

iv  respectively, of the displacement vector 249 

at a generic point ( , )k k k

i iQ x y  are 250 

0 0 cosk k k

iu u             (22) 251 

0 0 sink k k

iv v             (23) 252 

Concerning with the body II, the displacement components in the case of 0

1

k

ix x  are 253 

   
2 2

0 0

0 1 1 IIcosk k k k k

i i iu u x x y y             (24) 254 

   
2 2

0 0

0 1 1 IIsink k k k k

i i iv v x x y y             (25) 255 
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while in the case of 0

1

k

ix x  are 256 

   
2 2

0 0

0 1 1 IIcosk k k k k

i i iu u x x y y             (26) 257 

   
2 2

0 0

0 1 1 IIsink k k k k

i i iv v x x y y             (27) 258 

As far as it concerns the body III, the following relations are given for the case of 259 

0

3

k

ix x  260 

   
2 2

0 0

3 3 IIcosk k k k

i i iu x x y y            (28) 261 

   
2 2

0 0

3 3 IIsink k k k

i i iv x x y y            (29) 262 

and for the case of 0

3

k

ix x  263 

   
2 2

0 0

3 3 IIcosk k k k

i i iu x x y y             (30) 264 

   
2 2

0 0

3 3 IIsink k k k

i i iv x x y y             (31) 265 

 266 

After the kinematic definition of the configuration k , the third step of the 267 

procedure leads to the value of the reaction force 0

kR  at the spreading support along θ 268 

direction through the Equation (6) and to the solution of the equilibrium problem (11). 269 

If the equilibrated system is statically admissible and the thrust line is everywhere inside 270 

the arch profile of each block passing through the hinges, is possible to increase the 271 

settlement to study the new configuration 1k . Otherwise is necessary to move the 272 

hinges, achieving the solution through few iterations in the configuration k  before 273 

passing to the new configuration 1k . 274 

Finally, the collapse condition, and then the ultimate admissible settlement, is 275 

reached with the occurrence of a kinematic chain which activates a mechanism. 276 
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3. Modelling of geometrical uncertainties with a probabilistic approach 277 

3.1 Description of the random geometry 278 

The analysis of masonry structures are generally affected by uncertainties due to both 279 

the geometrical irregularities and the variability of the materials mechanical properties. 280 

In this work, having the material infinite compressive strength and no-tensile property, 281 

only the effects of the geometrical irregularities are taken into account, following the 282 

probabilistic approach introduced by Cavalagli et al. [30]. Dealing with masonry arches, 283 

the geometrical uncertainties may be due to several causes: irregularities in the 284 

fabrication of the blocks (bricks and/or stones); imperfections due to the construction of 285 

both the arch and of the provisional structures placed for the supporting of the arch 286 

itself; irregularities related to the degradation of the materials over time. The 287 

geometrical irregularities of the arch has been modelled by means of a statistical 288 

approach, with the introduction of uncertain geometrical parameters. Such uncertainties 289 

are introduced with the aim to represent the geometrical irregularities that are generally 290 

unknown, in order to describe the different structural behaviour of arches having the 291 

same nominal geometry.  292 

The following hypotheses are considered: random values of the angle of 293 

embrace i , the thickness it  and the radius ir  of each voussoir, and deterministic value 294 

of the angle of embrace   (Figure 4). It should be noted that in this work the joint 295 

direction is not considered as random parameter, so that each joint of the random arch 296 

has a radial direction. The random parameters are defined by independent uniform 297 

probability density functions in a range of variability limited by a dimensional tolerance 298 

value   as follows: 299 
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   (32) 300 

where n is the number of voussoirs,   is a curvature tolerance related to   as 301 

( / )t r   and 
i

p , 
it

p , 
ir

p  are independent samples taken from a uniform probability 302 

density function in the range [-1,1] (Figure 5). The Equations (32) show that the mean 303 

values [ ]E  of the random geometrical parameters are assumed equal to the nominal 304 

values. Concerning the variable parts, the number of extracted samples are n for the 305 

random parameters it  and ir , and 1n  for i  in order to assure the deterministic value 306 

of the angle of embrace of the arch; the nth value of the sample results from the 307 

difference 308 

1

1

n

in

i

  




