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Abstract

This paper is focused on the development of an efficient reliability-based

design optimization algorithm for solving problems posed on uncertain lin-

ear dynamic system characterized by large design variable vectors and driven

by non-stationary stochastic excitation. The interest in such problems lies

in the desire to define a new generation of tools that can efficiently solve

practical problems, such as the design of high-rise building in seismic zones,

characterized by numerous free parameters in a rigorously probabilistic set-

ting. To this end a novel decoupling approach is developed based on defining

and solving a limited sequence of deterministic optimization sub-problems.

In particular, each sub-problem is formulated from information pertaining to
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a single simulation carried out exclusively in the current design point. This

characteristic drastically limits the number of simulations necessary to find

a solution to the original problem while making the proposed approach prac-

tically insensitive to the size of the design variable vector. To demonstrate

the efficiency and strong convergence properties of the proposed approach,

the structural system of a high-rise building defined by over three hundred

free parameters is optimized under non-stationary stochastic earthquake ex-

citation.

Keywords: Reliability-based design optimization, Stochastic loads,

Reliability analysis, Monte Carlo simulation, Earthquake engineering,

Structural optimization, High dimensional problems

1. Introduction

The benefits that can be achieved in terms of both performance as well as

cost reduction through the application of numerical optimization to engineer-

ing problems are well known. In order to apply these methods to the design

of optimal structural systems subject to environmental loads such as wind

and earthquakes, the inherently dynamic and aleatory nature of the system

and loads must be rigorously modeled. Indeed, it is well known that there

is considerable uncertainty not only in the external environmental excitation

but also in the parameters and models describing the system [1]. Recently,

considerable effort has been placed on defining reliability-based/robust op-

timization approaches that describe the performance of the system in a rig-

orously probabilistic and dynamic setting [1, 2, 3, 4, e.g.], see also [2] for a

review. The recent interest in defining these approaches is a direct conse-
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quence of the latest computational advances that have opened the door to

the possibility of solving problems that only recently would have been con-

sidered intractable. A hurdle that has remained a challenge is the possibility

of solving reliability-based design optimization (RBDO) problems that are

characterized by large design variable vectors. Indeed, of the methods so

far developed, very few have considered problems with more than a hand-

ful of free design parameters [2]. This can be an important limitation as

many practical applications are characterized by large design variable vec-

tors, e.g. the design of typical multistory building systems. The difficulty in

efficiently solving reliability-based design optimization, or robust optimiza-

tion problems, with large design variable vectors is primarily due to how

this limits the possibility of efficiently exploring how the probabilistic perfor-

mance functions vary as the design variable vector changes during the opti-

mization loop. Indeed, if the design variable vector has high dimensions, then

surrogate/metamodel-based approaches [2] tend to become intractable as the

exploration of the design space necessary to build the surrogate/metamodel

will require a prohibitively large number of probabilistic performance eval-

uations. A similar curse of dimensionality also affects methods based on

augmenting the uncertain vector with the design variables, as it becomes

increasingly difficult to identify the regions of the design space that contain

the optimal solutions. Another approach that has been widely adopted for

solving RBDO problems is that based on decoupling the inherently nested

probabilistic analysis from the optimization loop [5, 6, 7, 1, 2, 8]. In general,

this can only be approximately achieved and requires the sequential appli-

cation of probabilistic analysis followed by the resolution of an approximate
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optimization sub-problem. The crucial point in these approaches is the con-

struction of the sub-problem that generally requires additional information

to be gathered on the local behavior of the performance functions around the

current design point, e.g. through local random exploration or sensitivities.

It is this phase that generally becomes troublesome as the design variable

vector increases in size. In this paper a novel decoupling approach is devel-

oped that is practically insensitive to the size of the design variable vector.

In particular, the methodology is specifically developed for high-dimensional

uncertain linear dynamic systems driven by stochastic excitation. As an

example of such a system, a case study is considered that focuses on the

optimum design of the structural system of a high-rise building subject to

non-stationary stochastic earthquake excitation.

2. Formulation of the optimization problem

The optimization problems that are pertinent to this research may be

posed in the following form:

Find x = {x1, ..., xm}T (1)

to minimize W = f(x) (2)

s. t. Pfj(x) ≤ P0j j = 1, ..., Nc (3)

xi ∈ Xi i = 1, ..., m (4)

where x is an m-dimensional vector of deterministic parameters defining the

design of the system, e.g. the section sizes, W is a deterministic and explicit

(in terms of the design variable vector x) cost function associated with the
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structural system, Pfj are the failure probabilities associated with the Nc

reliability constraints defining the performance of the system, P0j are the

acceptable failure probabilities defining the target reliability of the system,

while Xi is the discrete set to which the ith design variable must belong.

