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Convergence in variation and a characterization
of the absolute continuity

Abstract

We study approximation results for a family of Mellin integral opera-
tors of the form

(Twf)(s) =

∫
IRN+

Kw(t, f(st))
dt

〈t〉 , s ∈ IRN
+ , w > 0,

where {Kw}w>0 is a family of kernels, 〈t〉 :=
∏N
i=1 ti, t = (t1, . . . , tN ) ∈

IRN
+ , and f is a function of bounded variation on IRN

+ . The starting point
of this study is motivated by the important applications that approxi-
mation properties of certain families of integral operators have in image
reconstruction and in other fields. In order to treat such problems, to work
in BV−spaces in the multidimensional setting of IRN

+ becomes crucial: for
this reason we use a multidimensional concept of variation in the sense of
Tonelli, adapted from the classical definition to the present setting of IRN

+

equipped with the Haar measure. Using such definition of variation, we
obtain a convergence result proving that V [Twf − f ] → 0, as w → +∞,
whenever f is an absolutely continuous function; moreover we also study
the problem of the rate of approximation. In case of regular kernels, we
finally prove a characterization of the absolute continuity in terms of the
convergence in variation by means of the Mellin-type operators {Twf}w>0.

Key-words: Mellin integral operators, convergence in variation, absolutely continu-
ous functions, multidimensional variation
AMS subject classification: 41A35, 41A25, 26B30, 26B99, 26D10

1 Introduction

In this paper we investigate the approximation properties of the following nonlinear
family of Mellin-type integral operators:

(Twf)(s) =

∫
IRN+

Kw(t, f(st))
dt

〈t〉 , (I)

w > 0, s = (s1, . . . , sN ) ∈ IRN
+ :=]0,+∞)N , where st := (s1t1, . . . , sN tN ) and 〈t〉 :=∏N

i=1 ti, for f belonging to the space of functions of bounded variation on IRN
+ . In

particular we will prove that, under suitable assumptions on the kernel functions, if f
is absolutely continuous, then

V [Twf − f ]→ 0, w → +∞, (II)

and furthermore
V [Twf − f ] = O(w−α), w → +∞,

0 < α ≤ 1, for functions belonging to a Lipschitz class of Zygmund type. Moreover,
in the case of absolutely continuous kernel functions, it is possible to prove that the
convergence result (II) can be reversed, so that we obtain a characterization of the
absolute continuity on IRN

+ in terms of the convergence in variation of the operators
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(I). In order to do this, a crucial step is to use a notion of absolute continuity (the
log-absolute continuity), introduced in [1], which is proved to be equivalent to the
classical one (see Section 5). These results contain, as particular case, the case of
linear integral operators (see [2]). We point out that the present nonlinear setting is
not only important from a mathematical point of view, allowing to develop a more
general treatment of the theory, but it is also useful in several applications to describe
nonlinear processes that cannot be approached by means of linear integral operators.

The set of bounded variation functions plays an important role, apart from a
mathematical point of view, for the applications implied by several families of integral
operators acting on this space. For example, when these operators are used in order
to reconstruct images, the setting of BV−spaces is suitable to describe jumps of grey-
levels of the image since, from a mathematical point of view, they are represented
by discontinuities (see also, e.g. [3, 4]). Among the families of integral operators
above mentioned, the Mellin type operators are particularly important because of
their applications in optical physics and engineering (see, e.g., [5, 6, 7, 8]). Indeed
they revealed to be useful for signal reconstruction when the samples are not uniformly
spaced, as in the classical Shannon Sampling Theorem, but exponentially spaced: in
fact such model is useful to represent situations in which information accumulates near
the time t = 0 (see, e.g., [9, 10]). On the other hand, the importance of Mellin analysis
is well-known, not only in approximation theory (we refer to [11, 12] for an extensive
theory about Mellin operators, while, for other results about homothetic-type and
discrete operators in various setting, one can see, e.g., [13, 14, 15, 16, 17, 18, 2, 19,
20, 21, 22]), but also in several other fields, because of its wide applications (see, e.g.,
[23, 24, 25, 26]).

In order to treat the case of Mellin integral operators, the most natural way to set
up our study is to work in IRN

+ endowed with the Haar measure µ(A) :=
∫
A
〈t〉−1 dt,

where A is a Borel subset of IRN
+ .

Another important role is played by the multidimensional setting and, in view of
the frame in which we work, we will use the multidimensional concept of variation
introduced in [2], that is inspired by the Tonelli approach (see [27], and also [28, 29]).

Finally we recall that approximation problems in BV−spaces were studied in
the literature from several points of view, by means of different notions of varia-
tion, such as, e.g., the classical variation ([30]), the distributional variation ([31]; see
[33, 32, 34] for the definition), the Musielak-Orlicz ϕ−variation ([35, 36, 37, 13]), the
Riesz ϕ−variation ([38, 39]) and others. In the multidimensional case, results in this
direction can be found, for example, in [40] and [41, 42] (nonlinear case) for a new
multidimensional concept of ϕ−variation by means of the classical convolution integral
operators.

