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Abstract

In this paper we propose two algorithms, called Dir and Omni, for precisely localizing terres-
trial objects, or more simply sensors, using a drone. Dir is based on the observation that, by
using directional antennas, it is possible to precisely localize terrestrial sensors just applying a
single trilateration. We extend this approach to the case of a regular omnidirectional antenna
and formulate the Omni algorithm. Both Dir and Omni plan a static path for the drone over
the deployment area, which includes a set of waypoints where distance measurements between the
drone and the sensors are taken. Differently from previously proposed best-effort approaches, our
algorithms prove that a guaranteed precision can be achieved by considering a set of waypoints,
for each sensor, that are at a distance above a certain threshold and that surround the sensor with
a certain layout. We perform extensive simulations to validate the performance of our algorithms.
Results show that both approaches provide a comparable localization precision, but Dir exhibits
a shorter path compared to Omni, being able to exploit the directional antennas.

Keywords: Drones, terrestrial localization, localization precision, directional antenna, IR-UWB,
omnidirectional antenna.

1. Introduction

More and more objects around us have sensors embedded with wireless communications: street
lights, parking and gas meters, just to mention a few [1]. To bound their cost, each of them cannot
be equipped with GPS units, but reliably and accurately determining their locations has important
benefits for several applications such as routing protocols, intrusion detection, mission assignment
and selective activation [2, 3].

Many existing localization algorithms for Wireless Sensor Network (WSN) in the literature
require a large number of fixed anchor points, i.e., sensors whose positions are known a-priori
[4]. The number of the anchor points and the cost of their deployment grow with the size of the
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deployment area. Moreover, the anchor points must be deployed in advance, making the use of
anchor sensors unsuitable for emergency situations, unless anchors are equipped with expensive
GPS units [5].

In order to decrease the setup costs of WSNs, we propose to replace fixed anchor sensors with
a single mobile anchor, such as an Unmanned Aerial Vehicle (UAV). Recently, UAVs, also known
as drones, have received increasing attention from research and industry community [6]. Drones
can be used for military and civilian applications. As an example in civilian applications, a drone
can be employed in rescue operations following disaster events, such as earthquakes, avalanches,
shipwrecks, or nuclear disasters. Sensors can be randomly deployed in the disaster area and a
drone can be used to be the contact point between the WSN and the external world.

However, localizing terrestrial sensors using a drone introduces novel and unique problems. As
an example, for a precise range-based localization, the drone cannot take measurements directly
above the sensor. In fact, in such setting a small imprecision on the line-of-sight (3D) distance
between the drone and the sensor would translate into a large error when such distance is projected
on the ground (2D distance).

In this paper we present two 2D range-based localization algorithms, called Dir and Omni,
that use a drone as a mobile anchor. These algorithms make different assumptions of the hardware
available at the drone to take distance measurements with the terrestrial sensors. Specifically, Dir
assumes that the drone is equipped with directional antennas, which can adjust their beamwidth
according to the precision required. Conversely, Omni assumes only a regular omnidirectional
antenna. Both the solutions adopt the Impulse-Radio Ultra-Wide-Band (IR-UWB) technology [7]
for the antennas. We assume that the drone is equipped with a GPS. During the localization
process, at predefined positions called waypoints, the drone evaluates the distances between its
current position and those sensors on the ground within its communication range using the IR-UWB
technology. Subsequently, the sensors locally calculate their own positions through trilateration by
using the measurements received from the drone. The waypoints are defined by a static path over
the deployment area. Dir and Omni guarantee the sensor localization precision required by the
final user of the sensor network.

The main contributions of this paper are the following:

• We formally provide an expression for the localization error given the minimum distance and
the geometrical locations of a sensor and its waypoints.

• We introduce a localization algorithm, called Dir, which assumes the drone is equipped with
directional antennas. Thanks to this assumption, we show that Dir obtains the required
localization precision using just a single trilateration.

• Since directional antennas may not be available or economically convenient for off-the-shelf
drones, we propose Omni that is able to guarantee the required localization precision using
an omnidirectional antenna, at the cost of an additional trilateration for each sensor and a
longer static path.

• We show that both Dir and Omni have the ability to control the localization error just setting
the minimum distance between a sensor and its waypoints. At the best of our knowledge, they
are the first algorithms in literature that can be tailored for ensuring the precision needed by
the final user of the WSN.
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• We also validate Dir and Omni through extensive simulations. Results show that our algo-
rithms scale well with respect to the network size, and are efficient in terms the length of
the path traversed by the drone. Our algorithms do not require any pre-processing phase or
expensive computation, such as solving instances of the Traveling Salesman Problem.

The rest of paper is organized as follows. Sec. 2 revises the current literature on localization
algorithms using mobile anchor nodes. Sec. 3 introduces the model and gives an expression for the
localization error as a function of the ground error and the geometry of the waypoints. In Sec. 4,
we present Dir, while in Sec. 5 we present Omni. The experimental results are discussed in Sec. 6,
while Sec. 7 concludes the paper.

2. Related Works

In recent years, with the advent of autonomous vehicles, the interest of researchers in rovers,
drones, and other autonomous vehicles has increased [8]. Depending on the technique used by
the mobile anchor to estimate the sensors’ positions, localization algorithms can be categorized in
range-free or range-based. In the former case, the position estimation is performed without using
any type of ranging measurements [9, 10]. In the latter, the estimations are instead inferred by
exploiting several properties of the communication signals, such as the Received Signal Strength
Indicator (RSSI), the Time of Arrival (ToA), the Time Difference of Arrival (TDoA), and the Angle
of Arrival (AoA) [11].

Given the additional degree of freedom of mobile anchors, compared to static anchors, it is
necessary to define a path in the deployment area which is followed by the anchor and used
for localizing the sensors. At the best of our knowledge, no previous algorithm in literature,
except LocalizerBee in [12], studies the path planning problem for localizing sensors using a
drone. So except for LocalizerBee, all the localization algorithms that we survey are for mobile
anchors, such as patrols, moving on the ground. In general, the requirements for path planning
are essentially three: (i) the path should be in range of as many sensors as possible, in order to
increase the number of sensors for which a precise localization is provided, (ii) it should provide at
least three non-collinear waypoints for each sensor in the 2D space, in order to use triangulation
effectively, and (iii) it should be as short as possible in order to reduce the energy consumption of
the anchor sensor.

Path planning schemes can be classified into two sub-categories, dynamic and static. In the
former category, the path trajectory is decided during the localization process. This is preferable,
for example, when sensors are expected not to be uniformly deployed over the area, and the path
can be adapted according to their actual distribution.

A dynamic localization technique is presented in [13] for obstacle-free environments. The ap-
proach progressively changes the status of the sensors in the network from unknown sensors to
reference sensors, that is, sensors that have been localized and can act as anchors for the unknown
sensors. The algorithm consists of three sub-phases: reference movement phase, sensor localization
phase, movement path decision phase. Based on the position of the more recently localized sensors,
the mobile anchor sensor decide its movement trajectory.