           (33) 309 

The random nature of the geometrical parameters affects the description of the 310 

Cartesian coordinates of a generic point belonging to the arch. As an example, the 311 

Equations (2) and (3) indicating the centre of mass of the generic ith voussoir become 312 

cos cos
2

i
i ix r r


 

 
   

 
        (34) 313 

sin sin
2

i
i iy r r


 

 
    

 
        (35) 314 

for 1i  , and 315 

1

1

cos cos
2

i
i

i i m

m

x r r


  




 
    

 
        (36) 316 
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1

1

sin sin
2

i
i

i i m

m

y r r


  




 
     

 
       (37) 317 

for 2 i n  . 318 

In the analysis of the results, the probabilistic approach considers the mean values 319 

of loads and/or displacements, obtained at collapse, evaluated over a total number h of 320 

randomly generated cases equal to 1000 of each sample  
h

i
n

 ,  
h

i
n

t  and  
h

i
n

r , for a 321 

fixed number of voussoirs n. In [30] it has been already demonstrated that the 322 

introduction of geometrical uncertainties in the model affects the bearing capacity of an 323 

arch, obtaining lower values of the mean collapse loads with respect to the nominal 324 

values provided by a deterministic geometry. This aspect is related to the variability of 325 

the effective contact length between the voussoirs, which directly affects the strength 326 

criterion by limiting the position of the thrust line. In this paper this effect is taken into 327 

account in the kinematic description of the problem, developed in the finite 328 

displacement field, which considers the possible occurrence of the hinges at the extreme 329 

points of each effective contact length.  330 

 331 

Figure 4. Masonry arch with geometrical irregularities described by the random values 332 

of the angle of embrace i , the thickness it  and the radius ir  of the ith voussoir. 333 
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 334 

Figure 5. Probability density functions for the angle of embrace i  (a), the thickness it  335 

(b) and the radius ir  (c). 336 

3.2 A parametric investigation about the random effect 337 

This Section reports the results of a parametric analysis of an arch subjected to a 338 

spreading support   on a direction having an inclination 45    on the horizontal (see 339 

Figure 2). The arch has the following nominal geometrical parameters: angle of 340 

embrace 102.78   , radius 1.40 mr   and thickness 0.12 mt  , from which derived 341 

a dimensionless ratio / 0.08545t r  . The specific nominal geometry refers to a real 342 

masonry arch, which has been tested in the laboratory and described more in detail in 343 

the Section 4.2. The parametric analysis exposed in the following aims at investigating 344 

the uncertainties effects on the ultimate displacement to be expected in the experimental 345 

test. Following the probabilistic approach described in the previous Section, the 346 

geometrical irregularities of the voussoirs are considered assuming parameter 0.03  , 347 

due to the intrinsic values of tolerance affecting the bricks of the actual specimen [30]. 348 

Moreover, the effect of stereotomy is also taken into account by assuming several 349 

values of the number n of voussoirs in the range of 10 to 50. Following the approach 350 

previously described, for each value of n, 1000 samples of arches affected by 351 

geometrical uncertainties have been obtained. 352 

The results, expressed in terms of the random variable  
h

u
n

 , has been 353 

interpolated through the normal probability density function 354 
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         (38) 355 

where [ ]uE   and 2 2 2[ ] [ ]u uE        are the mean value and the variance of 356 

the sample of the random ultimate displacement (Figure 6). It is worth noting as the 357 

spread and the mean values of the ultimate displacement decrease with the increase of 358 

the number of the voussoirs. Furthermore, for each fixed value of n, the mean final 359 

displacement is always lower than the displacement value obtained by using the 360 

nominal geometry. Table 1 summarizes the results. It should be also noted that, for the 361 

arch geometry in exam, as the displacement k  of the settled springing increases, the 362 

position j  of the cracking hinges changes. This change occurs at between 80% and 363 