The paper is organized as follows: after a preliminary section (Section 2) where
the main definitions and notations are presented, together with the assumptions of our
study, Section 3 contains the main convergence results. In Section 4 the problem of
the rate of approximation is studied while, in Section 5, we prove the characterization
of AC−functions. Finally, in Section 6, we present some examples of kernel functions
to which our results can be applied.

2 Definitions, notations and assumptions

We will work with functions f : IRN
+ −→ IR of bounded variation, using the multidi-

mensional variation in the sense of Tonelli introduced in [2], that takes into account
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of the multiplicative group structure of IRN
+ . In order to recall the definition, we now

introduce some notations.
Given I =

∏N
i=1[ai, bi] ⊂ IRN

+ , I
′
j := [a′j , b

′
j ] will denote the (N − 1)−dimensional

interval I ′j :=
∏
i6=j [ai, bi], obtained deleting by I the j−th coordinate, so that I =

[a′j , b
′
j ] × [aj , bj ]. In a similar way we put x′j := (x1, . . . , xj−1, xj+1, . . . , xN ) ∈ IRN−1

+ ,

for x = (x1, . . . , xN ) ∈ IRN
+ , so that x = (x′j , xj) and f(x) = f(x′j , xj), for f : IRN

+ → IR.
By L1

µ(IRN
+ ) we will denote the space of all the functions f : IRN

+ → IR such that∫
IRN+
|f(t)|〈t〉−1 dt < +∞, where 〈t〉 :=

∏N
i=1 ti, t = (t1, . . . , tN ) ∈ IRN

+ (µ stands for

the Haar measure on IRN
+ µ(A) :=

∫
A
〈t〉−1 dt, where A is a Borel subset of IRN

+ ), in

order to point out the difference with the usual Lebesgue space L1(IRN
+ ).

In order to define and compute the multidimensional variation on an interval I =∏N
i=1[ai, bi] ⊂ IRN

+ , we first consider the Jordan variation of the j−th section of f ,
namely V[aj ,bj ][f(x′j , ·)], x′j ∈ I ′j , and then we define the (N−1)−dimensional integrals

Φj(f, I) :=

∫ b′j

a′j

V[aj ,bj ][f(x′j , ·)]
dx′j
〈x′j〉

,

where 〈x′j〉 denotes the product
∏N
i=1,i 6=j xi.

We now compute the euclidean norm of the vector (Φ1(f, I), . . . ,ΦN (f, I)), i.e.,

Φ(f, I) :=

{
N∑
j=1

[Φj(f, I)]2
} 1

2

,

where we put Φ(f, I) = +∞ if Φj(f, I) = +∞ for some j = 1, . . . , N . Then the
multidimensional variation of f : IRN

+ → IR on I ⊂ IRN
+ is defined as

VI [f ] := sup

m∑
i=1

Φ(f, Ji),

where the supremum is taken over all the finite families of N−dimensional intervals
{J1, . . . , Jm} which form partitions of I.

If we now pass to the supremum over all the intervals I ⊂ IRN
+ , we obtain the

variation of f over the whole space IRN
+ , namely

V [f ] := sup
I⊂IRN+

VI [f ].

Definition 2.1 By BV (IRN
+ ) := {f ∈ L1

µ(IRN
+ ) : V [f ] < +∞} we denote the space of

functions of bounded variation on IRN
+ .

Let us notice that, if f ∈ L1
µ(IRN

+ ) is of bounded variation on IRN
+ , then the

sections f(x′j , ·) are of bounded variation on IR+ and VIR+ [f(x′j , ·)] ∈ L1
µ(IRN−1

+ ), a.e.

x′j ∈ IRN−1
+ .

Definition 2.2 A function f : IRN
+ → IR is said to be absolutely continuous on I =∏N

i=1[ai, bi] ⊂ IRN
+ if, for every j = 1, 2, . . . , N and for every ε > 0, there exists δ > 0

such that
n∑
ν=1

|f(x′j , β
ν)− f(x′j , α

ν)| < ε,
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for a.e. x′j ∈ IRN−1
+ and for all finite collections of non-overlapping intervals [αν , βν ] ⊂

[aj , bj ], ν = 1, . . . , n, for which
∑n
ν=1(βν − αν) < δ (see, e.g., [43, 44]).

Now, by AC(IRN
+ ) we denote the space of functions f : IRN

+ → IR which are of bounded
variation and absolutely continuous on every I =

∏N
i=1[ai, bi] ⊂ IRN

+ .

We now introduce the family of integral operators that we will use in the present
paper in order to obtain approximation results for BV−functions.

Given f ∈ BV (IRN
+ ), let us consider the nonlinear Mellin integral operators defined

as

(Twf)(s) =

∫
IRN+

Kw(t, f(st))
dt

〈t〉 , (I)

w > 0, s ∈ IRN
+ , where st := (s1t1, . . . , sN tN ). Here {Kw}w>0 is a family of kernels

Kw : IRN
+ × IR→ IR of the form

Kw(t, u) = Lw(t)Hw(u), t ∈ IRN
+ , u ∈ IR,

where Lw : IRN
+ → IR and Hw : IR→ IR is such that Hw(0) = 0.

