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Abstract

This paper concerns the homogenization of the dynamic response of Euler Bernoulli’s
beam with random Young’s modulus. Considering the eigenvalue problem, special
attention is dedicated to the homogenization residuals (correctors) analysis, i.e. the
difference between the random heterogeneous solution and the homogenized solu-
tion. Several correlation (mixing) laws of the Young’s modulus are considered and
a dimensionless characteristic scale length, based on the correlation length, is intro-
duced. The effects of the mixing law on the residuals are analyzed using numerical
approaches both for sampling the random Young’ modulus and for examining the
beam eigenvalue problem. Two measurements are introduced to estimate the resid-
uals between apparent and effective solution: the normalized difference of Young’s
modulus and the normalized difference of modes’ shape. The effect of the mode’s
order is also highlighted with reference to forced vibrations.

Keywords: B. Elasticity, B. Vibration, C. Statistical properties/methods,
Homogenization

1. Introduction

It is known that the assessment of Representative Volume Element (RVE) is a
fundamental stage in the homogenization [1]; in fact, by analyzing that volume, it is
possible to estimate, in average, the mechanical characteristics of the heterogeneous
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composite material. Following [2], the RVE is the smallest material volume, suffi-
ciently larger than micro-structure size, for which the spatially overall moduli are
accurate to represent the mean response.

Except for material with periodic texture where the Periodic Unit Cell PUC
can be detected, the RVE is not known a priori and then the problem is to assess
the RVEs dimensions. This aspect has been taken into account in several papers
[3, 4, 5, 6, 7, 8] also considering the effects on material properties evaluation [9,
10]; moreover, when the spatial variation of the micro-structure physical quantities
cannot be ignored, the analysis of non-local interactions between heterogeneities has
to be considered [11, 12]. Likewise, this argument has relevance in the simulation
of microscopic failure mechanisms in composite materials by using homogenization
and/or multiscale approaches [13, 14, 15, 16], also considering the nonlinear effects
[17, 18].

If on one side the RVE should possess statically homogeneous and ergodic pro-
prieties [19], on the other a Statistical Volume Element (SVE), that is a mesoscale
sample with finite dimensions, have to be considered in applications; the SVE’s pro-
prieties are described by the adjective apparent [20] as opposed to RVE’s effective
ones. In this case the errors assessment and the convergence rate of SVE to RVE
become the main aspects to be considered. An equivalent approach is the periodiza-
tion of random media by statically equivalent periodic unit cell [21] that, besides the
classic composites, can be also applied to different material, for example masonry
material [22, 23, 24, 25, 26]. In this context we can not forget the multiscale strategy
that has proved to be an adequate tool for the damage analysis of masonry [27, 28].

Wanting to tackle the problem from a mathematical point of view and limiting our
attention, without losing generalities, to the modelling of the mechanical problem in
terms of differential equations (strong form), the homogenization can be regarded as
the study of the asymptotic behavior of these equations [29]. Regarding differential
operators with random coefficients the main contributions are reported in [30, 31, 32].

If the homogeneous solution it is only obtained in limit condition, i.e. when
a characteristic scale length approaches to zero, the homogenization residuals (or
correctors) analysis, that is the analysis of the difference between heterogeneous
solution (apparent) and homogeneous solution (effective) is the dual problem of the
convergence rate of SVE to RVE and also assumes great importance for applications.
Taking into account elliptic random operators, some results have been obtained in
[33, 34, 35, 36]. Form a mechanical point of view, the problem has been firstly
addressed in [37], for the case of bi-phase beam with different quasi periodic texture,
and then extended, in [38], to a two-dimensional problem.

The homogenization in dynamics has been extensively studied for heterogeneous
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material and composites [39, 40] with particular attention to wave propagation in
low and high frequency range [41, 42, 43, 44, 45, 46] and FGM beams [47]. Vice versa
the attention the residuals analysis and size effect in dynamics field have obtained a
very limited attention [48, 49].