What makes the above outlined RBDO problem difficult to solve are the

reliability constraints of Eq. (3). Indeed, the evaluation the aforementioned

constraints requires the calculation of the failure probabilities Pfj given by:

Pfj(x) =

∫
ΩFj

(x)

p(u)du (5)

where ΩFj
is the failure domain of the failure event Fj within the space of

the uncertain parameters contained in the vector U, while p(u) is the joint

probability function of U. In this work the random vector U describes all

uncertainties involved in the system (model and loading parameters). In

other words the components of the vector U represent the uncertain struc-

tural parameters and the random variables used in the characterization of

the stochastic excitation. Therefore U will have high dimensions (order of

thousands) which excludes the possibility of using analytical approximations,

such as first and second order reliability methods, in the calculation of the

probabilistic integral of Eq. (5) as they will become computationally in-

tractable [9]. This implies that Eq. (5) must be evaluated using simulation

methods and therefore through repeated evaluation of the system response.

For practical dynamic systems, this fast becomes computationally cumber-

some, especially when it is observed that Pfj is in general an implicit function

of x therefore hindering the calculation of the gradients necessary if efficient

gradient-based optimization methods are to be used to solve the optimization

problem.
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3. Response estimation

3.1. Damage model

The failure events, Fj , of interest to this work may be written in the

following form:

Fj(x,u) = {dj(u,x) > 1} (6)

where dj is the damage measure associated with the jth reliability constraint

and defined as follows:

dj(u,x) = max
t∈[0,T ]

|Rj(t;u,x)|
Cj

(7)

where T is the duration of the event, Rj(t) is the structural response process

associated with the jth failure mode while Cj is a measure of the capacity of

the system in the jth failure mode. In particular, Cj is directly related to the

concept of fragility as defined in [10], i.e. as the conditional probability of

having a predetermined damage state, DSj, given a certain response level r.

Indeed, if the capacity Cj is measured in terms of the response thresholds at

which the damage state associated with the jth reliability constraint occurs,

then the following holds:

FragilityDSj
= P (DSj|rj) = P (Cj ≤ cj) (8)

where rj = cj. Therefore the distribution of Cj is simply given by the fragility

curve associated with the damage state of interest. The relation of Eq. (8)

illustrates how the damage ratio of Eq. (7), and in particular Cj, can be

modeled using the extensive fragility databases reported in [11] for a number

of common structural and non-structural building components.
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By using the damage model of Eq. (7), a predefined damage state will

occur if dj is larger than 1. Therefore the following limit sate function can

be assumed for identifying the initiation of damage:

gj(u,x) = 1− dj(u,x) (9)

while the failure probabilities are given by:

Pfj(x) =P (gj(u,x) ≤ 0)

=

∫
gj(u,x)�0

p(u)du
(10)

In order to evaluate this integral, the response process Rj(t) needs to be

evaluated.

3.2. Load-effect model

In order to model the dynamic response of the system in a generic response

parameter Rj (e.g. displacement, interstory drift, stress component), the

following linear load-effect model is considered:

Rj(t) = s1Γ
T
Rj
KΦnqn(t) (11)

where s1 is an uncertain parameter modeling the epistemic uncertainties in

using a load-effect model of this type, ΓRj
is a vector of influence coefficients

indicating the response in Rj due to a unit static force applied one-by-one

to the various degrees of freedom of the nominal (mean) system, K is the

nominal (mean) stiffness matrix, Φn = [φ1, . . . , φn] is the mode shape matrix

containing the structure’s first n mode vectors while qn = {q1(t), . . . , qn(t)}T

is the vector containing the first n modal displacement responses given by
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solving the following modal equations:

q̈j(t) + 2s3jζjs2jωj q̇j(t) +
(
s2jωj

)2
qj(t) =

φT
j Miag(t)

mj

=
Qj(t)

mj

(12)

where ωj, mj , ζj and Qj(t) are the jth modal circular frequency, modal mass,

damping ratio and generalized force respectively, M is the mass matrix of the

system, ag denotes the time history of the ground motion acceleration, i is the

vector of earthquake influence coefficients. The parameters s2j and s3j are

unit mean uncertain parameters modeling, in the first case, the uncertainty

in ωj due to randomness in the stiffness and mass matrix and in the second

case the significant uncertainties that generally affect ζj [12, 13].

An efficient way to directly integrate the modal equations is through the

concept of digital filters [14, 15]. This method is based on the following

transfer function in the complex Laplace domain:

Hj(γ) =
1

γ2 + 2s3jζjs2jωjγ +
(
s2jωj

)2 (13)

where γ is the complex Laplace variable. The characteristic efficiency of digi-

tal filters in solving Eqs. (12) is due to the discrete and evenly spaced nature

of most experimental/simulated data. The accuracy of the method depends

solely on the assumptions made with respect to how the generalized forc-

ing function, Qj(t), is assumed to vary between two successive data points.