We assume that the following assumptions are satisfied:

Kw.1) Lw : IRN
+ → IR is a measurable essentially bounded function (i.e., ‖Lw‖L∞ <

+∞) such that Lw ∈ L1
µ(IRN

+ ), ‖Lw‖L1
µ
≤ A, for an absolute constant A > 0,

and

∫
IRN+

Lw(t)
dt

〈t〉 = 1, for every w > 0;

Kw.2) for every fixed 0 < δ < 1, ∫
|1−t|>δ

|Lw(t)| dt〈t〉 → 0,

as w → +∞, where 1 = (1, . . . , 1) denotes the unit vector of IRN
+ ;

Kw.3) denoted by Gw(u) := Hw(u)− u, u ∈ IR, w > 0,

VJ [Gw]

m(J)
→ 0, as w → +∞,

uniformly with respect to every (proper) bounded interval J ⊂ IR, i.e., for every
ε > 0, there exists w > 0 (depending only on ε) such that, for every w ≥ w,
VJ [Gw]

m(J)
≤ ε, for every (proper) bounded interval J ⊂ IR (m(J) denotes the

length of J).

In the following we will say that {Kw}w>0 ⊂ Kw if the above conditions Kw.1)−
Kw.3) hold.

Remark 2.3 We point out that assumption Kw.3) implies that {Hw}w>0 satisfies
asymptotically a Lipschitz condition. Indeed, for example in correspondence of ε = 1,
by Kw.3) there exists w > 0 such that for every w ≥ w, VJ [Gw] ≤ m(J), uniformly
with respect to J ⊂ IR. Hence, for every u, v ∈ IR, v < u,

|Hw(u)−Hw(v)| ≤ |Hw(u)− u− [Hw(v)− v]|+ |u− v|
≤ V[v,u][Gw] + |u− v| ≤ 2|u− v|,

(1)

for every w ≥ w.
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3 Estimates and main convergence results

We first prove that, under the above assumptions, the operators Twf are asymptoti-
cally well-defined on IRN

+ for every f ∈ L1
µ(IRN

+ ).

Proposition 3.1 If f ∈ L1
µ(IRN

+ ) and {Kw}w>0 satisfy Kw.1) and Kw.3), then there
exists w > 0 such that, for every w ≥ w, (Twf)(s) < +∞, for every s ∈ IRN

+ .
Moreover, Twf ∈ L1

µ(IRN
+ ), for every w ≥ w.

Proof By Kw.1) and (1), taking into account that Hw(0) = 0, there exists w > 0
such that

|(Twf)(s)| ≤
∫
IRN+

|Lw(t)||Hw(f(st))| dt〈t〉

≤ 2

∫
IRN+

|Lw(t)||f(st)| dt〈t〉 ≤ 2‖Lw‖L∞‖f‖L1
µ
< +∞,

for every s ∈ IRN
+ and w ≥ w. Moreover, by the Fubini-Tonelli theorem and Kw.1),∫

IRN+

|(Twf)(s)| ds〈s〉 ≤
∫
IRN+

(∫
IRN+

|Lw(t)||Hw(f(st))| dt〈t〉

)
ds

〈s〉

≤ 2

∫
IRN+

|Lw(t)|

(∫
IRN+

|f(st)| ds〈s〉

)
dt

〈t〉

= 2‖Lw‖L1
µ
‖f‖L1

µ
≤ 2A‖f‖L1

µ
< +∞.

ut

The next estimate proves that, asymptotically, the nonlinear integral operators (I)
map BV (IRN

+ ) into itself.

Proposition 3.2 If f ∈ BV (IRN
+ ) and {Kw}w>0 satisfy Kw.1) and Kw.3) then there

exists w > 0 such that, for every w > w,

V [Twf ] ≤ 2AV [f ].

Proof Let I =
∏N
i=1[ai, bi] be an interval in IRN

+ and let {J1, . . . , Jm} be a partition

of I, with Jk =
∏N
j=1[(k)aj ,

(k) bj ], k = 1, . . . ,m. If {soj = (k)aj , . . . , s
ν
j = (k)bj} is a

partition of [(k)aj ,
(k) bj ], for every j = 1, . . . N , k = 1, . . .m, then, for every s′j ∈ I ′j ,

by (1) there exists w > 0 such that, for every w ≥ w,

Sj :=

ν∑
µ=1

|(Twf)(s′j , s
µ
j )− (Twf)(s′j , s

µ−1
j )|

=

ν∑
µ=1

∣∣∣∣∣
∫
IRN+

Kw(t, τtf(s′j , s
µ
j ))

dt

〈t〉 −
∫
IRN+

Kw(t, τtf(s′j , s
µ−1
j ))

dt

〈t〉

∣∣∣∣∣
≤

ν∑
µ=1

∫
IRN+

|Lw(t)||(Hw(τtf))(s′j , s
µ
j )− (Hw(τtf))(s′j , s

µ−1
j )| dt〈t〉

≤ 2

∫
IRN+

|Lw(t)|
ν∑
µ=1

|τtf(s′j , s
µ
j )− τtf(s′j , s

µ−1
j )| dt〈t〉

≤ 2

∫
IRN+

|Lw(t)| V[(k)aj ,
(k)bj ]

[τtf(s′j , ·)]
dt

〈t〉 ,
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where τtf(s) := f(st), s, t ∈ IRN
+ , denotes the dilation operator. Hence, passing to

the supremum over all the partitions of [(k)aj ,
(k) bj ],

V[(k)aj ,
(k)bj ]

[(Twf)(s′j , ·)] ≤ 2

∫
IRN+

|Lw(t)| V[(k)aj ,
(k)bj ]

[τtf(s′j , ·)]
dt

〈t〉 .