90% of the final displacement, as shown by the graph in Figure 7, which represents, for 364 

the case of n=50, the value of the position of the hinges in the model with nominal 365 

geometry and the mean value of the random position of the hinges  j   obtained in 366 

the model with irregular geometry, both normalized with respect to the angle of 367 

embrace  . The graph highlights that, for the case of n=50, the mean position of the 368 

hinges obtained by probabilistic analysis on the irregular geometry is quite close to the 369 

position obtained from deterministic analysis. Figure 8 shows the position of the hinges, 370 

as a function of n, in the initial configuration (Figure 8a) and in the final configuration 371 

(Figure 8b), in which can be observed a higher uncertainty in the definition of the 372 

cracking hinges for a low number n of voussoirs. However, in terms of mean values, the 373 

position of hinges 1, 2 and 3 differs slightly from the value obtained from deterministic 374 

analysis. 375 

 376 



19 

 

 377 

Figure 6. Probability density function of the random ultimate displacement for arches at 378 

different values of the number n of voussoirs (n equal to 10, 20, 30, 40 and 50). 379 

 380 

 381 

 382 

Table 1. Ultimate displacements obtained by numerical analysis at different values of 383 

the number n of voussoirs (n equal to 10, 20, 30, 40 and 50) using nominal and irregular 384 

geometry. 385 

Nominal geometry Irregular geometry 

u  [mm] n   [mm]  [mm] 

234.10 10 199.54 17.56 

230.01 20 197.41 13.33 

226.04 30 195.02 11.37 

222.00 40 192.31 7.59 

217.90 50 191.99 4.32 

 386 

 387 
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 388 

Figure 7. Evolution of the normalized position   /j   
 

 of hinges 1, 2 and 3 in 389 

function of the normalized settlement ( / )k u   at the springing, for the case of nominal 390 

(continuous lines) and irregular (dashed lines) geometry, evaluated in average. 391 

 392 

     393 

(a)      (b) 394 

Figure 8. Normalized position   /j   
 

of hinges 1, 2 and 3 in function of the 395 

number n of voussoirs, for the case of nominal (continuous lines) and irregular (dashed 396 

lines) geometry, in the initial (a) and ultimate (b) configuration. The dotted lines below 397 

and above the continuous curve are related to the values μ-σ and μ+σ respectively. 398 

 399 
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4. Experimental tests 400 

In this section, the comparison between the results obtained by proposed numerical 401 

procedure and two related experimental tests is reported. The first refers to a round arch 402 

subjected to horizontal settlement developed by Ochsendorf [33]; in the second, a 403 

springing of a segmental arch has been subjected to incremental settlements along a 404 

direction inclined of 45° angle from the horizontal (Figure 2). 405 

4.1 Horizontal spreading support 406 

The small-scale experimental test carried out by Ochsendorf [33] considered as a case 407 

of study refers to an arch comprising 16 concrete blocks (Figure 9a), with a 50 mm 408 

radial thickness, mean radius r of 220 mm and thickness-radius ratio / 0.23t r  .  409 

 410 

     411 

(a)     (b) 412 

Figure 9. (a) Experimental test carried out by Ochsendorf [33]: equilibrium state of a 413 

settled configuration before collapse. (b) Theoretical symmetric five-hinges collapse 414 

mechanism. 415 

 416 

On this arch, a springing was subjected to incremental horizontal settlement until 417 

reaching the final condition. Experimental testing showed that the cracking hinges (1, 2 418 

and 3) do not change in position from the initial to the final condition. Furthermore, the 419 

maximum measured displacement (30 mm) was reached with an increment of 15.4% of 420 

the span with respect to the internal radius (Figure 9b). In Figure 9a the instant 421 
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immediately before the collapse is shown. From this instant on, the arch has lost its 422 

stability and the collapse occurred with a pure rotational mechanism. An important 423 

observation made by Ochsendorf was that the expected theoretical five-hinges 424 

mechanism did not occur owing to model imperfections, which reduced the ultimate 425 