Arguably the most convenient assumption is to consider a linear variation

(ramp invariant simulation) yielding the following Z-transform function:

H̃j(z) =
(z − 1)2

Δt z
Z

{
L−1

[
1

γ2
(
γ2 + 2s3jζjs2jωjγ + (s2jωj)2

)
]}

(14)
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where Δt is the sampling interval, L−1 indicates the inverse of the Laplace

transform while z is the generally complex Z-plane variable. Eq. (14) may

be written in the form of a second order digital filter:

H̃j(z) =
b0j + b1jz

−1 + b2jz
−2

1 + a1jz−1 + a2jz−2
(15)

where b0j , b1j , b2j , a1j and a2j are jth mode’s filter coefficients. From Eq.

(15) the following recursive relationship may be defined for the generalized

displacement response in the discrete time instant ti:

qj(ti) = b0j
Qj(ti)

mj
+ b1j

Qj(ti−1)

mj
+ b2j

Qj(ti−2)

mj

− a1jqj(ti−1)− a2jqj(ti−2)

(16)

The efficiency of this method for digital data with constant sampling fre-

quency is in that the coefficients of Eq. (16) need to be estimated only once.

A similar recursive expression may be derived for q̇j(t) while q̈j(t) may be

derived from Eq. (12) once qj(t) and q̇j(t) are known. It should be ob-

served that the only approximation in the integration scheme outlined above

is in the piecewise linear approximation of the generalized forcing function

Qj(t). Therefore, if an adequate sampling frequency is adopted, this method

guarantees not only efficiency but also consistency.

3.3. Stochastic ground motion

In order to calculate the response of the system, realizations of the ground

motion accelerations ag(t) are needed. These may be modeled through an

appropriate stochastic ground motion model. In this work, a point-source

model [16, 17] is adopted, even though it should be observed that the choice
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of the ground motion model does not affect the optimization method devel-

oped in this work. In particular, the model considered here is described by a

radiation spectrum, A(f ;M, r), and an envelope function, et(t;M, r), which

both depend on the moment magnitude, M , and the shortest distance, r,

to the fault plane. In order to generate a realization of ag(t) following this

model, a white noise sequence Z = [Zw(iΔt) : i = 1, 2, ..., NT ] is first gen-

erated and modulated by et(t;M, r) before being transformed into the fre-

quency domain. Once in the frequency domain, it is first normalized by the

square root of the mean square of A(f ;M, r) and then modulated through

multiplication by A(f ;M, r). The sequence is then transformed back to the

time domain therefore yielding the realization of ag(t). The model is there-

fore fully described by the radiation spectrum, A(f ;M, r), and an envelope

function, et(t;M, r) that will be briefly described in the following.

3.3.1. The radiation spectrum

The radiation spectrum of the model adopted in this work is defined as

the product between the source spectrum E(f ;M), path effect P (f ; r), and

site effect G(f):

A(f ;M, r) = ϑE(f ;M)P (f ; r)G(f) (17)

where ϑ = (2πf)2. In Eq. (17) the source spectrum is expressed as:

E(f ;M) = cMwS(f ;M) (18)

where c is a constant that depends on the shear velocity βs, Mw is the seismic

moment which is related to the moment magnitude M through the relation-

ship log10 Mw = 1.5(M + 10.7), while S(f ;M) is the displacement source
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spectrum. For describing the displacement source spectrum, the two-corner

point-source model developed in [18] is used:

S(f ;M) =

[
1− e

1 + (f/fa)2
+

e

1 + (f/fb)2

]
(19)

where the lower corner frequency fa, higher corner frequency fb, and weight-

ing parameter e are related to the moment magnitude through the relation-

ships log10 fa = 2.181 − 0.496M , log10 fb = 2.41 − 0.408M , and log10 e =

0.605−0.255M . For modeling the path effect the following model is adopted

[16]:

P (f ; r) = Z(Rr) exp

[ −πfRr

(Q(f)cQ)

]
(20)

where Z(Rr) and Q(f) are the geometrical spreading and regional atten-

uation functions, respectively, while cQ is the seismic velocity. In the work

outlined here, Q(f) is taken as Q(f) = α1f
α2 with α1 a geometrical spreading

constant and α2 a geometrical spreading rate. Rr =
√
h2 + r2 and represents

the radial distance from the earthquake source to the site, with h a moment-

dependent equivalent point-source depth that is related to the magnitude

through log10 h = −0.05 + 0.15M [18]. In particular, here Z(Rr) = 1/Rr for

Rr < 70 km and Z(Rr) = 1/70 for Rr > 70 km [17].