Applying now the Fubini-Tonelli theorem, for every j = 1, . . . , N ,

Φj(Twf, Jk) ≤ 2

∫ (k)b′j

(k)a′j

{∫
IRN+

|Lw(t)|V[(k)aj ,
(k)bj ]

[τtf(s′j , ·)]
dt

〈t〉

}
ds′j
〈s′j〉

= 2

∫
IRN+

{∫ (k)b′j

(k)a′j

V[(k)aj ,
(k)bj ]

[τtf(s′j , ·)]
ds′j
〈s′j〉

}
|Lw(t)| dt〈t〉

= 2

∫
IRN+

Φj (τtf, Jk)|Lw(t)| dt〈t〉 .

By a Minkowski-type inequality, for every k = 1, . . . ,m we have that

Φ(Twf, Jk) ≤ 2

{
N∑
j=1

(∫
IRN+

Φj(τtf, Jk)|Lw(t)| dt〈t〉

)2} 1
2

≤ 2

∫
IRN+

{
N∑
j=1

[Φj(τtf, Jk)]2
} 1

2

|Lw(t)| dt〈t〉

= 2

∫
IRN+

Φ(τtf, Jk)|Lw(t)| dt〈t〉 .

Finally, summing over k = 1, . . . ,m and passing to the supremum over all the partitions
{J1, . . . , Jm} of I,

VI [Twf ] ≤ 2

∫
IRN+

VI [τtf ]|Lw(t)| dt〈t〉 ,

and hence, taking into account of the arbitrariness of I ⊂ IRN
+ and Kw.1),

V [Twf ] ≤ 2‖Lw‖L1
µ
V [f ] ≤ 2A V [f ].

ut

In order to prove the main convergence theorem we need a result about the con-
vergence in variation of (Hw ◦ f − f).

Proposition 3.3 Let us assume that f ∈ AC(IRN
+ ) and that Kw.3) holds. Then

lim
w→+∞

V [Hw ◦ f − f ] = 0.

Proof The proof is similar to the proof of Lemma 2 in [30]. ut

As an immediate consequence of the previous result we have the following Propo-
sition:
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Proposition 3.4 If f ∈ AC(IRN
+ ) and Kw.3) holds, then (Hw ◦ f) are asymptotically

equibounded in variation, i.e., there exists w > 0 such that, for every w ≥ w,

V [Hw ◦ f ] ≤ 2V [f ].

Proof As a consequence of the additivity of the classical Tonelli variation, it is easy
to see that V [f1 +f2] ≤ V [f1]+V [f2], for every f1, f2 ∈ BV (IRN

+ ). Hence V [Hw ◦f ] ≤
V [Hw ◦f−f ]+V [f ] and the thesis follows since, by Proposition 3.3, there exists w > 0
such that, for every w ≥ w, V [Hw ◦ f − f ] ≤ V [f ]. ut

We are now ready to establish the main convergence result by means of the oper-
ators (I).

Theorem 3.5 If f ∈ AC(IRN
+ ) and {Kw}w>0 ∈ Kw, then

lim
w→+∞

V [Twf − f ] = 0.

Proof With the same notations of Proposition 3.2 we can write, by Kw.1),

Sj :=

ν∑
µ=1

|(Twf)(s′j , s
µ
j )− f(s′j , s

µ
j )− [(Twf)(s′j , s

µ−1
j )− f(s′j , s

µ−1
j )|

≤
ν∑
µ=1

∫
IRN+

|Lw(t)||Hw(f(s′jt
′
j , s

µ
j tj))−Hw(f(s′j , s

µ
j ))−Hw(f(s′jt

′
j , s

µ−1
j tj)) +

+ Hw(f(s′j , s
µ−1
j ))| dt〈t〉 +

ν∑
µ=1

∫
IRN+

|Lw(t)|
∣∣∣Hw(f(s′j , s

µ
j ))− f(s′j , s

µ
j ) +

−
[
Hw(f(s′j , s

µ−1
j ))− f(s′j , s

µ−1
j )

]∣∣∣ dt〈t〉
≤

∫
IRN+

|Lw(t)|V[(k)aj ,
(k)bj ]

[(τt(Hw ◦ f)− (Hw ◦ f))(s′j , ·)]
dt

〈t〉

+

∫
IRN+

|Lw(t)|V[(k)aj ,
(k)bj ]

[(Hw ◦ f − f)(s′j , ·)]
dt

〈t〉 .