In order to the analysis in deep the homogenization residuals, the approach used
in [48] is extended taking into account the correlation law (mixing law) of Young’s
modulus; taking into account the homogenized eigenvalue problem of the Euler-
Bernoulli’s beam, we shall highlight, by introducing a “scale length”, the interaction
among residuals, mixing law and mode’s order.

2. Mechanical problem

If it be desired to find the relation between the vε(x, t) stochastic field of the
transverse displacement, with 0 ≤ x ≤ L, and the E (ω, y) random Young’s modu-
lus in the heterogeneous Euler Bernoulli’s beam, this may be done by writing the
following stochastic partial differential equation

∂2

∂x2

(

E (ω, y) J
∂2vε (x, t)

∂x2

)

+ γ
∂2vε (x, t)

∂t2
= f (x, t) (1)

In the previous equation ε is the length parameter that characterizes the micro-
structure, y = ε−1x.

It should be noted that, in Eq. 1, the γ linear mass density and the J transversal
section inertia moment assume deterministic values constant along x and f (x, t) is
the external transverse force that is deterministic. It goes without saying that it is
necessary to respect the boundary conditions and the initial conditions.

It is of great interest, also from the perspective of the superposition method,
to determine the natural frequencies and modes of the beam; to this aim the free
vibrations equation with f (x, t) = 0 have to considered. Assuming the solution,
separable in space and time, vε (x, t) = uε (x) gε (t), from Eq. 1 we obtain the
following differential equations

d2

dt2
gε (t) + (λε)2 gε (t) = 0 (2)

d2

dx2

(

E (ω, y)
J

γ

d2uε (x)

dx2

)

− (λε)2uε (x) = 0 (3)

which correspond to a eigenproblem of a beam with random Young’s modulus.
Given the boundary conditions, for each choice of E (ω, y) we obtain the eigenvalues
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(λε)2k and the eigenfunctions uε
k (x); (λ

ε)k are the natural frequencies and uε
k (x) are

the normal modes of the beam, with k = 1, 2, 3, ... mode’s order.

[Figure 1 about here.]

3. Random field of E and numerical sampling

Let E (ω, y) = E (Tyω) = E
(

Tx/εω
)

be an ergodic homogeneous random field
with 0 < c1 < E (ω, y) < c2 < ∞.

This corresponds to assume (Ω, ℑ, P ) a standard probability space, i.e. a set
Ω : ω ∈ Ω equipped with a σ-algebra ℑ of measurable subsets and a countably
additive non-negative measure P normalized by P (Ω) = 1; Tx, x ∈ R

d is a family
of invertible measurable maps Tx : Ω → Ω; moreover Tx is an ergodic dynamical
system [50].

In the following we assume for E(ω) Young’s modulus a Gaussian law with µE =
µ(E) mean , σE standard deviation and probability density function

pE (E) =
1√
2πσE

exp

(

−(E − µE)
2

2σ2
E

)

(4)

To complete the definition of the E (ω, y) ergodic homogeneous random field, the
following correlation (mixing) model is assumed

ρE,τ =
µ [(E (ω, y)− µE) (E (ω, y +∆y)− µE)]

σ2
E

=

(

1

1 + ∆y

)α

=

(

1

τ

)α

(5)

In order to analyze the convergence rate to homogeneous solution and the ef-
fects of the mixing laws, the Ej Young modulus of each micro-structure elements
(j = 1, 2, 3, ....Ne) has been generated using a pth-order autoregressive model; Ne

is the number of micro-elements with equal length that constitute the beam, in the
simulation the maximum value Ne,max = 200 was adopted.

Le Ej be expressed by

Ej = D +

p
∑

i=1

ϕi Ej−i + wj (6)

where ϕi, i = 1, ..., p are the parameters of the model, w is a Gaussian white
noise and D is a constant. Given the correlation coefficient vector ρi, i = 1, ..., p the
parameters can be obtained by the following Yule-Walker equation [51, 52]
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Moreover, the w Gaussian white noise has zero mean and variance σ2
w given by:

σ2
w =

σ2
E

1−
∑p

i=1 ϕi ρi
(8)

and D is given by:

D = µE

(

1−
p
∑

i=1

ϕi

)

(9)

In the application four values have been considered for the α. In the first case
α = α1 = 2 was assumed.