In [14], instead, a dynamic path which has the ability to face and detour obstacles, following a
snake-like pattern is presented. When the mobile anchor sensor faces the obstacle, it changes its
direction and stores all the information for future movements.
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(a) Scan (b) Hilbert (c) Lmat

Figure 1: Different movement trajectories

The static localization techniques are preferable when sensors are almost uniformly scattered
over the deployment area, and it is important to localize all of them. In the literature, for terres-
trial mobile anchors, several 2D static path planning schemes, such as Scan, and Hilbert [11],
have been studied. According to Scan (see Fig. 1(a)), the mobile anchor sensor follows a path
formed by vertical straight lines interconnected by horizontal lines. The main drawback of this
approach is that it provides a large amount of collinear anchor points. Collinearity can be reduced
by increasing the changes of directions in the trajectory, as for the path Hilbert illustrated in
Fig. 1(b). However, the changes of directions significantly increase the path length.

The authors of [15] develop Lmat (see Fig. 1(c)), one of the best state of art static schemes
addressing to the collinearity issue. The path generated by Lmat logically tessellates the deploy-
ment area by equilateral triangles so as each terrestrial sensor falls inside a triangle. The vertices
of the triangle where the sensor resides are used to trilaterate the sensor position, thus completely
solving the collinearity issue. However, this is realized through often occurring sixty degree turns,
which are more challenging for general purpose mobile vehicles than straight paths [8]. Overall,
Lmat decreases the path length, but increases the level of difficulty of the path.

All the approaches described above make use of terrestrial mobile anchors and we refer the
reader to [11] for an exhaustive survey. As the survey shows, the accuracy of such techniques is
in the orders of meters (often as a percentage of the communication range), while the algorithms
proposed in this paper are in the orders of few decimeters.

To the best of our knowledge, the first localization algorithm that uses a drone appears in [12],
but the goal there is to securely localize all sensors in a generic deployment area. Three path plan-
ning algorithms, LocalizerBee, VerifierBee, and PreciseVerifierBee are proposed that
allow a drone to respectively localize, verify, and verify with a guaranteed precision in a secure
manner. LocalizerBee uses a static path algorithm and it can be considered an improvement of
Lmat. The static path is built in two different phases: waypoint grid construction and waypoint
reordering. In the first step, the sensing area is logically tessellated by a set of waypoints forming
isosceles triangles, whose sides are resized with respect to the size of deployment area. In the sec-
ond step, a Traveling Salesman Problem (TSP) is solved in order to connect all the vertices of the
isosceles triangles. The resulting path, which is more similar to Scan than Lmat (see Fig. 2(a)),
is definitely shorter than that of Lmat. This result is achieve at the cost of a high computational
step (i.e., invoking TSP solver), which has to run off-line and using a different hardware platform.
The final static path of LocalizerBee, due to the smallest number of turns, it is also simpler to
execute for a drone than that of Lmat. Moreover, like Lmat, LocalizerBee does not ensure any
localization precision. Although the precision of the localization is studied in LocalizerBee, it is

4



(a) LocalizerBee (b) PreciseVerifierBee

Figure 2: Example of LocalizerBee and PreciseVerifierBee paths for drones

not possible to tailor LocalizerBee so as it guarantees the localization precision required by the
final user. The second path planning approach proposed in [12] is VerifierBee, which focuses on
finding a path of minimum length for verifiable multilateration. Differently from our problem, the
goal here is to securely verify the positions of the sensors, even under potential attacks aiming at
spoofing the sensors’ positions. As a result, VerifierBee requires the previous knowledge of the
positions to be verified. The algorithm starts selecting three waypoints that form an equilateral
triangle around each terrestrial sensor, and solves an instance of the TSP problem based on such
waypoints. Then, to improve the path length, two operations are allowed on the waypoints: prun-
ing and reordering. These are repeated until significant improvement is achieved on the length of
the path computed by applying the TSP solver on the new set of waypoints. Finally, the third path
planning approach in [12] called PreciseVerifierBee, follows the same paradigm of Verifier-
Bee, but it also guarantees a precise localization by carefully selecting the vertices around each
terrestrial sensor. Both PreciseVerifierBee and VerifierBee compute the drone’s trajectory
ad-hoc for each set of sensors (see Fig. 2(b)), by assuming a previous knowledge of the sensors’
positions, which was the main reason to design LocalizerBee. Therefore, PreciseVerifierBee
cannot be considered a precise localization technique.

To the best of our knowledge, Dir and Omni are the first two algorithms that use drone to
localize terrestrial sensors with guaranteed precision. A preliminary version of Dir algorithm
was presented in [16], while a preliminary version of Omni was originally presented in [17]. In the
current paper, we describe these two algorithms in a novel way under the same framework. Namely,
the logical tessellation for Omni discussed in Sec. 5 becomes relevant by itself because it shows
a way of emulating the directional antennas in Dir using omni-directional antennas. Moreover,
under the same framework, it is easier to make a comparative analysis of the performance trade-off
between these two algorithms. To be precise, Omni achieves a slightly better precision whereas
Dir incurs a lower computational cost.

3. Background

We consider a network of n sensors deployed in a rectangular area Q of size Qx×Qy. Without
loss of generality, we assume Qy ≤ Qx. From now on, sensor P is short form for the sensor that
resides at a point P in Q. Since, in principle any point P in Q is candidate to contain a sensor,
with a little abuse of notation, we denote P indistinctly as the point P or the sensor P . Moreover,
we use the notation PP ′ to denote the ground distance between two waypoints/sensors P and P ′.

The drone acts as a mobile anchor that flies at a fixed altitude h [18]. We assume that the drone
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measures its altitude with negligible error, for example, by using the Differential GPS technique
[19]. To range the sensors on the ground and to achieve a high precision, we adopt the two-
way ranging application of the Impulse-Radio Ultra-Wide-Band (IR-UWB) technology. In fact,
IR-UWB guarantees a very high measurement precision of the order of 10 cm [20, 7], but other
technologies could be used as well. As it will be clear in Sec. 3.4, our results still hold, but
they will be scaled up according to the instrumental precision. For example, WiFi guarantees an
instrumental precision of 7-10 m, and Bluetooth of 15 m [21, 22].

3.1. Static Path Definitions

To perform the localization mission, our algorithms need to calculate the static path that the
drone follows during the localization process. The two algorithms Dir and Omni derive two slightly
different static paths, called ΠD and ΠO, respectively. Both the paths are formed by vertical and
horizontal scans, like the simple trajectory Scan. The vertical scan are parallel to the short side
Qy of Q.

Iw

Qx

Qy

(0, 0)

H
E

ΠO

Fx

F

Fy

Figure 3: A generic static path (the segment EF is not sketched). The vertical scans are at reciprocal distance H.

The static paths can be described in terms of few parameters: the starting point F , the ending
point E, the frontiers Fx and Fy, and the inter-scan H. The drone’s mission starts outside the
deployment area at the point F = (−Fx,−Fy). Each vertical scan has length Qy + 2Fy. Any two
consecutive vertical scans are at distance H and they are connected by an horizontal segment.
The last vertical scan finishes at the point E = (xE , yE), where yE can be either −Fy or Qy + Fy
depending on the parity of the number of vertical scans. The last vertical scan path finishes at E,
and then the drone goes back to its starting point F following the direct line between E and F .
In this way, the starting and the finishing point coincide, as it is usually required for drone’s path.