By the Fubini-Tonelli theorem, for every j = 1, . . . , N , there holds

Φj(Twf − f, Jk) ≤
∫
IRN+

|Lw(t)|Φj((τt(Hw ◦ f)− (Hw ◦ f)), Jk)
dt

〈t〉

+

∫
IRN+

|Lw(t)|Φj(Hw ◦ f − f, Jk)
dt

〈t〉 ,

and so, by a Minkowski type inequality,

Φ(Twf − f, Jk) ≤
∫
IRN+

|Lw(t)|Φ((τt(Hw ◦ f)− (Hw ◦ f)), Jk)
dt

〈t〉

+

∫
IRN+

|Lw(t)|Φ(Hw ◦ f − f, Jk)
dt

〈t〉 .
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Hence, summing over k and passing to the supremum over all the possible partitions
{J1, . . . , Jm} of I, and then over all the intervals I ⊂ IRN

+ ,

V [Twf − f ] ≤
∫
IRN+

|Lw(t)|V [τt(Hw ◦ f)− (Hw ◦ f))]
dt

〈t〉

+

∫
IRN+

|Lw(t)|V [Hw ◦ f − f ]
dt

〈t〉 .

Taking into account that, by the properties of variation,

V [τt(Hw ◦ f)− (Hw ◦ f))] ≤ V [τt(Hw ◦ f)− τtf ] + V [τtf − f ] + V [Hw ◦ f − f ]

= 2V [Hw ◦ f − f ] + V [τtf − f ],

we have that, for every 0 < δ < 1,

V [Twf − f ] ≤
∫
IRN+

|Lw(t)|
(

2V [Hw ◦ f − f ] + V [τtf − f ]
) dt
〈t〉 +AV [Hw ◦ f − f ]

≤ 3AV [Hw ◦ f − f ] +
(∫
|1−t|≤δ

+

∫
|1−t|>δ

)
|Lw(t)|V [τtf − f ]

dt

〈t〉
:= I1 + I2 + I3.

(2)

Let us now fix ε > 0. About I1, by Proposition 3.3 there exists w > 0 such that, for
every w ≥ w, V [Hw ◦ f − f ] < ε

9A
, and so I1 <

ε
3
. About I2, by Theorem 1 of [2],

there exists δ ∈]0, 1[ such that, if |1− t| ≤ δ, V [τtf − f ] < ε
3A

, and so

I2 <
ε

3A

∫
|1−t|≤δ

|Lw(t)| dt〈t〉 <
ε

3
.

Finally, by Kw.2) there exists w̃ > 0 such that, if w ≥ w̃,
∫
|1−t|>δ |Lw(t)| dt〈t〉 <

ε
6V [f ]

(w.l.g, V [f ] 6= 0), and so

I3 ≤
∫
|1−t|>δ

|Lw(t)|(V [τtf ] + V [f ])
dt

〈t〉

= 2V [f ]

∫
|1−t|>δ

|Lw(t)| dt〈t〉 <
ε

3
.

(3)

Hence we conclude that
V [Twf − f ] < ε,

for every w ≥ max{w, w̃}. ut

Remark 3.6 We point out that, in Proposition 3.3, it is actually sufficient to assume
that f ∈ BV (IRN

+ ) and that the sections f(x′j , ·) are continuous for almost every
x′j ∈ IRN−1

+ . We prefer to assume the stronger condition that f ∈ AC(IRN
+ ) since this

is the case for the main result (Theorem 3.5) in which such Proposition is used.
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4 Order of approximation

We will now study the problem of the order of approximation for the family of integral
operators (I). In order to do that, first of all we need to modify the assumptions on
kernels. In particular, instead of Kw.2) and Kw.3), we will assume that, for 0 < α ≤ 1,

K̃w.2) for every δ ∈]0, 1[∫
|1−t|>δ

|Lw(t)| dt〈t〉 = O(w−α), w → +∞,

(i.e., {Lw}w>0 are α-singular);

K̃w.3) denoted by Gw(u) := Hw(u)− u, u ∈ IR, w > 0,

VJ [Gw]

m(J)
= O(w−α), as w → +∞,

uniformly with respect to every (proper) bounded interval J ⊂ IR, i.e., there

exist w > 0 and N > 0 such that, for every w ≥ w,
VJ [Gw]

m(J)
≤ Nw−α, for every

(proper) bounded interval J ⊂ IR.

In the following, we will say that {Kw}w>0 ⊂ K̃w if Kw.1), K̃w.2) and K̃w.3) are
satisfied.

Moreover, as it is usual in such problems, we will assume that the function f be-
longs to a Lipschitz class which takes into account of the multidimensional variation
and the multiplicative setting of IRN

+ , namely,

V LipN (α) := {f ∈ AC(IRN
+ ) : V [τtf − f ] = O(| log t|α), as |1− t| → 0},

where we put log t := (log t1, . . . , log tN ), t ∈ IRN
+ .

We first need to establish a stronger result with respect to Proposition 3.3.