The site effect term of Eq. (17) is taken herein as:

G(f) = D(f)Am(f) (21)

where the amplification function Am(f) can be modeled using empirical

curves found in [19] while D(f) is the high-frequency diminution. In par-

ticular, the diminution is modeled using the fmax filter and therefore as

D(f) = [1 + (f/fmax)
8]−1/2 [16].
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3.3.2. The time envelope

The role of the envelope function in the point source model is to describe

the temporal characteristics of the excitation and is here given by:

et(t;M, r) = at(t/tn)
bt exp(−ct(t/tn)) (22)

where the parameters at, bt, and ct are calibrated so that the envelope

function has a peak value of unity when t = λttn and et(t;M, r) = ηt

when t = tn. In order to achieve this, the parameters are given by bt =

−λt ln(ηt)/(1 + λt(ln(λt) − 1)), ct = bt/λt, and at = (exp(1)/λt)
bt where

tn = 2Tw and is the time duration parameter which depends on the duration

of strong ground motion Tw that is given by 1/(2fa) + 0.05Rr [16].

4. The proposed RBDO procedure

Section 2 outlined the type of probabilistic optimization problem that is

or interest to this work. In particular, it was observed that the main difficulty

in solving the problem is due to the computational effort required to eval-

uate the reliability constraints, which is compounded by fact that RBDO

problems are in general nested problems. That is, while the optimization

loop is moving the components of x within the design space in search of the

optimum system, each component move will in general require a probabilis-

tic analysis (or partial probabilistic/sensitivity analysis) to be carried out

in order to evaluate the changing reliability constraints. Therefore, as the

dimensions of x increase, so does the overall computational burden.

Here an approach to circumvent this difficulty will be developed based

on approximately decoupling the probabilistic analysis from the optimiza-
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tion loop through the definition of an optimization sub-problem that can be

formulated in a way that is insensitive to the dimensions of x.

4.1. Reformulated problem setting

In order to derive the proposed method, it is first necessary to rewrite

the optimization problem in terms of inverse reliability constraints:

Find x = {x1, ..., xm}T (23)

to minimize W = f(x) (24)

s. t. d̃j(x)− 1 ≤ 0 j = 1, ..., Nc (25)

xi ∈ Xi i = 1, ..., m (26)

where d̃j is the threshold value of d associated with the target failure proba-

bility P0j . Due to the strictly monotonic nature of the distribution functions

associated with the damage measures dj, the satisfaction of the inverse con-

straints of Eq. (25) implies the satisfaction of the original constraints of Eq.

(3). As in the case of the original RBDO problem, the estimation of the

inverse constraints, and so of the thresholds d̃j, for a given design requires

a full probabilistic analysis (simulation) to be carried out during the opti-

mization loop. However, as will be seen in the following, commencing from

these constraints it is possible to define an approximate sub-problem with

the sought-after properties.

4.2. The Auxiliary Variable Vector (AVV)

In order to derive the sub-problem, it is of interest to consider the follow-

ing variable that can be defined for each realization of U (indicated here as
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u):

Υj(u,x0) =
ηRj

(u,x0)C
(t)
F
(u,x0)ΓRj

(x0)

σ
(t)
Rj
(u,x0)

(27)

where σ
(t)
Rj

is the standard deviation of the response process Rj(t) in the time

statistic sense (i.e. the standard deviation of Rj estimated from the response

time history associated with the realization u of the uncertain vector U), ηRj

is the number of standard deviations (in the sense of σ
(t)
Rj
) that the largest

absolute value of Rj(t) is from zero for the event defined by u, while C
(t)
F

is the covariance matrix (again to be considered in the sense of the time

statistics) of the realization of the following vector-valued stochastic process:

F(t;u,x0) = s1K(x0)Φnqn(t;u,x0) (28)

It should be observed that the variables σ
(t)
Rj

and C
(t)
F

are defined with the

intent of giving the largest absolute value of the response process R̂j a rep-

resentation that is related to the entire dynamic response process Rj(t) and

not just to the instant, t̂, at which the peak occurs. Indeed, Υj could have

been defined simply as F evaluated in t̂. However, a similar approach is

often adopted in deterministic dynamic response optimization and is known

to cause convergence instabilities [20].

The interest in defining the variable Υj , whether as F(t̂) or as defined in

Eq. (27), derives from the fact that the following relationship holds:

R̂j(u,x0) = ΓT
Rj
(x0)Υj(u,x0) (29)

The significance of Eq. (29) is that it represents an exact static relationship

between R̂j and the nominal system. In other words, the static application
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of Υj to the nominal system will generate a response in Rj equal to R̂j. If

the right-hand side of Eq. (29) is now divided by the value of the capacity

contained in u, the following exact and static relationship is defined between

the nominal system and value taken on by the jth damage ratio:

dj(u,x0) =
1

cj
ΓT

Rj
(x0)Υj(u,x0) (30)