Let τ be the correlation length, that is the length for which the correlation loss
is adequate or in other words the for ∆x > τ the Young’s moduli of the micro-
structures can be assume uncorrelated. This can be expressed by (1/τ)α = ρ̄ (in the
first application ρ̄ = ρ̄1 = 0.0400 ).

In the other cases the following values were assumed: α2 = 1.5, α3 = 1 and
α4 = 0.8; using these values, we supposed larger correlations that were measured by
ρ̄2 = 0.0894, ρ̄3 = 0.2 and ρ̄3 = 0.2759 respectively.

For each αi i = 1, 2, 3, 4 we have considered Ns = 10, 000 samples of beams with
Ne micro- elements and Young’s moduli Ejs,j with js = 1, ..., Ns and j = 1, ..., Ne.
The numerical correlations (averaging the samples ones) are reported in Fig. 2.

[Figure 2 about here.]

From the sampling of E, the random variable C = 1/E has been obtained check-
ing, for each js beam sample, that 0 < c1 < Ejs,j < c2 < ∞ so that 0 < d1 <
Cjs,j = 1/Ejs,j < d2 < ∞. It is worth noting that the previous check also avoids
indeterminate structural conditions when a statistically determined beam is used, as
a clamped beam in the following.

As will be clarified in the next section, the Young’s modulus of the homogenized
beam is Ē = [µ(C)]−1; so that an accurate estimation is

Ē =

(

1

NsNe

∑Ns

js=1

∑Ns

j=1
Cjs.j

)

−1

(10)
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4. Homogenization of the eigenvalues problem

Using a formal analogy between periodic media and statistically homogeneous
ergodic media, the main results on the asymptotic behavior of random differential
operators were obtained by [30] and [31].

From the results reported in these papers, it is possible to shown that in Eq. 3,
when ε → 0, uε (x) converges, for a.e. ω, to uo (x) that is the deterministic solution
of the homogenized problem

d2

dx2

(

Ē
J

γ

d2uo (x)

dx2

)

− (λo)2uo (x) = 0 (11)

d4uo (x)

dx4
− (λo)2γ

ĒJ
uo (x) = 0 (12)

where Ē is the homogeneous Young’s modulus

Ē = (µ {1/E (ω)})−1 (13)

that is the reciprocal of the mean of the reciprocal of Young’s modulus random
variable; this results justifies the estimation given in Eq. 10.

Without loss of generality, we consider a simply supported beam in the following.
It is well known that angular frequencies and modes (square root of eigenvalues and
the eigenfunctions) are:

λo
k = k2 π

2

L2

√

ĒJ

γ
k = 1, 2, 3, ... (14)

uo
k = uo

k(x) =

√

2

L
sin

(

kπx

L

)

k = 1, 2, 3, ... (15)

So that, as ε → 0 in Eq. 3, we have λε
k → λo

k and uε
k (x) → uo

k (x) with k =
1, 2, 3, ...

5. Residuals measurements and numerical results

In order to check the convergence, to estimate its rate and to analyze the effect of
the mixing law, sets of Ns samples of beam with random Young’s modulus has been
simulated considering the probabilistic law (with σE/µE = 0.15) and exponential
laws (with αi values) as previously described.
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Given α = αi i = 1, 2, 3, 4, for any sample js = 1, ...;Ns, the beam was considered
with different length L = Ne∆l where ∆l is the length of the micro-structure elements
(equal for each micro-element) with Young’s modulus (constant) Eα,js,j where j =
1 : Ne, Fig 1 B).