Proposition 4.1 Let assume that f ∈ AC(IRN
+ ) and that K̃w.3) holds. Then

lim
w→+∞

V [Hw ◦ f − f ] = O(w−α), w → +∞. (4)

Proof Again, the proof is similar to the proof of Lemma 2 in [30], taking into account

of assumption K̃w.3). ut

Theorem 4.2 Let us assume that f ∈ V LipN (α), {Kw}w>0 ⊂ K̃w and that there

exists δ̃ ∈]0, 1[ such that∫
|1−t|≤δ̃

|Lw(t)|| log t|α dt〈t〉 = O(w−α), (5)

as w → +∞. Then
V [Twf − f ] = O(w−α),

as w → +∞.
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Proof By (2) and (3) of Theorem 3.5 we have that, for every δ ∈]0, 1[ and w > 0,

V [Twf − f ] ≤ 3AV [Hw ◦ f − f ] +

∫
|1−t|≤δ

V [τtf − f ]|Lw(t)| dt〈t〉

+ 2V [f ]

∫
|1−t|>δ

|Lw(t)| dt〈t〉 .

Since by assumption f ∈ V LipN (α), there exist M > 0 and δ̄ ∈]0, 1[ such that V [τtf−
f ] ≤ M | log t|α, for |1 − t| < δ̄. Hence, if we take 0 < δ ≤ min{δ̃, δ̄}, by K̃w.2), (4)
and (5), we conclude that

V [Twf − f ] ≤ 3AV [Hw ◦ f − f ] +M

∫
|1−t|≤δ

|Lw(t)|| log t|α dt〈t〉

+ 2V [f ]

∫
|1−t|>δ

|Lw(t)| dt〈t〉 = O(w−α),

for sufficiently large w > 0, taking into account that V [f ] < +∞. ut

Remark 4.3 Similar considerations to Remark 3.6 hold for Proposition 4.1 and The-
orem 4.2.

5 A characterization of the absolute continuity

In this Section we will prove that, in case of regular (AC) kernel functions, the converse
of the main convergence result (Theorem 3.5) holds. In order to do this, we will use
the following equivalent concept of absolute continuity, introduced in [1]:

Definition 5.1 A function f : IRN
+ → IR is said to be log-absolutely continuous on

I =
∏N
i=1[ai, bi] ⊂ IRN

+ if, for every j = 1, 2, . . . , N and for every ε > 0, there exists
δ > 0 such that

n∑
ν=1

|f(x′j , β
ν)− f(x′j , α

ν)| < ε,

for a.e. x′j ∈ IRN−1
+ and for all finite collections of non-overlapping intervals [αν , βν ] ⊂

[aj , bj ], ν = 1, . . . , n, for which
∑n
ν=1(log(βν)− log(αν)) < δ.

As an immediate consequence of Proposition 3.5 of [1], we have that f : IRN
+ → IR

is log-absolutely continuous on I =
∏N
i=1[ai, bi] ⊂ IRN

+ if and only if it is absolutely
continuous on I, hence the two notions of AC-functions are equivalent.

The advantage of using the previous concept of absolute continuity, with respect to
the classical one, is that the theory becomes significantly simplified. Indeed, taking into
account of the Haar measure µ, the definition of the log-absolute continuity reveals to
be more natural and more suitable in order to study some problems for Mellin integral
operators in the setting of the multiplicative group structure of IRN

+ equipped with the
logarithmic measure µ.

In particular, using the log-absolute continuity, we are able to prove that, if the ker-
nel functions {Lw}w>0 are absolutely continuous, so are, asymptotically, the integral
operators (I).

Proposition 5.2 If f ∈ BV (IRN
+ ), {Lw}w>0 are absolutely continuous on every inter-

val I ⊂ IRN
+ and Kw.1) and Kw.3) are satisfied, then Twf ∈ AC(IRN

+ ), for sufficiently
large w > 0.

11



Proof Let us notice that, by a simple change of variables, we may write

(Twf)(s) =

∫
IRN+

Lw
(t
s

)
Hw(f(t))

dt

〈t〉 . (6)

We first prove that, for w > 0 large enough, Twf is log-absolutely continuous on every
I =

∏N
i=1[ai, bi] ⊂ RN+ . Let us notice that, by the equivalence of the two concepts of

absolute continuity, {Lw}w>0, are log-absolutely continuous on I. Therefore, let us fix
ε > 0 and a collection of nonoverlapping intervals in [aj , bj ], {[αν , βν ]}nν=1, such that∑n
ν=1(log(βν) − log(αν)) < δ, where δ is the number of the log-absolute continuity

of Lw(x′j , ·) in correspondence to ε := ε
2‖f‖

L1
µ

, a.e. x′j ∈ IRN−1
+ , for j = 1, . . . , N :

here, without any loss of generality, we assume that ‖f‖L1
µ
6= 0, since the other case

is trivial. Then, using (6), it is possible to write

n∑
ν=1

|(Twf)(x′j , β
ν)− (Twf)(x′j , α

ν)| ≤

≤
∫
IRN+

|Hw(f(t))|
n∑
ν=1

∣∣∣∣Lw (t′j

x′j
,
tj
βν

)
− Lw

(
t′j

x′j
,
tj
αν

)∣∣∣∣ dt〈t〉 .
Taking into account that

∑n
ν=1

∣∣∣log
( tj
βν

)
− log

( tj
αν

)∣∣∣ < δ, by the log-absolute conti-

nuity of Lw on I,

n∑
ν=1

∣∣∣∣Lw (t′j

x′j
,
tj
βν

)
− Lw

(
t′j

x′j
,
tj
αν

)∣∣∣∣ < ε

2‖f‖L1
µ

.