3.2. Measurement Definitions

During the mission, the drone takes measurements at pre-established points of the path. The
projections of such points on the ground are called waypoints. The waypoints reside only on the
vertical scans. The inter-waypoint distance between two consecutive waypoints is denoted by Iw.
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We assume that the drone, using the IR-UWB antenna, measures its distance from the sensors
from the round-trip time of messages exchanged with them. To take a measurement, the drone
acts as follows. At each waypoint wi, the drone sends a beacon with a unique identifier which
depends on the coordinates (xwi , ywi) of the waypoint and the current timestamp. Each sensor on
the ground that can hear a beacon replies to the drone with an ack message that contains its ID,
the current timestamp, and the identifier of the beacon received. The antenna (for simplicity, we
say the drone) computes the distance between itself and the sensor using the round-trip time of the
beacon message and then sends a message with the computed distance to the sensor. Once a sensor
has collected three measurements, it can locally apply the trilateration algorithm tocalculate its
position P exploiting the distance measurements received by the drone. Hence, given three ground
measures, the estimated position of P is the point (xP , yP ) that minimizes the sum of the least
squares, that is:

min δ21 + δ22 + δ23

s.t.
√

(xwi − xP )2 + (ywi − yP )2 + δi = wiP , for i = 1, 2, 3.
(1)

3.3. Distance Definitions

The drone and the sensor have communication ranges, rdrone and rsensor, respectively. Since
a message can be exchanged between the drone and the sensor only if they can hear each other,
throughout this paper, the communication range will be r = min {rdrone, rsensor}.

The drone measures the (3D) slant distance s, which is defined as the line-of-sight between
itself and the measured sensor. Clearly, s ≤ r. By simple geometric argument, since we assume
negligible error in altitude, it is easy to see that any ground measured distance d satisfies:

d =
√
s2 − h2 ≤

√
r2 − h2 = dmax (2)

In the next subsection, we find the expression for the localization error as a function of the
ground distance, the slant precision, and the geometry of the waypoints.

3.4. Precision Definitions

Slant distances are affected by errors that depend on the adopted technology, i.e., IR-UWB in
our case [20]. From now on, the slant precision or instrumental precision εs denotes the maximum
error in the measurements. The trilateration algorithm works on the ground distances, thus the
ground error ed(P ) for a point P on the ground is [12, 23]:

ed(P ) = es ·
1

cos(α)
= es ·

√
1 +

h2

d2
(3)

where α is the angle of incidence of the slant distance to the ground, d is the actual distance on
the ground between the drone and the sensor to be localized, h is the current altitude, and es the
actual measured slant distance error (see Fig. 4).

From Eq. (3), the ground error increases when the ground distance decreases. Thus, in order to
achieve a high precision on the ground εd, or equivalently, to minimize the maximum ground error,
we force a constraint on the ground distance. Precisely:

Fact 1. The drone retains only the measured ground distances greater than or equal to dmin.
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Figure 4: Relationship between slant error and ground error

All our algorithms force any sensor P to be measured only by waypoints which are at distance
at least dmin from P . As we will see, our algorithms select the value of dmin which guarantees the
user-defined precision. Since from Eq. (3) the slant error is maximum when the distance on the
ground is minimum, fixed dmin, the maximum possible ground error is:

εd = max
P∈Q

ed(P ) = εs ·

√
1 +

h2

dmin
2

(4)

As a consequence, a peculiarity of all our algorithms is to leave a no-measurement area of width
dmin all around each sensor. Clearly, the ground precision is higher (or, equivalently, the error in
the ground measure is smaller) for larger values of dmin.

Moreover to minimize the localization error eL(P ) due to the trilateration, the three waypoints
from which a sensor is measured cannot be collinear neither among them nor collinear with the
sensor. In fact, if the waypoints are collinear among them, the trilateration algorithm cannot
distinguish between the real position P of the sensor and the mirror image P ′ of P (see Fig. 5(a)).

w1(P )

w3(P )

w2(P ) PP ′

(a) Among the ranging waypoints

w1(P )

w3(P )

w2(P )

β(P )
P

(b) With the sensor to be localized

Figure 5: Collinearity problems

With regard to the collinearity with the sensor (see Fig. 5(b)), as proved in [12, 23], the
localization error is expressed as:

eL(P ) =
εd

sin
(
β(P )
2

) (5)

where β(P ) is the minimum angle formed by the lines passing through each waypoint and the
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sensor P . Considering the worst case, from the construction in Fig. 6 studied in [12, 23], the
localization precision εL is expressed as:

εL = max
P∈Q

eL(P ) =
εd

sin
(
βmin
2

) (6)

where βmin = minP∈Q β(P ) is the minimum angle obtained during the localization. If the waypoints
are collinear with the sensor (see Fig. 5(b)), βmin tends to 0 and the localization error becomes
very large and thus the position very imprecise. Since the localization error decreases when βmin

increases, it holds:

w1

w3

w2

P

β

εd

εd β/2εL P ′

d3(−)
d2(−)

Figure 6: Star shape during trilateration

Fact 2. The best geometry in P occurs when the turn angle in P is divided by the lines passing
through the waypoints in six equal angles, and thus when βmin = π

3 .

By Fact 2, the minimum localization error is εL = εd
sin(π/3) = 2√

3
εd. Unfortunately, it is not

possible to achieve such a minimum error for all the points of the deployment area.
For both Dir and Omni algorithms, however, we find which is the minimum angle βmin =

minP∈Q β(P ) ensured by the geometry of the three selected waypoints. So, we know in advance
how far is βmin in Dir and Omni from the optimal value π

3 .
To summarize, the aim of our algorithms is to obtain an εL precise localization for each point P

in Q, where the localization maximum error εL is given by Eq. (6) as a function of the parameters
dmin and βmin. Formally, we define the precise localization as follows:

Definition 1. The sensor P is εL-precisely localized, where εL is given by Eq. (6), if the drone
chooses three ranging waypoints w1(P ), w2(P ) and w3(P ) for P such that they satisfy the following
constraints:

1. dmax: which controls the reachability for each point P in Q: wi(P )P ≤ dmax for i = 1, 2, 3;

2. dmin: which controls the ground precision εd for P in Q: wi(P )P ≥ dmin for i = 1, 2, 3;

3. βmin: which controls the collinearity of the drone with P : β(P ) ≥ βmin

4. non-linearity: which controls the collinearity among waypoints: w1(P ), w2(P ), and w3(P )
cannot belong to the same straight line.
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Table 1: Summary of Notation

symbol description unit

w waypoint – (xw, yw) drone’s position ( m, m)

P point (xP , yP ) ( m, m)

α angle of incidence rad/deg

h drone’s altitude m

d ground (2D) distance m

s slant (3D) distance m

r communication range m

εs global instrumental slant precision (IR-UWB: 0.10 m [20]) m

ed(P ) ground error for a point P m

εd highest ground precision (max ground error) m

eL(P ) localization error for a point P m

εL highest localization precision (max localization error) m

Tab. 1 summarizes our notations. From now on we will neglect the units of measurement. In
the next two sections, we presents our new algorithms Dir and Omni, and we theoretically evaluate
their precision.