So far all quantities have been defined for the event described by u. What

is of interest now is to define a similar relationship to that of Eq. (30) for the

damage thresholds with target failure probability d̃j, that is a probabilistic

description of the damage ratios occurring over all events. With this in

mind, it is necessary to first consider the random capacity written as Cj =

C̄j(1+δCj
Cnj

) where C̄j is the mean/nominal value of Cj , δCj
is the coefficient

of variation of Cj and Cnj
is the normalized (zero mean and unit standard

deviation) representation of Cj. At this point it is possible to define the

following vector for each realization of Υj :

Υdj (u,x0) =
Υj(u,x0)

(1 + δCj
cnj

)
(31)

where cnj
is the normalized component corresponding to the capacity entry

cj of the vector u. As already mentioned, in order to evaluate the reliability

constraints (whether in their original or inverse form) for the design point

x0, it is necessary to carry out a simulation in x0 during which it is possible

to define the following Auxiliary Variable Vector (AVV) directly from the

samples of Υdj :

Υ̃j(P0j ,x0) = Ῡdj (x0)

+
ηdj (P0j ,x0)CΥdj

(x0)ΓRj
(x0)

σdj (x0)C̄j

(32)
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where Ῡdj is the mean vector of Υdj and CΥdj
is the covariance matrix of

Υdj , μdj and σdj are the mean and standard deviation of the damage ratio dj ,

while ηdj is the reduced variate indicating the number of standard deviations

the threshold value d̃j exceeds the mean value of the damage ratio dj and

can be calculated simply as:

ηdj (P0j ,x0) =
d̃j(x0)− μdj (x0)

σdj (x0)
(33)

Because the AVV does not require any significant additional calculations,

outside those performed to estimate d̃j, it can be seen as a by-product of the

simulation process and therefore as an auxiliary output of the simulation.

The significance of the AVV, and so of Υ̃j , is that if it is statically applied

to the nominal system, it will generate a response in R that, if divided by

the mean/nominal capacity, gives exactly d̃j:

d̃j(x0) =
1

C̄j

ΓT
Rj
(x0)Υ̃j(x0) (34)

The expression of Eq. (34) is particularly useful as it allows the constraints

of Eq. (25) to be expressed in a format that is equivalent to a deterministic

system loaded by a static distribution in the form of Υ̃j(x0). As will be

explored in the next section, this opens the door to the possibility of defining

a particularly useful form of sub-problem.

4.3. The approximate sub-problem

Because of how the AVV was defined, it depends on x0 and therefore

on where in the design space it was calculated. However, this dependency

can be assumed relatively weak for moderate changes in the design vector x

around x0. Indeed Υ̃j depends largely on Υj (defined in Eq. (31)), which
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in turn depends significantly on F (defined in Eq. 28). By observing that F

can be written as:

F(t;u,x0) = s1M(x0)iag(t;u)

+ s1K(x0)Φnqrn(t;u,x0)
(35)

where qrn is the vector of resonant modal responses with components given

by:

qrj (t) = qj(t)− Qj(t)

mj

(
s2jωj

)2 (36)

it is evident that F has a resonant and background quasi-static component

(first term of the right hand side of Eq. (35)). If it is now observed that the

majority of mass in a typical building is carried, then the term M(x0) will

be relatively insensitive to changes in x. Therefore the background compo-

nent of F can be considered independent of x0 which ultimately results in a

weakening of the dependency of Υ̃j for small changes in x around x0.

This observation allows for the definition of the following optimization

sub-problem:

Find x = {x1, ..., xm}T (37)

to minimize W = f(x) (38)

s. t.
1

C̄j

ΓT
Rj
(x)Υ̃j − 1 ≤ 0 j = 1, ..., Nc (39)

xi ∈ Xi i = 1, ..., m (40)

where the dependency of Υ̃j on x has been neglected. This assumption

effectively decouples the optimization loop from the probabilistic analysis

the results of which are now completely contained in the AVV. Indeed, the

above outlined optimization sub-problem can be solved without invoking any
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probabilistic analysis. The approximation in writing the sub-problem is in

how any changes in the design variable vector during the optimization loop

are not reflected in Υ̃j. Therefore, after a solution is found to the sub-

problem, it must be reformulated and solved in order to ensure a final design

that is absent of any approximations. The fundamental characteristic of the

sub-problem that makes it particularly suitable for solving problems with

large design variable vectors is in how it is formulated without the need to

explore in any way at all the space around x0. In other words, no sensitivities

or function approximations based on partial/local exploration of the design

space around x0 are necessary. Each reformulation simply requires a single

probabilistic analysis to be carried out in the current optimal point. This

process is commonly denominated as a design cycle and will continue until

two successive sub-problems have identical solutions. The total number of

design cycles is therefore an indication of the overall efficiency of the proposed

procedure as it indicates the number of probabilistic analyses necessary for

global convergence.