displacement u  at springing from the predicted value of about 33 mm to 30 mm. The 426 

theoretical collapse condition was obtained through the study of the limit equilibrium, 427 

which is commonly used considering the nominal arch geometry. In general, the results 428 

quite accurately represents both the arch configurations and the position at which the 429 

hinges occur (Figure 10), nonetheless, an error of the final displacement estimation, 430 

which in some cases may not be neglected, could be done. The same results of 431 

Ochsendorf’s analyses are obtained by Coccia et al. [35], in which the problem of the 432 

right ultimate displacement estimation is highlighted, making the focus on the 433 

geometric imperfections that are found in the real arch. 434 

 435 

 436 

(a)      (b) 437 

Figure 10. Masonry arch with nominal geometry: thrust line in the initial (a) and 438 

ultimate (b) configuration. 439 

 440 

In this work, an interpretation of the experimental observation has been provided 441 

by introducing geometrical uncertainties in the model through the probabilistic 442 

approach described in Section 3. Fixing the number of the voussoirs (n=16), 1000 443 
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samples of arches affected by geometrical uncertainties have been generated. The 444 

random parameters have been generated using the Equations (32) and setting three 445 

levels of tolerance ε (0.01, 0.02 and 0.03). Figure 11 shows the case of a random arch, 446 

with ε =0.03, in the initial state characterized by the three-hinges chain. The geometrical 447 

irregularities determine the natural loss of symmetry in the mechanism, so that the 448 

ultimate condition is reached, by increasing the displacement of a springing, with the 449 

occurrence of a fourth hinge at the extrados of the left or right springing alternatively.  450 

 451 

 452 

Figure 11. Masonry arch with irregular geometry (ε = 0.03): thrust line in the initial 453 

configuration. 454 

 455 

In Figure 12 the histogram of the probability density of the random ultimate 456 

displacement u  has been represented for ε equal to 0.01, 0.02 and 0.03. Given the 457 

Skewness ( S ) and Kurtosis ( K ) values related to each population of  u



 , the 458 

normal probability density function 
u

p


 expressed by the Equation (38)  has been used 459 

to interpolate in first approximation the numerical results. 460 

 461 
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   462 

(a)    (b)    (c) 463 

Figure 12. Histogram of the probability density of the ultimate displacement  u



 , with 464 

its interpolant normal probability density function, for the case of ε equal to 0.01 (a), 465 

0.02 (b) and 0.03 (c). 466 

 467 

The normal distributions of Figure 12 have been superimposed with the 468 

experimental and numerical results performed using nominal geometry (Figure 13). The 469 

graph highlights that the greater the level of tolerance ε, the greater the spread of the 470 

interpolant normal distribution and the lower the mean value of the random ultimate 471 

displacement. It is interesting to note that the probabilistic approach provides a more 472 

consistent prediction of the experimental displacement observed by Ochsendorf, 473 

considering a value of ε between 0.01 and 0.02. Table 2 summarizes the comparison 474 

between the experimental observations and the numerical results obtained using 475 

nominal geometry and the probabilistic approach, with reference to the mean and 476 

standard deviation values. Finally, it is conceivable to consider that the deviation 477 

between the results obtained by the experimental tests and by numerical simulation with 478 

nominal geometry can be related to uncertainties in the actual geometry of the arch. 479 
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 480 

Figure 13. Comparison between the ultimate displacement values obtained by the 481 

experimental test, by numerical analysis using nominal geometry and the normal 482 

distributions of the random ultimate displacement values given by the probabilistic 483 

approach (ε equal to 0.01, 0.02 and 0.03). 484 

 485 

 486 

Table 1. Ultimate displacements obtained by experimental test and numerical analysis 487 

using nominal and irregular geometry. 488 

Experimental test Numerical analysis 

Real geometry Nominal geometry Irregular geometry 

u  [mm] Reference u  [mm]    [mm]  [mm] 