4. The DIR Algorithm

In this section we describe the algorithm Dir, which assumes the drone to be equipped with
directional antennas. The section is structured as follows. In Sec. 4.1 we describe the hardware
assumptions for this algorithm. In Sec. 4.2 we detail the calculation of the static path, while in
Sec. 4.3 we formalize the localization process and formally evaluate its precision.

4.1. Model of Directional Antennas

The drone is equipped with six directional antennas. Each antenna is assumed to transmit
the beacon in a circular sector, centered at the antenna position, of radius r, beamwidth 2θ and
orientation ψ. Fig. 7 depicts a sector centered at waypoint w with direction ψ. In the following, a
sector will be uniquely identified by its center and its orientation because we assume that all the
sectors have the same radius and the same beamwidth.

w

ψ

θ

r

Figure 7: The sector parameters

In our solution the directional antennas cover six different sectors, as illustrated in Fig. 8. The
drone can send at the same time the beacons in all six orientations using an array of directional
antennas [24]. Note that the sensors on the ground are equipped with omnidirectional antennas.
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w

dw+
up−

hor−

dw−

hor+

θ

up+
θ

Figure 8: Possible antenna orientation

From now on, we express each orientation ψ as a pair: type (up, dw, hor) and polarity (+, −),
as reported in Tab. 2. Each sensor saves in its local register R the first beacon that it receives for
each orientation. The matching between the register positions and the orientations is also reported.

4.2. Static Path

The static path ΠD is depicted as a dashed line in Fig. 9, where the gray dots represent
the waypoints, while the black dots are the sensors inside Q. ΠD is uniquely determined posing
F = (−Fx,−Fy), where Fx = dmin/2 and Fy = 0, and E = (Ex, Ey), where Ex = Qx + Fx and Ey
can be either 0 or Qy depending on the parity of the number of vertical scans. It is important to
note that Dir does not exit from the bottom and top border of Q.

From each vertical scan σ, the points of Q that we can precisely measure using any type of
orientation are those at distance at least dmin/2 and at most (dmax − 2Iw)/2 from the scan σ. In
fact, although the antennas of type hor can precisely measure the points at distance from dmin up
to dmax from σ, the most stringent limits for the precise measurements come from the antennas of
type up and dw. Therefore, any two consecutive vertical scans are fixed at distance no greater than
at distance greater than (dmax−dmin−2Iw)/2. Having fixed the first and the last scan respectively
at −Fx and Qx + Fx, the length of H is fixed in order to evenly distribute Qx + 2Fx in stripes of
width as tight as possible to the maximum value. In this way, the whole area is covered without
wasting path length. Finally, observe that the left and right stripes of Q of width dmin/2 adjacent
to each vertical scan σ are not measured by σ to satisfy the dmin constraint. The left and right
stripes adjacent to σ are then measured by the scan that precedes σ and the scan that follows σ.

Table 2: Antenna orientation and register R

R[d] ψ type description polarity

0 0 hor horizontal +
1 (1/3)π up up +
2 (2/3)π dw down −
3 π hor horizontal −
4 (4/3)π up up −
5 (5/3)π dw down +

11



Iw

Qx

Qy

(0, 0)

Fx

H

F

E

ΠD

Fx

Figure 9: The static path ΠD of Dir (the segment EF is not sketched)

4.3. Localization Process

Algorithms 1 and 2 describe the drone’s and sensors’ behavior during the localization process.

Algorithm 1 Drone behavior in Dir

1: for all w ∈W do . W = Waypoints set
2: sendBeacon(idb, td), ∀d = 0 . . . 5 . idb = beacon ID, td = drone’s timestamp
3: P resp ← receiveAckFromSensors() . P resp = set of sensors that reply to the drone
4: for all id ∈ P resp do
5: grdist← computeGroundDistance(ids, td, ts) . ids = sensor ID, ts = sensor’s timestamp
6: if grdist ≥ dmin then
7: sendGroundDistance(ids, grdist)
8: end if
9: end for

10: end for

During the flight, for each waypoint, the drone sends the message beacon along the six different
orientations of beamwidth: up+, up−, dw+, dw−, hor+, and hor− (Line 2, Alg. 1). Specifically,
when a sensor receives the drone’s message from orientation ψ, for ψ = d · π/3 and d = 0, . . . , 5
(Line 3, Alg. 2), it first checks whether the d-th location of its register R (see Tab. 2) is empty or
not. In the first case, the sensor is receiving for the first time the beacon from the orientation d.
In the second case, since the sensor has already heard that beacon from orientation d, the message
is ignored. When the sensor receives one orientation for the first time, it replies to the drone with
an ack message (Line 6, Alg. 2). The drone infers the distance from the time of the round-trip
message (Line 3, Alg. 1), and sends to the sensor the measure (Line 7, Alg. 1). The sensor stores
the measure in the local register R (Line 7, Alg. 2). The trilateration is performed by the sensor
when it has received three measurements (Line 11, Alg. 2).

4.4. Formal Properties of the DIR algorithm

In the following we formally analyze the properties of the Dir algorithm. First, we prove that
it is possible to precisely measure any point in Q. Then, we study how to set the parameters to
achieve the a-priori required localization precision.
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Algorithm 2 Sensor behavior in Dir

1: ranged← 0
2: while ranged < 3 do
3: b← waitBeacon() . waits for the beacon
4: d← b.orientation
5: if R[d] = 0 then . checks the beacon orientation/polarity
6: dist← sendAck(ts) . receives the ground distance
7: R[d]← dist
8: ranged← ranged+ 1
9: end if

10: end while
11: P ← trilateration(R) . performs the trilateration procedure and estimates its position P

Theorem 1. Given a half beamwidth

θ = arctan

(
Iw/2

dmin

)
(7)

each point of Q can be measured by the three different orientations hor, up, and dw verifying the
dmin and dmax constraints.

Proof. Let first consider the antenna’s orientation hor+ with θ = arctan
(
Iw/2
dmin

)
. As observed from

Fig. 11(a), each sector with orientation hor+ is able to cover at least a rectangular of height Iw
from distance dmin up to distance dmax (see Fig. 11(a)) if θ satisfies Eq. (7). Since the first scan of
our path is at distance Fx = dmin/2 from Q, it is easy to prove that any point in Q can be covered
(thus, measured) satisfying the dmin and dmax constraints of Def. 1 using antenna’s orientation
hor+. The same holds for the orientation hor− because the last scan is outside Q, and precisely
Fx = dmin/2 beyond Q.

xσ +
dmin
2

xσ +
dmin
2 +H

σ σ′

H

Z

Figure 10: The stripe Z of Q parallel to scan S

For the other orientation of the antennas, consider a scan S and the antennas at its waypoints.
We aim to prove that the orientations dw and up are able to cover the stripe Z (see Fig. 10) of Q
parallel to σ that starts at distance dmin/2 and finishes at distance dmin/2 + H from σ, without
leaving any uncovered space.