The classic form of the optimization sub-problem expressed by Eqs (37)-

(40) is particularly useful as it allows any well-established optimization method-

ology to be used for its resolution. In particular, in this work the pseudo-

discrete optimality criteria [21, 22] is used therefore allowing the discrete

nature of the design space to be fully considered.
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5. Case study

5.1. Description

5.1.1. Structural model

In order to investigate the performance of the proposed optimization

strategy, a 45-story braced rectangular building with an offset core is consid-

ered as a case study (Fig. 1a). The vertical column elements of the structural

system are defined by steel box sections grouped in plan as shown in Fig.

1b (C1 to C18). These elements are required to to have a mid-line diame-

ter, Di, that belong to the discrete set {0.2 m, 0.25 m, 0.3 m, 0.35 m, ..., 4 m}
with flange thickness fixed asDi/20. These column elements are grouped over

three consecutive floors. The horizontal beam elements of the structural sys-

tem, indicated as B1 to B6, are located in plan as shown Fig. 1b and are to

be designed so as to belong to the standard AISC W24 steel member family

[23]. As in the case of the columns, the beams are grouped three floors at

a time. The bracing elements are to be designed using the same steel box

sections as the columns. In particular, the bracing elements in the X direc-

tion are grouped as three separate mega X-braces working over the height of

the building. Corresponding braces on the two faces parallel to the X axis

of the building are also grouped together. For the Y direction bracing, the

elements are once again grouped as three separate mega X-braces working

over the height of the building. For this direction the elements of the braced

frames are not grouped due to a lack in symmetry the overall system on this

direction. The aforementioned grouping of the elements results in a total

of 369 independent design groups. The initial structural system is designed

with all column elements having a mid-line diameter of 0.6 m while all beam
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elements are W24×176 profiles. For the diagonal elements a mid-line diame-

ter of 1.6 m was considered. The floors have an area density of 0.38 t/m2 and

can be assumed rigid in their plane when compared to the flexibility of the

horizontal (beam) and vertical (column) elements. Therefore, for modeling

the dynamic behavior of the system, three degrees of freedom (two transla-

tions in the X and Y directions and one rotation around a vertical axis) are

considered for each floor leading to a total of 135 degrees of freedom. The

stiffness matrix K is therefore obtained from static condensation, performed

at the centers of mass of each floor, of the full finite element model of the

system. The dynamic response of the system is estimated using the proce-

dure presented in Section 3 while considering the first 12 vibration modes,

for a total participating mass of over 95% in both the X and Y directions.

The initial mean/nominal circular frequencies of the modes are reported in

Table 1.

The mean/nominal damping ratios were taken as 1.5% for the first three

modes, 2.0% for the next three, 3.0% for the successive three and 4.0% for

the final three. The increase in the nominal damping as the mode number

increases follows the indications suggested in [24] for steel framed structures.

The first six modal frequencies and damping ratios are taken as uncertain

while the remaining six take on their nominal values. The uncertain pa-

rameters, S1, S2j and S3j with j = 1, ..., 6 were modeled as independent

lognormal random variables with coefficients of variation 0.025, 0.015, and

0.3 respectively [25], where this last highlights the significant uncertainty

that is generally present in the damping of structures.
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Table 1: First 12 natural frequencies of the initial structural system

Mode # Initial frequencies [rad/s] Final frequencies [rad/s]

1 2.25 3.65

2 4.00 4.24

3 7.20 6.56

4 8.50 10.73

5 13.22 11.92

6 15.89 18.19

7 17.67 18.25

8 19.83 19.88

9 20.68 20.51

10 21.62 23.68

11 24.25 25.30

12 25.71 28.87
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Figure 1: (a) 3D illustration of the case study 45-story building; (b) structural layout of the

horizontal and vertical elements as well as the critical column line for the non-structural

damage.

5.1.2. Excitation

The stochastic excitation is given by the point source model of Section

3.3. In calibrating the model, a strike slip fault type was considered with

model parameters: βs = cQ = 750 m/s; fmax = 30 rad/s; α1 = 300; α2 = 0.3;

λt = 0.2 with ηt = 0.05 as suggested in [16]. The fault plane distance, r,

was taken as a log-normal random variable with a mean distance of 20 km

and coefficient of variation 0.4. The moment magnitude, M , was taken as a

truncated exponential distribution with Mmin = 6 and Mmax = 8 [26]:

p(M) =
β exp[−β(M −Mmin)]

1− exp[−β(Mmax −Mmin)]
(41)

where the regional seismicity factor is selected as β = 0.7 ln[10]. The duration

of the simulated stochastic ground accelerations was T = 100 s with Δt =

0.01 s. The total number of components, NT , of the white noise sequences,
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Z, was 10001.