 Ochsendorf, 2002 32.9 0.01 30.42 1.1 

30.0 Coccia et al., 2015 32.2 0.02 29.63 1.2 

 Present research 32.5 0.03 28.37 1.8 

 489 

490 
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 491 

Figure 14. Specimen geometry and test layout. 492 

 493 

4.2 No-horizontal spreading support 494 

The masonry arch described in Section 3.2 refers to a real structure constructed and 495 

tested in the laboratory. The arch has a nominal span of 2.281 m, a nominal net rise of 496 

0.585 m and is constituted by 37 bricks assembled with mortar joints (Figure 14). The 497 

arch complies with Heyman’s condition of zero resistance between the interfaces of the 498 

blocks, as a Plexiglas plate was inserted (Figure 15a) in the middle of each mortar joint. 499 

For this reason, mortar hinges formed at the interface between the Plexiglas plate and 500 

the mortar (Figure 15b). The structure is placed on a steel frame system featuring a 501 

moveable springing (left springing) along a direction inclined of 45° with respect to the 502 

horizontal. The test system provides an instant-by-instant displacement measurement, 503 

until the structural collapse. The support movement has been imposed with a manual 504 

system, and the displacement measured with an LVDT activated simultaneously with a 505 

video recording of the test. The collapse condition occurred with a three-hinges 506 

mechanism in correspondence to an ultimate displacement of about 195 mm (Figure 507 

15c).  508 
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                509 

(a)        (b) 510 

 511 

(c) 512 

Figure 15. (a) Plexiglas plate inserted in the middle of the mortar joint. (b) Opening of 513 

the hinge corresponding to the Plexiglas plates (initial hinge configuration). (c) Arch 514 

collapse condition. 515 

 516 

 517 

 518 

Figure 16. A case extracted from random arch samples with a tolerance value 0.03   519 

in an equilibrated settled configuration k  ( 69.6 mmk  ). 520 

 521 

Plexiglass Plate 
Hinge opening 
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The numerical procedure proposed in this paper has been used to simulate the 522 

experimental test, both with nominal and irregular geometry ( 0.03  ) using the 523 

probabilistic approach. In Figure 16 a case extracted from random arch samples is 524 

illustrated in an equilibrated settled configuration k . 525 

Fixing the number of voussoirs (n=37), 1000 samples have been generated 526 

considering  
h

i ,  
h

it  and  
h

ir  as random geometrical parameters and analysed 527 

through the proposed procedure. As expected from the parametric analysis carried out in 528 

Section 3.2, the configuration of hinges 1, 2 and 3 changes with the increase of the 529 

displacement k  imposed to the left springing. The proposed algorithm, by updating the 530 

position of the hinges via the thrust line, is able to accurately represent this phenomenon 531 

of change in hinge position throughout the development of the mechanism up to the 532 

collapse, as can be seen from the graph in Figure 17. The figure shows the evolution of 533 

the normalized hinge position   /j   
 

 in function of the normalized settlement at 534 

the springing ( / )k u   obtained during the experimental test (Figure 17a) and by 535 

numerical simulations (Figure 17b).The  localizations of hinges 1, 2 given by numerical 536 

analysis are quite similar to those observed in the experimental test, while the position 537 

of hinge 3 are quite different. However, it must be considered that the results reported in 538 

Figure 17b are evaluated as a mean over 1000 samples, thus the presence of consistent 539 

solutions cannot be a priori excluded. In Figure 18 the results in terms of ultimate 540 

displacement are shown. 541 
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     542 

(a)          (b) 543 

Figure 17. Evolution of the normalized position   /j   
 

of hinges 1, 2 and 3 in 544 

function of the normalized settlement ( / )k u   at the springing. (a) Results of 545 

experimental test. (b) Mean values provided by the numerical simulations based on the 546 

probabilistic approach. 547 

 548 

 549 

       550 

Figure 18. Comparison between probabilistic results (continuous curve), numerical 551 

simulations with nominal arch geometry (dotted line) and experimental results (dashed 552 

line).  553 

 554 
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The normal distribution which interpolates the obtained random ultimate 555 

displacement are plotted in Figure 18 with the deterministic values obtained by the 556 

experimental test and the numerical simulation carried out considering the nominal 557 

geometry. The graph highlights that, in average, the results given by irregular geometry 558 