Now, by (1), which is implied by Kw.3), and taking into account that Hw(0) = 0,
there exists w > 0 such that, for every w ≥ w, |Hw(f(t))| ≤ 2|f(t)|, and so

n∑
ν=1

|(Twf)(x′j , β
ν)− (Twf)(x′j , α

ν)| ≤ ε,

a.e. x′j ∈ IRN−1
+ : this means that, for every w ≥ w, (Twf)(x′j , ·) is log-absolutely

continuous on I, and hence absolutely continuous on I. The thesis follows taking into
account that, by Proposition 3.2, Twf ∈ BV (IRN

+ ). ut

Another step in order to get the characterization is to prove that the space of the
absolutely continuous functions is a closed subspace of BV (IRN

+ ) with respect to the
convergence in variation.

Proposition 5.3 AC(IRN
+ ) is a closed subspace of BV (IRN

+ ) with respect to the topol-
ogy generated by the convergence in variation.

Proof We have to prove that, if (fn)n∈N is a sequence of functions in AC(IRN
+ ) such

that limn→+∞ V [fn−f ] = 0, then f ∈ AC(IRN
+ ). Since, by the properties of variation,

V [f ] ≤ V [fn − f ] + V [fn] < +∞, for some n ∈ N, it remains to prove that f is
absolutely continuous on every I ⊂ IRN

+ , i.e., for every I ⊂ IRN
+ and j = 1, . . . , N ,

12



f(x′j , ·) is absolutely continuous a.e. x′j ∈ IRN−1
+ . Let us fix I =

∏N
j=1[aj , bj ] ⊂ IRN

+

and j = 1, . . . , N, and notice that

0 ≤
∫
IRN−1

+

V[aj ,bj ][(fn − f)(x′j , ·)]
dx′j
〈x′j〉

= sup
I′j⊂IRN−1

+

∫
I′j

V[aj ,bj ][(fn − f)(x′j , ·)]
dx′j
〈x′j〉

= sup
I′j⊂IRN−1

+

Φj(fn − f, I) ≤ sup
I⊂IRN+

Φ(fn − f, I)

≤ sup
I⊂IRN+

sup
D

p∑
k=1

Φ(fn − f, Jk) = V [fn − f ],

where D represents the set of all the possible partitions {J1, . . . , Jp} of the interval I.
Hence we have that

lim
n→+∞

∫
IRN−1

+

V[aj ,bj ][(fn − f)(x′j , ·)]
dx′j
〈x′j〉

= 0, (7)

which implies that, for every ε > 0 there exists n ∈ N such that, for every n ≥ n,

V[aj ,bj ][(fn − f)(x′j , ·)] < ε, (8)

a.e. x′j ∈ IRN−1
+ . Indeed if, by contradiction, there exists a set of positive measure

A′j ⊂ IRN−1
+ and ε > 0 such that, for every n ∈ N, there exists n ≥ n for which

V[aj ,bj ][(fn − f)(x′j , ·)] > ε for every x′j ∈ A′j , then∫
IRN−1

+

V[aj ,bj ][(fn − f)(x′j , ·)]
dx′j
〈x′j〉

≥
∫
A′j

V[aj ,bj ][(fn − f)(x′j , ·)]
dx′j
〈x′j〉

> εµ(A′j),

which is in contradiction with (7).
Now, let us fix ε > 0: by (8) there exists n ∈ N such that V[aj ,bj ][(fn−f)(x′j , ·)] < ε

2
,

a.e. x′j ∈ IRN−1
+ . Moreover, since fn ∈ AC(IRN

+ ), there exists δ > 0 such that, if
{[αν , βν ]}pν=1 is a family of nonoverlappling intervals in [aj , bj ] such that

∑p
ν=1(βν −

αν) < δ, then
∑p
ν=1 |fn(x′j , β

ν)− fn(x′j , α
ν)| < ε

2
, a.e. x′j ∈ IRN−1

+ . Therefore

p∑
ν=1

|f(x′j , β
ν)− f(x′j , α

ν)| ≤
p∑
ν=1

|(f − fn)(x′j , β
ν)− (f − fn)(x′j , α

ν)|+

+

p∑
ν=1

|fn(x′j , β
ν)− fn(x′j , α

ν)|

≤ V[aj ,bj ][(fn − f)(x′j , ·)] +

p∑
ν=1

|fn(x′j , β
ν)− fn(x′j , α

ν)| < ε,

a.e. x′j ∈ IRN−1
+ , that is, f(x′j , ·) is absolutely continuous on [aj , bj ], a.e. x′j ∈ IRN−1

+ .ut

We are now ready to prove the equivalence between the absolute continuity and
the convergence in variation by means of the operators (I), for AC-kernels.