Consider now the antenna’s orientation dw+. To prove that they cover Z, we will show that
the sector centered at the waypoint w1 (see Fig. 11(b)) intercepts the segment T1P1 of length
T1P1 ≥ Iw on the line parallel to σ and at distance dmin/2 from σ. The same sector intersects the
segment T2P2 of length T2P2 ≥ Iw on the line parallel to σ and at distance dmin/2 +H from σ.
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Let us start with T1P1. By applying simple trigonometric rules to the triangles w1Q1T1 and
w1P1T1, where Q1 = (dmin/2, yw1), we obtain

T1P1 = Q1T1 −Q1P1

where

Q1T1 =
dmin

2
cot
(π

6
− θ
)
,

Q1P1 =
dmin

2
tan

(π
3
− θ
)
.

After algebraic manipulations we find T1P1 > Iw when θ satisfies Eq. (7). Then comparing the two
similar triangles w1T1P1 and w1T2P2, we learn that T2P2 > T1P1 > Iw. Hence, repeating the same
reasoning for all the waypoints of σ, we conclude that the sectors with orientation dw+ centered
at the waypoints on the static path σ cover Z.

Not only all the sensors that fall in Z are covered, but also they can be measured from the
antennas with orientation dw+ satisfying the dmin and dmax constraints. Indeed, the slant distance
from w1 to any point P = (xP , yP ) that falls in Z when projected on the ground is equal to the
double of the distance xP −xσ from σ to P . Thus, since dmin ≤ 2(xP −xσ) ≤ dmax− 2Iw, the dmin

and dmax constraints are verified.

θ

xσ + dmin xσ + dmax

w1

w2

w3

Iw

xS

Iw

σ

(a) Horizontal pattern

θ

xσ +
dmin
2

T2

P2

w1
xσ +

dmin
2 +H

P1

T1

w2

xS

Q1Iw

σ

(b) Down pattern

Figure 11: The antenna beam

A similar reasoning can be repeated for the other remaining orientations.
The previous discussion has proved that the largest part of Q can be reached by all the six

different orientations. However, on the border of Q some orientations can be missing. We divide
the analysis in four different cases, as illustrated in Fig. 12(a).

Case 1. A sensor P = (xP , yP ) placed near the bottom-left corner of Q, with xP < dmin/2 and
yP <

√
3dmin/2, can be ranged only by the three waypoints, as depicted in Fig. 12(b), i.e., dw+,

hor− and up−. Since Fx = dmin/2, sensor P cannot not be ranged from a horizontal beam hor+

along the first scan because the dmin constraint is not satisfied. Hence the sensor has to wait until
the drone passes through w3 for collecting the hor type of orientation. A similar reasoning holds
for the other areas labeled 1 in Fig. 12(a).
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√
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√
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(a) Summary
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(b) Corner case

w1

w2
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w4

(c) Up-Bottom case

w1
w2

w3

w4

w5

(d) Left-right case

w1

w2

w5

w4

w3

w6

(e) General case

Figure 12: Ranging cases

Case 2. A sensor P = (xP , yP ) placed near the bottom border of the area (except corners), with
xP ≥ dmin/2 and yP <

√
3dmin/2, can be ranged by four waypoints, as shown in Fig. 12(c), i.e., dw+,

hor+/− and up−. For the drone it is impossible to reach P from up+ or dw+. Nevertheless, as can
be seem in Fig. 12(c), the sensor can be always reached by the three different types of orientations
and thus it can collect sufficient measurements for localizing itself. A similar reasoning can be
repeated for the other areas labeled 2 in Fig. 12(a).

Case 3. A sensor P placed in the area of Q labeled 3 near the left border of the area (except
corners), with dw+/−, hor− and up+/−, can be ranged up to five waypoints, as shown in Fig. 12(d).
The sensor will be localized as soon as it has collected three different types of orientations. Like
the first case, to have a measure at distance dmin in the hor type of orientation, the sensor has to
wait until the drone passes through w3.

Case 4. Finally, a sensor P placed in the middle of Q, in the zone labeled 4, could be ranged by six
waypoints, as shown in Fig. 12(e), i.e., dw+/−, hor+/− and up+/−. Since after measurements the
three different types of orientations have been collected, the trilateration procedure starts, after
three measurements in the best case, and, after five measurements, in the worst case.

From the analysis of the Cases 1, 2, 3 and 4 and from the previous discussion on stripe Z, the
correctness of Th. 1 follows.

It is worthy to note that, although in Th. 1 the beamwidth θ is given, it is a function of the
algorithm parameters that determine the localization precision. So, to ensure different levels of
precision, the algorithm requires the ability of adjusting the antenna beamwidth.
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As explained in Sec. 3, the localization error strongly depends on the position of the three
waypoints from which the point is ranged. From Eq. (6), the error in the position of the sensor is
minimum when for each sensor βmin = π/3.

θ

w1

w2

w3

PP ′

α
α′

(a) The polygon measured by up+, hor+, and dw+

w1

w3

w2
σ1 σ2

P

β α

w′3

w′1

w′2

up+

dw+

hor−

(b) Relation between βmin and θ

Figure 13: The measured angles.

In our localization technique, the minimum angle at P is π/3 if and only if the sensor P resides
at the intersection of the orientations of the three sectors centered at the waypoints w1(P ), w2(P )
and w3(P ) (see Fig. 13(a)). Although it is not possible to achieve for every point P that the
minimum angle is π/3, we can claim a strong relationship between βmin and θ.

Theorem 2. Given the half beamwidth θ according to Th. 1, the algorithm Dir provides

βmin ≥
π

3
− 2θ (8)

Proof. Consider a point P along with its three ranging waypoints w1, w2 and w3 which belongs to
two scans, say σ1 and σ2. Without loss of generality, let w1 be the center of the sector dw+, w2

the center of the sector up+ and w3 the center of hor− (see Fig. 13(b)).
Let w′i for i = 1, 2, 3 be at the intersection of the extensions of the line wiP and of the opposite

scan. The turn angle at P is divided in six angles by the lines wiP and their extensions. The
width of the angles at P depends on the angles formed by the lines wiP or their extensions w′iP
and the scans. Since the line wiP , for i = 1, 2, 3, belongs to the sector of wi, the angles formed at
the scans yield:

π

2
− θ ≤ α ≤ π

2
+ θ

if wi is the center of a sector of type hor, and

π

6
− θ ≤ β ≤ π

6
+ θ

if wi is the center of a sector of type up/dw. By simple geometric considerations, the minimum
angle at P is no smaller than:{

π − π

2
− π

6
− 2θ, 2

π

6
− 2θ

}
=
π

3
− 2θ

Hence, βmin ≥ π
3 − 2θ.
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Corollary 1. All the points in Q can be εL-precisely localized.

Proof. It follows directly from Def. 1, and by Thms. 1 and 2.

Finally observe that, increasing dmin, a higher precision εL is achieved. From Eq. (7), when
dmin increases, θ decreases. From Th. 2, βmin increases, and according to Eq. (6) the localization
error becomes smaller.

Fig. 14 depicts the heatmap of minimum angle referred to the example shown in Fig. 13(a).
The polygon represents the intersection of the three circular sectors, that is the points of Q that
are measured by w1, w2 and w3. For each point P , a “hot” color means a good minimum angle
at P while a “cold” color means a bad angle. The worst point is the leftmost point P ′ of polygon
whose βmin = α in Fig. 13(a). Note that the lines w3P

′ and w1P
′ form with the scan that contains

w1 and w3 angles of width π/6− θ, and thus α = 2π/6− 2θ. In the example, θ = arctan Iw/2
dmin

= 10

degrees and the heatmap registers angles greater than 60− 20 = 40 degrees, according to Th. 2.
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Figure 14: Minimum angle expressed (in degrees) in Dir

We are now in a position to rewrite Eq. (6) as a function that depends on h, dmin and Iw.
Inverting this expression we can ensure the precision required by the final user.