(mean value of about 192.5 mm) provide a more consistent prediction of the 559 

experimental ultimate displacement (195 mm) than the case of nominal geometry 560 

(222 mm), reducing the error from 13.8% to 1.3%. 561 

Finally, it has been demonstrated that the overestimations of the collapse 562 

condition, in terms of both displacements and reaction forces, generally observed by the 563 

direct application of the limit equilibrium approach on structures having nominal 564 

geometry, with respect to the experimental observations, can be corrected by 565 

introducing uncertainties in the model. More in general, depending on the specific 566 

structure in exam and on its geometrical irregularities with respect to the actual 567 

geometry, an investigation about the influence of the uncertainties on the ultimate 568 

condition should be carried out with a probabilistic approach. Then, a safety factor 569 

evaluated as the ratio 570 

[ ] [ ]


  



s

nom

E
 571 

where   is the considered random variable (collapse load, ultimate displacement, etc.) 572 

and nom  its deterministic value obtained by using a nominal geometry, returns the 573 

amount of error that could affect the analysis if the irregular geometry is not taken into 574 

account. For the interested reader, an example of application of such a procedure to the 575 

masonry arch can be found in [30]. 576 

 577 
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5. Conclusions 578 

In this paper, the behaviour of the masonry arch on no-horizontal spreading supports 579 

has been analysed, taking into account the geometrical irregularities effects. A 580 

numerical procedure based on the limit equilibrium approach has been developed in 581 

large displacements field, in order to follow the evolution of the mechanism until the 582 

collapse with the incremental increase of the imposed settlement. The algorithm makes 583 

use of the Principle of Virtual Work to solve static problem, and it is able to reach the 584 

collapse conditions characterized by all the mechanisms described above. The 585 

geometrical irregularities have been considered as intrinsic uncertainties of the 586 

structures and spread on the arch model by means of three random variables. These 587 

random parameters, namely the radius of curvature, the thickness and the angle of 588 

embrace of each voussoir, have been described through independent uniform probability 589 

density functions. It should be noted that each type of random structural analysis, is a 590 

result of a significant number of samples analysed in a probabilistic sense.  591 

 The procedure has been applied to two experimental tests. The former is the 592 

well-known test carried out by Ochsendorf concerning a semi-circular arch made by 16 593 

blocks subjected to horizontal settlements at both the supports. The numerical 594 

simulations of the test, provided by Ochsendorf himself and recently by Coccia and co-595 

authors, show a little overestimation of the ultimate admissible displacement with 596 

respect to the experimental observations. In this paper has been demonstrated that the 597 

overestimation (about 6.8%) of the ultimate condition obtained by a structure with 598 

nominal geometry could be corrected by including uncertainties in the model. In 599 

particular, it has been shown that considering an error between 1% and 2% of the 600 

dimensions of the blocks, the experimental results could be better reproduced. The latter 601 

test refers to a segmental arch, made of 37 bricks, on a springing support with an 602 
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inclination of 45° on the horizontal. Also in this case the numerical simulations carried 603 

out on the nominal geometry has provided an overestimation of the ultimate 604 

displacement (about 13.8%) with respect to the experimental results, while including the 605 

geometrical uncertainties in the model with an error of 3% of the brick dimensions a 606 

more consistent estimation of the actual structural capacity can be achieved. 607 

 Finally, the obtained results highlight that the uncertainties effects cannot be 608 

neglected in the performance evaluations of experimental tests and, even more, this 609 

aspect should be considered more in general in structural analysis. The role of 610 

uncertainties will be as significant as the level of structural and/or material degradation 611 

will be. The choice of the tolerance level, which describes the irregularities in the 612 

statistical model, determines the quality of the results and must be defined in function of 613 

the case in exam. In this context, geometrical safety factors could be introduced, in 614 

order to take into account the uncertainties effects on the analysis of actual structures.  615 

 616 
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