5.1.3. Performance objectives

The objective is to minimize the material weight of the system while en-

suring two damage scenarios for ground motions acting down the X and Y

directions. The first damage scenario concerns non-structural damage pro-

duced by excessive interstory drift occurring over the column line indicated

in Fig. 1b in the X and Y directions. The nominal(mean) capacity corre-

sponding to this damage scenario is taken as 1/200 of the inter-story height

and is assumed to have a coefficient of variation 0.3 and to be distributed as a

log-normal random variable. The second damage scenario is associated with

excessive combined axial and flexural stress occurring in the critical fiber of

each of the 369 design groups. In this case, the response process is given by:

R(t;u) = fN(t;u) + fMX
(t;u) + fMY

(t;u) (42)

where fN(t;u) is the axial stress response process while fMX
(t;u) and fMY

(t;u)

are the flexural stress response processes due to moments acting around the

local X and Y axes of the member. The associated structural capacity is

taken to have a nominal (mean) value of 3.4 × 105 kN/m2 and to be dis-

tributed as a log-normal random variable with coefficient of variation 0.1. In

assessing the maximum stresses, a deterministic live load of 2 kN/m2 is also

considered distributed over each floor.

It is worth noting that a linear load-effect model is considered adequate for

describing the response of the seismically excited systems considered here as

this work is primarily focused on modeling the response of high-rise structures

which tend to have large design variable vectors but relatively moderate
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response to earthquakes, or at least a response that is desirable to keep

linear.

5.1.4. Optimization algorithm

The design variable vector x is taken as the mid-line diameters, Di, of the

box sections while, for the standard W24 sections, the cross sectional area is

considered. These section properties can be related to the other mechanical

properties of the section (moments of inertia, shear areas, etc.) following the

relationships presented in [27, 15] for the box sections, while for the standard

W24 sections the relationships outlined in [21] can be used. This implies that

each of the 369 design groups will be assigned a single design variable leading

to a total dimension for x of 369.

In order to solve the optimization sub-problems, the procedure outlined

in [28] is adopted. Therefore the stress-based constraints are reduced to

movable lower limits on the design variable vector, while the drift-based

constraints are reduced to explicit functions of x through the use of the

principle of virtual work. Because the objective function is also explicit in x,

the sub-problem can be efficiently solved using a pseudo-discrete optimality

criteria algorithm [22, 21]. In formulating the sub-problem at each design

cycle, the thresholds with target failure probabilities, d̃j, are estimated by

assuming the failure probabilities, Pfj , follow a log-normal distribution which

is calibrated by simulating 4000 samples of U = {Cj , S1,S
T
2n ,S

T
3n , r,Z

T}T ,
with n = 6. Recalling the dimension of Z, this leads to a total dimension for

U is 10016 while the total number of constraints is 918 (Nc = 918), 45 drift-

based constraints evaluated in the X and Y directions for ground motions

acting down the X or Y direction as well as 369 stress-based constraints also

24



evaluated for ground motions acting down the X or Y direction. Considering

the size of the design variable vector, m = 365, the case study truly represents

a large scale RBDO optimization problem.

5.2. Results

As mentioned in Section 5.1.4, in evaluating the failure probabilities asso-

ciated with the constraints, a log-normal distribution is assumed. This choice

was made on the basis of the high number of basic random variables following

log-normal distributions for this type of problem.To verify this assumption

a Monte Carlo simulation was carried out on the initial system using 20000

samples and compared to calibrated log-normal failure distributions. Figure

2 shows this comparison for the Y direction top floor drift-based damage ra-

tio and the stress-based damage ratio of the column group C8 between floors

1 and 3. As can be seen, the log-normal assumption would seem reason-

able even if some tendency to over-estimate the failure probabilities for high

threshold levels would seem evident. This result is seen for all other dam-

age ratios. Although the log-normal assumption was made here, it should

be observed that the procedure presented in this work does not require the

failure probabilities to follow a log-normal distribution. It was assumed here

for computational convenience.

Figure 2 shows the initial and final failure probabilities associated with

the occurrence of non-structural damage due to excessive drift over the col-

umn line indicated in Fig. 1. In particular, Fig. 3 shows the X and Y

direction response. As can be seen, the initial system does not meet the

constraints placed on the occurrence of non-structural damage for ground

motions acting in the X or Y direction. With respect to the structural dam-
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age constraints, Fig. 4 shows that the initial system once again does not meet

all performance constraints. In applying the proposed optimization strategy,

Group number
0 41 82 123 164 205 246 287 328 369

d̃
j

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
Initial

Final

dmj = 1

Figure 4: Initial and optimized structural damage ratio thresholds with target failure

probability P0j
= 10−3. The maximum thresholds for X and Y ground motions are

shown.

it can be seen from Figs. 3 and 4 that the optimized system meets all im-

posed performance constraints. In particular, looking at Fig. 3 it can be

seen that the system has a number of active, or near active, constraints for

ground motions acting in both the X and Y directions. This clearly attests

to the strong convergence properties of the proposed approach. The strong

and steady convergence properties of the proposed approach are clearly illus-

trated by the design history of the objective function of Fig. 5. In particular,

for all intents and purposes, the problem convergences after only 15 design

cycles and therefore probabilistic analyses. This result is quite remarkable

as it represents a very small fraction of the analyses that would be neces-

sary to directly solve a problem of this size and complexity. From Fig. 6
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Figure 5: Objective function design cycle history.