Theorem 3. The localization precision can be expressed as:

εL = εs ·

√
1 +

h2

dmin
2
·

2

√
1 +

(
Iw/2
dmin

)2
1−
√

3
(
Iw/2
dmin

) (9)

Proof. By Th. 2,
βmin
2 ≥ π

6−θ. The largest error occurs when the angle
βmin
2 assumes the minimum

value, i.e., π
6 − θ. Recalling that θ = arctan

(
Iw/2
dmin

)
, calculating sin

(
π
6 − θ

)
and substituting in

Eq. (6), it holds:

εL = εs ·

√
1 + h2

dmin
2

sin
(
π
6 − θ

) = εs ·

√
1 +

h2

dmin
2
·

2

√
1 +

(
Iw/2
dmin

)2
1−
√

3
(
Iw/2
dmin

)
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In the next section, we present the Omni algorithm which requires a more complex strategy
given that only omnidirectional antennas are available. In fact, to select a waypoint in a certain
direction, in Omni, we will invoke a trilateration procedure with the first three measurements
collected for each sensor in conjunction with a tessellation technique of the entire deployment
area. So the interest in Omni is twofold: Omni can be considered an independent algorithm for
localization, or a way to emulate the Dir algorithm with a minimum hardware requirement.

Finally, the fact that both the algorithms Omni and PreciseVerifierBee [12], which are both
based on omnidirectional antennas, require two trilaterations instead of a single one to achieve
precise localization stresses the fact that the directional and the omnidirectional antennas act
differently when the main objective is precision.

5. The OMNI algorithm

In this section we present Omni, which does not require specialized hardware such as directional
antennas. Conversely, Omni is based on a standard omnidirectional antenna, commonly available
for off-the-shelf drones [25].

The omnidirectional antenna send beacons with the drone’s position isotropically. Since the
sensors cannot distinguish from which direction they receive the beacon, it is difficult to select
the waypoints that guarantee the desired geometry. For this reason, Omni adopts a two phase
approach. In the first phase, the sensors obtain a rough estimation of their position. In the second
phase they use this estimation to pick among all the available waypoints the best ones, called precise
waypoints, that equally divide the turn angle around the sensor itself to perform a trilateration
and obtain a precise localization.

The rest of the section is structured as follows. In Sec. 5.1 we introduce the static path calculated
for Omni, and in Sec. 5.2 we describe the localization process.

5.1. Static Path

The static path ΠO is depicted as a dashed line in Fig. 3. According to the description given in

Sec. 3.1, the drone’s mission starts at F = (−Fx,−Fy), where Fx =
dmin
2 +H, Fy = (dmax − Iw)

√
3
2 .

The inter-scan distance is set to H = (dmax − dmin − 2Iw)12 . The path ΠO starts with two vertical
scans outside Q that are used to measure the sensors in the leftmost stripe of Q close to the vertical
border, while the last vertical scan is at distance no larger than

⌊
dmax−2Iw

2

⌋
from the rightmost

border. Accordingly, ΠO finishes at E = (Ex, Ey), where Ex ≤ Qx +
⌊
dmax−2Iw

2

⌋
and yE can be

either −Fy or Qy + Fy depending on the parity of the number of vertical scans.

5.2. Localization Process

The behavior of the drone under Omni is the same as during algorithm Dir (see Algorithm 1).
However, the behavior of the sensors is quite different, and it is summarized in Algorithm 3.

According to Omni, until the first trilateration, the sensor stores all the measurements that
it receives which are above the dmin ground distance. As soon as the sensor has collected three
distance measurements which belong to two different scans and are greater than the minimum
ground distance, the sensor performs the first trilateration (Line 10, Alg. 3) to compute a rough
estimation of its position P̂ = (xP̂ , yP̂ ). Note that the measurements used for the first trilateration
already partially satisfy the requirements in Def. 1. However, we still do not have any guaranteed
bound on the position error because the width of βmin is not known.
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Then, from P̂ , the sensor locates the closest vertical scan σ on its left. Then, conceptually, the
sensor derives the six rays that equally divide the turn angle around its current position. The inter-
sections of such rays with the scan σ on the left of P̂ are then the most desirable positions as regard
to the waypoint geometry (i.e., the βmin constraint) from where taking the final measurements.
However, such points may not coincide with waypoints because the drone takes measurements at
regular distance and may also not satisfy the dmin constraint (see Fig. 15). So, to find the three pre-
cise waypoints obeying all the constraints, the sensor locally computes the three precise waypoints
w1(P̂ ), w2(P̂ ), w3(P̂ ) on the scans on its left according to Eq. (11) and Eq. (12) (Line 11, Alg. 3).
Selected w1(P̂ ), w2(P̂ ), w3(P̂ ), the sensor continues to hear to the drone until it has collected all
the three precise waypoints and discards the measurements which are useless. Finally, the sensor
computes the second precise trilateration using the precise waypoints (Line 14, Alg. 3), and the
localization process is finished.

w2

w1

H

σσ − 1

dmin
2

P̂

w3

σ − 2 σ + 1

(a) xσ ≤ xP̂ ≤ xσ + 1
2dmin

w2

w1

H

σσ − 1

dmin
2

P̂

w3

σ + 1

(b) xσ + 1
2dmin < xP̂ ≤ xσ+1

Figure 15: Rays that divide the turn angle in P̂ and the associated precise waypoints.

In the following we detail as the precise waypoints w1(P̂ ), w2(P̂ ), w3(P̂ ) are defined. Let us
denote the ordinates of the intersection of the rays that equally divide the turn angle in P̂ and the
vertical scan σ as:

ȳ1(σ) =

⌊
yP̂ −

√
3(xP̂ − xσ)

2Iw

⌋
2Iw

ȳ3(σ) =

⌈
yP̂ +

√
3(xP̂ − xσ)

2Iw

⌉
2Iw

ȳ2(σ) =
ȳ1(σ) + ȳ3(σ)

2

(10)

Note that the floor operation is to approximate the ordinates of the intersections so as they fall at
waypoints1.

1The use of 2Iw instead of Iw in Eq. (10) is to force also the middle ordinate ȳ2(σ) to fall at a waypoint.
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Finally, depending on the distance between P̂ and the leftmost scan, the precise waypoints are
so defined (see Fig. 15):
If the sensor P̂ is very close to the closest vertical scan on its left σ, i.e., if xσ ≤ xP̂ ≤ xσ + 1

2dmin,
the sensor must select the ranging waypoints on the vertical scans σ − 1 and σ − 2.
The three precise waypoints are then:

w1(P̂ ) = (xσ−1, ȳ1(σ − 1))

w2(P̂ ) = (xσ−2, ȳ2(σ − 2))

w3(P̂ ) = (xσ−1, ȳ3(σ − 1))

(11)

If xσ + 1
2dmin < xP̂ ≤ xσ+1, the sensor can select the ranging waypoints directly on σ and σ − 1.