Let Nτ be the number of micro-structure elements to describe the τ correlation
length; in applications Nτ = 5 and it was equal for each mixing law. The approaching
to zero of the dimensionless characteristic scale length ε is numerically described by
the approaching to zero of the ratio τ/L = Nτ/Ne; this is obtained by increasing Ne.

It should be noted that in order to perform the random sampling and the struc-
tural analyses, specified numerical procedures have been developed utilizing the Mat-
lab program. Regarding the structural analysis, a classical finite elements numerical
method have been used and its reliability has checked by comparison with theoretical
and numerical results reported in literature for beam composed by collinear elements
[53, 54, 55].

For each sample beam, corresponding to (α, ε, js), the λα,ε,js,k natural frequencies
have been evaluated where k = 1, 2, 3, ... is the mode’s order. So that the Young’s
apparent modulus of the equivalent beam is evaluated by

Eα,ε,js,k = λ2
α,ε,js,k

(

L

kπ

)4
γ

J
k = 1, 2, 3, ... (16)

For each simulation js = 1, ..., Ns the following normalized error can be intro-
duced:

∆Eα,ε,js,k =
Eα,ε,js,k − Ē

Ē
k = 1, 2, 3, ... (17)

where Ē is the effective Young’ modulus, see Eq. 13, that has been estimated
using Eq. 10.

The previous values correspond to samples of the following random variable

∆̃Eα,ε,k k = 1, 2, 3, ... (18)

that measures the homogenization residuals versus the scale length (by ε), the
mixing law (by α) and the mode’s order (by k).

Let be µ(∆̃Eα,ε,k) the mean of the ∆̃Eα,ε,k random variable. The relationship
µ(∆̃Eα,ε,k) versus k mode’s order is shown in Fig. 3 for different values of ε and α.

[Figure 3 about here.]

It should be note that the converge rate ∆̃Eα,ε,k → 0 when ε → 0 is depending on
k. Moreover the influence of the α exponent is evident: a lower α value corresponds
to a greater correlation and larger residuals are expected.
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A concise representation of this behavior is shown in Fig 4 with reference to k = 1
(A) and k = 5 mode’s order (B).

[Figure 4 about here.]

The probability density functions (pdf) of the residuals for k = 1, varying ε scale
length and α mixing law exponent, are reported in Fig. 5. The Gaussian probability
density functions, with first and second moments equal to the histograms ones, are
reported in the same figures, it should be noted that the fitting is accurate. Similar
results have been also found for the others k values.

[Figure 5 about here.]

Setting a ε value is equivalent to adopt a beam with L length, that is with Ne

collinear micro-elements characterized by random Young’s modulus with a prefixed
mixing law, given by α; so that, the obtained results, in terms of natural frequencies
and modes, correspond to the statistical sample of this case. The homogenization
result still holds with the following condition: the apparent coefficient is not deter-
ministic but a measurable random variable.

An important results is obtained: the corrector, which measure the difference
between the heterogeneous solution and homogeneous solution, converges in dis-
tribution to a Gaussian process also when the correlation function of the random
coefficients is no longer integrable (that is an uniformly mixing condition but not
strong).

If ε → 0 then the random Young’s modulus becomes an ergodic field and the
apparent modulus converges to the deterministic effective value: µ(∆̃Eε,k) → 0 and
the probability density function degenerates into a Dirac function.

An other measurement of the homogenization residuals can be obtained con-
sidering the mode’s shape. For each sample beam, corresponding to (α, ε, js), the
uα,ε,js,k ∈ ℜNfem+1 discrete shape of the natural modes can be evaluated

uα,ε,js,k =
[

(uα,ε,js,k)v
]

v = 1, ..., Nfem + 1 (19)

where Nfem is the number in finite element using in numerical analysis (to assure
the solution accuracy Nfem >> Ne ).