Theorem 5.4 Let f ∈ BV (IRN
+ ) and let {Kw}w>0 ∈ Kw be such that {Lw}w>0 are

absolutely continuous on every interval I ⊂ IRN
+ . Then f ∈ AC(IRN

+ ) if and only if

lim
w→+∞

V [Twf − f ] = 0.
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Proof Taking into account of Theorem 3.5, we have just to prove the sufficient part.
Now, by Proposition 5.2, Twf ∈ AC(IRN

+ ), for sufficiently large w > 0, and therefore,
if limw→+∞ V [Twf − f ] = 0, f turns out to be absolutely continuous, by Proposition
5.3. ut

The previous result shows that, also in the case of nonlinear Mellin-type integral
operators, the situation is the same as, for example, in the case of the classical con-
volution operators, where it is possible to get the equivalence between convergence in
variation and absolute continuity by directly using the usual notion of AC-functions
(see, e.g., [30]).

Remark 5.5 We point out that, assuming as it is usual in the nonlinear setting (see,
e.g., [13, 30, 42]) a strong Lipschitz condition on {Hw}w>0, then Proposition 5.2 and
all the estimates of Section 3 hold for every w > 0, with suitable constants, without
assuming Kw.3).

6 Examples

We point out that is not difficult to find examples of kernel functions which fulfill all
the assumptions of the previous theory.

For example, let us consider the kernel functions Hw(u) defined as

Hw(u) =

{
u+ e

u
w − 1, 0 ≤ u < 1,

u+ e
1
wu − 1, u ≥ 1,

(we extend the definition of Hw(u) in odd-way for u < 0). Then

Gw(u) =

{
e
u
w − 1, 0 ≤ u < 1,

e
1
wu − 1, u ≥ 1,

and obviously Gw(u) is increasing in [0, 1], decreasing in [1,+∞). Hence, for every
[a, b] ⊂ [0, 1], taking into account that the exponential function is Lipschitzian with
Lipschitz constant e on [0, 1],

V[a,b][Gw]

m([a, b])
=
e
b
w − e

a
w

b− a ≤ e

w
→ 0

as w → +∞. Moreover, since e
1
u is also Lipschitzian with Lipschitz constant e on

[1,+∞), for every [a, b] ⊂ [1,+∞),

V[a,b][Gw]

m([a, b])
=
e

1
aw − e

1
bw

b− a ≤ e

wab
≤ e

w
→ 0

as w → +∞. If [a, b] is such that 0 ≤ a < 1 < b, it is sufficient to notice that
V[a,b][Gw] = V[a,1][Gw] + V[1,b][Gw]. This implies that Kw.3) holds. Obviously, such

kernels satisfy also assumption K̃w.3) with α = 1.

About {Lw}w>0, surely one can consider an approximate identity, so that Kw.1)
and Kw.2) are satisfied. Besides this example, there is also another important class
of kernels {Lw}w>0 for which all the assumptions for the rate of approximation are
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satisfied, i.e., the Fejér-type kernels with finite absolute moments of order α (0 < α ≤
1). Such kernels are of the form

Lw(t) = wNL(tw), t ∈ IRN
+ , w > 0, (9)

where L ∈ L1
µ(IRN

+ ) is such that
∫
IRN+

L(t) dt〈t〉 = 1 and tw := (tw1 , . . . , t
w
N ).

This condition is the natural reformulation (see also [31]), in the multiplicative
setting of IRN

+ with the Haar measure, of the classical Fejér-type kernels on IRN .
The case of Fejér-type kernels is important since, in the classical frame of IRN

equipped with the Lebesgue measure, all the assumptions for the rate of approximation
are implied by the finiteness of the absolute moments of order α (0 < α ≤ 1).

Also in the present frame it is easy to see that assumptions Kw.1) and K̃w.2) are
satisfied if m(L,α) < +∞, where the absolute moments of order α are defined by

m(L,α) :=

∫
IRN+

| log t|α|L(t)| dt〈t〉 .

Indeed the following Proposition ([2]) holds:

Proposition 6.1 If {Lw}w>0 are of the form (9) and m(L,α) < +∞, 0 < α ≤ 1,
then

(a)

∫
|1−t|>δ

|Lw(t)| dt〈t〉 = O(w−α), as w → +∞, for every δ ∈]0, 1[;

(b)

∫
|1−t|≤δ

|Lw(t)|| log t|α dt〈t〉 = O(w−α), as w → +∞, for every δ ∈]0, 1[.

We finally point out that there are several classes of Fejér-type kernels for which
the absolute moments are finite. Among them, the Mellin Gauss-Weierstrass kernels
(see [2] and, e.g., [45, 13] for their classical version), defined as

Gw(t) :=
wN

π
N
2

e−w
2| log t|2 , t ∈ IRN

+ , w > 0

(see Fig. 1(a)), the Mellin Picard kernels, defined as

Pw(t) :=
wN

2π
N
2

Γ(N
2

)

Γ(N)
e−w| log t|, t ∈ IRN

+ , w > 0,

(see Fig. 1(b)) where Γ is the Euler function (see [45, 13] for their classical version),
and others.
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