it can also be seen that the structure practically meets all performance re-

quirements by design cycle 15 with the remaining design cycles serving as a

fine tuning of the problem. In particular, for the case study considered here

the convergence criteria was strictly set as obtaining two successive designs

defined by identical design variable vectors. The fact that the algorithm met

such a strict criteria once again attests to the convergence properties of the

proposed approach. Figure 5 shows that the final optimized structural sys-

tem is only around 23% heaver than the original system notwithstanding the

significant performance enhancement achieved. It is interesting to note from

Table 1 that, even though the system has become stiffer in the Y direction

in order to satisfy the drift-based constraints that were significantly violated

by the initial system, overall the initial and optimum systems have relatively

similar natural frequencies, with some actually increasing for the optimum

system, indicating how the optimization algorithm is effectively searching
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Figure 6: Convergence history of the maximum (for ground motions coming from the X or

Y direction) component failure probabilities for the structural and non-structural damage

scenarios.

for the most flexible (and therefore least seismically susceptible) system that

satisfies the performance constraints. Finally it should be remembered that

the sub-problems were solved using a discrete optimization algorithm, made

possible without complication due to the simple and classic from assumed

by the sub-problems, therefore resulting in a discrete final design variable

vector that belongs to the sets Xi for i = 1, ..., m. This is illustrated in

Table 2 where the initial and final discrete mid-line diameters of the corner

column group C8 are reported showing how the final column sizes belong to

the set defined in Sec. 5.1.1. Table 2 also gives an indication of how the

optimal system works. Indeed, the corner columns are towards the upper

limit of the associated feasible set and practically vary only between succes-

sive X-bracings, which indicates that the optimal structure is a 3D braced

mega-system.
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Table 2: Initial and final section sizes for design group C8.

Floor number Initial size [cm] Final size [cm]

1-3 60 345

4-6 60 355

7-9 60 360

10-12 60 355

13-15 60 355

16-18 60 280

19-21 60 275

22-24 60 280

25-27 60 285

28-30 60 275

31-33 60 100

34-36 60 90

37-39 60 70

40-42 60 55

43-45 60 55
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6. Conclusions

This paper presented an efficient framework for the design optimization

of large-scale uncertain systems driven by non-stationary stochastic excita-

tion. In particular, the proposed method was specifically developed to solve

practical reliability-based design optimization problems posed on uncertain

dynamic systems that are defined by large-scale design variable vectors as

well as reliability constraints written in terms of high-dimensional probabilis-

tic integrals. The proposed approach is based on approximately decoupling

the inherently nested probabilistic analysis loop from the optimization loop

through the definition of an optimization sub-problem that can be formulated

from information gathered from a single simulation-based probabilistic anal-

ysis carried out in the current design point. In particular, the sub-problem

is formulated through the definition of a probabilistic auxiliary variable vec-

tor (AVV) that may be estimated as a simple by-product of the simulation

process without the need to invoke any significant additional calculations.

Because the sub-problem takes on a simple deterministic form, it can be

efficiently solved by any well-established optimization algorithm. By formu-

lating and solving a sequence of sub-problems, a series of steadily improving

designs are defined, leading to a solution to the original problem at a fraction

of the computational cost necessary to directly solve the original optimization

problem. The practicality and strong convergence properties of the proposed

approach were illustrated on a full scale high-rise building example subject

to non-stationary stochastic earthquake excitation.

31



Acknowledgements

This research effort is supported by the University of Michigan. This

support is gratefully acknowledged.

References

[1] Jensen, H.A., Valdebenito, M.A., Schuëller, G.I.. An efficient
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Reliability-based design optimization of uncertain stochastic systems:

gradient-based scheme. J Eng Mech 2012;138:60–70.

[5] Royset, J.O., Der Kiureghian, A., Polak, E.. Reliability-based optimal

structural design by the decoupling approach. Reliab Eng Syst Safe

2001;73(3):213–221.

[6] Du, X., Chen, W.. Sequential optimization and reliability assess-

ment method for efficient probabilistic design. ASME J Mech Des

2004;126(2):225–233.

32



[7] Zou, T., Mahadevan, S.. A direct decoupling approach for ef-

ficient reliability-based design optimization. Struct Multidisc Optim

2006;31:190–200.
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[27] Spence, S.M.J., Gioffrè, M.. Efficient algorithms for the reliability

optimization of tall buildings. J Wind Eng Ind Aerodyn 2011;99(6-

7):691–699.

[28] Spence, S.M.J., Kareem, A.. Performance-based design and optimiza-

tion of uncertain wind-excited dynamic building systems. Eng Struct

2014;:In Press.

35