In this case, the three precise waypoints are:

w1(P̂ ) = (xσ, ȳ1(σ))

w2(P̂ ) = (xσ−1, ȳ2(σ − 1))

w3(P̂ ) = (xσ, ȳ3(σ))

(12)

In Sec. 5.3, we will prove that the precise waypoints satisfy Def. 1.

Algorithm 3 Sensor behavior in Omni

1: ranged← 0
2: D[. . .]← ∅ . D: the set of measurements for the sensor
3: while P = ∅ do
4: b← waitBeacon()
5: W ← b.waypoint
6: dist← sendAck(ts)
7: D[W.id]← dist
8: ranged← ranged+ 1
9: if ranged = 3 then

10: P̂ ← trilateration(D) . rough estimation of P
11: w1(P̂ ), w2(P̂ ), w3(P̂ )← computeOptimalTriple(()P̂ ) . using Eq. (11) or Eq. (12)
12: end if
13: if w1(P̂ ), w2(P̂ ), w3(P̂ ) are in D then
14: P ← trilateration(w1(P̂ ), w2(P̂ ), w3(P̂ )) . second estimation of P
15: end if
16: end while

5.3. Formal Properties of the OMNI algorithm

Similarly to the Dir algorithm, in this section we prove that Omni is able to correctly localize
any point in Q and that the algorithm is able to provide an a-priori required localization precision.
Let the vertical scans in ΠO be numbered from 0 to ν. The construction of the tessellation that
is used to prove the correctness of Omni algorithm is illustrated in Fig. 16. Consider in ΠO two
consecutive vertical scans σi−1 and σi, with 1 ≤ i ≤ ν. Let xσi = xF +(i−1)H be the x-coordinate
of the vertical scan σi of ΠO. Given i, let M i

R be the stripe of Q whose x-coordinates belong to

the interval
[
xσi +

dmin
2 , xσi + dmax−2Iw

2

]
, as illustrated in Fig. 16.

Now we will concentrate on proving that the localization of the points in M i
R is correct. During

the proof we will work on a set of discrete points of the plane: the selection of the precise waypoints
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√
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up(V ′,
√
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2
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DV
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Figure 16: The tessellation and, in gray, the stripe M i
R

is done for such discrete sensors of M i
R and then extended to the remaining points. For this aim,

we introduce a tessellation of M i
R so defined.

Consider the even waypoints, that is the waypoints at distance 2Iw on the vertical scans. From
every even waypoint w = (xw, yw) on σi, we draw the two lines that pass through w with slope
m1 =

√
3 and m2 = −

√
3 denoted, respectively, as up(w,m1) and dw(w,m2). Such lines design a

lattice on M i
R, made of diamond shapes, denoted as 3. The intersection point of the lines up and

dw in M i
R gives the vertex V . V is a special point in M i

R because the intersections VS and VN of the
two lines up and dw with the vertical scan σi are two of the three precise waypoints for V . The third
precise waypoint of V , denoted by V ′′, is the projection of V on σi−1. Each vertex V = (xV , yV )
of the lattice is associated with the diamond 3(V ) on its left. The vertices of 3(V ) are: CV = V,
DV = (xV − 1√

3
Iw, yV − Iw), AV = (xV − 2√

3
Iw, yV ), and BV = (xV − 1√

3
Iw, yV + Iw). All the

diamonds have the same size: AV CV = 2√
3
Iw and BVDV = 2Iw.Note that since BVDV = 2Iw, the

projection V ′′ of V coincide with a waypoint.
The main reason we introduced the tessellation is that the waypoints w1 = VS , w2 = V ′′,

and w3 = VN used for localize V are also used for any point P of the diamond 3(V ) which V
is associated to, as illustrated in Fig. 17. For notation easiness, we simply denote the waypoints
w1(V ), w2(V ), and w3(V ) as w1, w2, and w3 in the following discussion.

Theorem 4. Given a vertex V of the logical tessellation of M i
R, each point P ∈ 3(V ) can be

measured by verifying the dmin and dmax constraints.

Proof. The sensors P ∈ 3(V ) are ranged by the three waypoints w1(P ) = VS = w1, w2(P ) =
V ′′ = w2, and w3(P ) = VN = w3. To prove the dmin and dmax constraints for each internal sensor
P ∈ 3(V ), first we consider the trivial case P = V , then we consider each sensor P ∈ 3(V ).
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w2

w1

σσ − 1

w3

2Iw

P
V

Figure 17: A point P inside the diamond 3(V ) and its ranging waypoints.

Without loss of generality, we take into account only the analysis of w1, since is symmetric to w3.

Case P = V . Considering the vertex V , by geometric arguments it holds that VSV = VNV =
2V ′V = 2(xV − xσi), where V ′ is the projection of V on σi. Thus, recalling that V belongs to the

stripe M i
R on the right of σi, that is,

dmin
2 ≤ xV − xσi ≤ dmax−2Iw

2 , it follows that:

dmin ≤ w1V ≤ dmax − 2Iw

and

dmin < H +
dmin

2
< w2V ≤ H +

dmax − 2Iw
2

< dmax.

Thus, the dmin and dmax constraints are satisfied for w1 and w2, and w3 for V .

Case P ∈ 3(V ). Let us first consider each point P in the lower half-diamond called ∇(V ) =
AV CVDV . Let P ′ be the projection of P on σi and let ]P ′VSP be the angle at VS between the
ray VSP and the vertical scan σi. Since VSP ′ ≤ VSV ′ because P belongs to the triangle AVDV CV
and ]P ′VSP ≤ ]V ′VSV , it holds that:

w1P =
w1P ′

cos(]P ′w1P )
≤ w1V ′

cos (]P ′w1P )
≤ w1V ′

cos (]V ′w1V )
= w1V ≤ dmax − 2Iw

Moreover, for each point P in the upper half-diamond ∆(V ) = AVBV CV , consider the point
P ′′ ∈ ∇(V ) symmetric to P with respect to the line AV CV . By the triangle inequality, given that
V belongs to M i

R and P ′′P ≤ BVDV , we have:

w1P ≤ w1P ′′ + P ′′P ≤ w1P ′′ + 2Iw ≤ w1V + 2Iw ≤ dmax

Thus, the dmin and dmax constraints are satisfied for w1 and w3 for P ∈ 3(V ).
With regard to w2, let Z be the projection of P ∈ 3(V ) on the diamond diagonal AV CV .

Moreover, since H >
dmin
2 , it easily follows that:

w2P ≤ w2Z + ZP ≤ w2V + Iw < H +
dmax − 2Iw

2
< dmax
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and

w2P ≥ w2Z ≥ H +
dmin

2
> dmin.

Thus, the dmin and dmax constraints are satisfied for w2 for P ∈ 3(V ).

As explained in Sec. 3, the localization error strongly depends on the position of the three
precise waypoints w1 and w2, and w3 from which the point P is ranged.