Considering Eq. 15, for each simulation js = 1, ..., Ns the following normalized
error can be introduced:

∆uα,ε,js,k =
1

Nfem

Nfem+1
∑

v=1

∣

∣(uα,ε,js,k)v − uo
k (xv)

∣

∣ k = 1, 2, 3, ... (20)
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where xv is the abscissa of the vth-node.
The previous values correspond to samples of the following random variable

∆̃uα,ε,k k = 1, 2, 3, ... (21)

that measures the homogenization residuals versus scale length (by ε), the mixing
law (by α) and the mode’s order (by k). Let µ(∆̃uα,ε,k) the mean of the previous
random variable. The relationship µ(∆̃uα,ε,k) versus ε and α is reported in Fig 6, A)
for k = 1 and B) for k = 5.

[Figure 6 about here.]

The effects of the mixing law exponent on the homogenization residuals is high-
lighted by comparing the histograms of ∆̃uα,ε,k; for ε = 0.025, some comparisons,
relative to k = 1 and k = 5, are shown in Fig. 7. It should be noted that an adequate
accuracy is obtained when these histograms are fitted by the Gamma probability
density function, with parameters obtained from statistical samples, Fig. 7.

[Figure 7 about here.]

Eventually, it should be noted that the obtained results highlight that modes
order effects, on apparent Young modulus and modal shape, have to be considered
in particular way for forced vibrations. In case of force with colored spectrum and
by using the modal superposition method, greater is the modes order for which
the resonant phenomenon is expected, larger must be the size of statistical volume
element (SVE) to estimate the material mechanical characteristics and obtain an
adequate response.

6. Conclusions

Considering the dynamics problem of the Euler-Bernoulli’s beam with random
Young’s modulus the homogenization residuals are analyzed. Special attention has
been dedicated to examine the effect of the mixing law of the Young’s modulus;
the exponential law has been adopted varying its exponent. Numerical procedures
both for sampling the random Young’ modulus and for examining the beam eigen-
value problem have been utilized. Adopting a correlation length, a dimensionless
characteristic scale length has been introduced to estimate the convergence rate of
the heterogeneous solution to the homogeneous solution. It has been underlined
that the homogenization residuals analysis is dual to the convergence assessment of
SVE (apparent solution) to RVE (effective solution) and assumes great importance
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for applications. Two measurements have been introduced to analyze the residuals:
the normalized difference between apparent and effective Young’s modulus and the
normalized difference between apparent and effective modes’ shape. For both mea-
surements, it has been highlighted that the mixing law plays an important role in the
homogenization residuals behavior; a greater correlation corresponds to a lower con-
vergence ratio that is also influenced by the mode’s order. Moreover, with reference
to first measurements, the obtained results show that the correctors converges in
distribution to a Gaussian process even in case the correlation function is not longer
integrable (that is an uniformly mixing condition but not strong). The obtained re-
sults appear interesting and encourage further studies varying both probabilistic laws
and mechanical models of the beam (for example, layered beam with random elastic
modulus varying along the section height and enriched beam model). Eventually,
the analysis has to be extended to two-dimensional dynamic problems.
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Figure 1: Mechanical model: Euler-Bernoulli’s beam with random Young’modulus,(A) continuous
model, (B) model composed by micro-elements with ∆l length and modulus Ej
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Figure 2: Mixing laws ρ = (1/τ)α adopted the random fields of the Young’s modulus
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Figure 3: Behavior of the µ(∆̃Eα,ε,k) versus k mode’s order, varying ε scale length and α mixing
law exponent
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Figure 4: Behavior of the µ(∆̃Eα,ε,k) versus ε scale length and α mixing law exponent; A) mode’s
order k = 1, A) mode’s order k = 5
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Figure 5: Probability density functions of ∆̃Eα,ε,k with k = 1 mode’s order, varying ε scale length
and α mixing law exponent

21



Figure 6: Behavior of the µ(∆̃uα,ε,k) versus ε scale length and α mixing law exponent; A) mode’s
order k = 1, B) mode’s order k = 5
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Figure 7: Behavior of the µ(∆̃uα,ε,k) versus ε scale length and α mixing law exponent; A) mode’s
order k = 1, B) mode’s order k = 5
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