Theorem 5. Given the vertex V , Omni provides a value for βmin such that

βmin ' 2 arctan

(
dmin
2√

3
dmin
2 + 2Iw

)
(13)

Proof. For the vertex V , as said, the tessellation divides the turn angle 2π in V in six equal angles.
Namely, the intersections of the rays that start from V by construction coincide with waypoints
and satisfy:

tanβ(V ) =
xV − xσ
yw3 − yV

=
√

3.

Thus, βmin(V ) = π
3 . For each other point P ∈ ∆(V ), the turn angle is asymmetrically divided.

The largest error occurs in the proximity of AV . Namely the points in the proximity of AV ,

w2

w1

σσ − 1

w3

2Iw

CV = V

DV

BV

AV
γ

w′3

w′1

Figure 18: The worst case for βmin

and in particular AV , would be almost equally divided if they were measured starting from the
two adjacent waypoints w′3(V ) and w′1(V ), at distance 2Iw, from w3(V ) and w1(V ) (see Fig. 18).
However, since they are measured by w3(V ) and w1(V ) because they are in 3(V ), their turn
angle is unsymmetrically divided. The angle asymmetry in the points in the proximity of AV
when measured by w3(V ), w2(V ), and w1(V ) is bounded by the asymmetry occurring at AV when
measured by w3(V ), w2(V ), and w1(V ). The distance of the selected waypoint with respect to the
optimal waypoint for AV is 2Iw. The impact of such an 2Iw difference on the selected waypoints
leads to a localization error which is greater when the diamond is close to the vertical scan because
yw1 − yAV

or yw3 − yAV
is smaller if AV is close to the vertical scan. Hence the smallest angle
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β(AV ) in AV when the turn angle in AV is divided with the rays that connect AV with w3(V ),
w2(V ) and w1(V ) has width no smaller than β(AV ) ≥ π − 2(π2 − γ) = 2γ, where

arctan(γ) ≈
dmin
2√

3
dmin
2 + 2Iw

.

In conclusion, for each P ∈ M i
R, βmin occurs in the proximity of the vertices AV with minimum

x-coordinate in M i
R. Therefore,

βmin

2
' arctan

(
dmin
2√

3
dmin
2 + 2Iw

)
(14)

Fig. 19(a) illustrates the width of the angle β(P ) when P moves in a diamond shape of M i
R

and gives evidence that β(AV ) = minP∈�(V ) β(P ). Fig. 19(b) shows the fact that increasing the

distance of AV from σi, β(AV ) increases. As claimed, the diamond at distance
dmin
2 to the vertical

scan is the one that gives the worst bound for βmin.
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Figure 19: Minimum angle analysis in Omni

Using the result in Theorems 4 and 5, we have all the informations required to apply Def. 1 in
each diamond in M i

R and thus in all the stripe M i
R, as shown by the following Corollary.

Corollary 2. Each point of Q can be correctly measured according to Def. 1.

Proof. Since Th. 4 has proved that from σi−1 and σi the sensors in M i
R are correctly measured,

considering all the pairs of consecutive scans (σ0, σ1), (σ1, σ2), . . . , (σν−1, σν) we cover ∪νi=1M
i
R =

Q. Since Th. 5 has proved the βmin constraint for each diamond in M i
R, we can conclude that all

the sensors in Q can be correctly measured from the vertical scans σ0, . . . , σν .

Now, from Eq. (6) in Def. 1, we are ready to state the following result:
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Theorem 6. The localization precision in Omni can be expressed as:

εL = εs ·

√
1 +

h2

dmin
2
·

√
1 + tan2

(
βmin
2

)
tan

(
βmin
2

) (15)

Proof. By Th. 5,
βmin
2 = arctan

(
dmin

2√
3
dmin

2
+2Iw

)
. The largest error occurs when the angle

βmin
2

assumes the minimum value, so substituting in Eq. (6), it holds:

εL = εs ·

√
1 + h2

dmin
2

sin
(
βmin
2

) = εs ·

√
1 +

h2

dmin
2
·

√
1 + tan2

(
βmin
2

)
tan

(
βmin
2

)
In the next section, we simulate the Dir and Omni algorithms and we compare their perfor-

mance.

6. Experimental Evaluation

We have implemented the new Dir and Omni localization algorithms in MATLAB program-
ming language. In the following we compare their performance under a variety of different condi-
tions. Due to the lack of results in literature on algorithms that ensure the final user localization
adopting a drone, we only compare Dir and Omni.

6.1. The Parameters to Derive the User-required Localization Precision

To achieve the user-required localization precision εL, given h and r, we can invert Eq. (9)
to find pairs of values dmin, Iw that guarantee εL. Tab. 3(a) and Tab. 3(b) give the dmin values,
respectively, for Dir and Omni, for different input values of εL fixed Iw = {2, 5, 10}, h = {15, 30}
and r = 150.

Table 3: The dmin values when r = 150

(a) for Dir

εL
h Iw 0.3 0.6 0.9

15
2 16.75 7.35 5.33
5 22.43 10.62 8.31
10 33.25 16.41 13.43

30
2 30.06 12.61 8.72
5 35.28 15.77 11.64
10 44.86 21.25 16.62

(b) for Omni

εL
h Iw 0.3 0.6 0.9

15
2 19.29 8.22 5.83
5 27.96 11.39 8.16
10 43.42 15.90 11.22

30
2 32.82 13.86 9.63
5 41.44 17.61 12.55
10 55.93 22.78 16.32

As one can see, given the same parameters, the no-measurement area, given by the dmin con-
straint, is comparable for Omni and Dir. Only when Iw increases and the final user requires a
higher precision, Omni pays a stronger dmin constraint than Dir. In fact, if Iw increases, the size
of the diamond increases and Omni becomes inherently more imprecise than Dir. Thus, a stronger
dmin constraint is required to balance the imprecision due to Iw.
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6.2. Experimental Settings

In our simulations, we deploy at random n sensors, with n = 50, 100, 250 and 500, on a 500×
500 m2 map which corresponds to an average density of one sensor in every square of side 25 m.
In addition, we set the communication radius r = 150 m and the altitude h = 15 m. For each value
of n, we generate 35 different random deployments of sensors and averaged the results.

Given a user-required localization precision εL and selected Iw, we find the value dmin that
ensures the selected precision for Dir and Omni by inverting, respectively, Eq. (9) and Eq. (15).

Once all the parameters, dmin, dmax, h, Iw have been calculated, the localization process of both
Dir and Omni algorithms is defined. We simulate the measurement in Dir and Omni as follows.
Since the drone is simulated, we only know the exact ground distance between the waypoint and
the sensor. We can calculate using the altitude the exact slant distance. Thus, to simulate the
slant measure we proceed as follows: fixed the slant precision εs = 0.1, as claimed by DecaWave IR-
UWB [20], we compute the slant distance s measured by the drone by adding a random generated
slant error serr ∈ [−εs, εs] to the exact slant distance sensor-drone. Then we compute the ground
measure d as:

√
s2 − h2. Note that d at this point includes the ground error.

Finally, we define the error bound εL as follows. For each random deployment Mi of sensors,
with i = 1, . . . , 35, we compute the worst experimental localization precision, that is, εL(Mi) =
maxP∈Q{εL(P )}, where the experimental position precision εL(P ) for the point P is the absolute
value of the difference between the exact position of P and the estimated position computed
applying Eq. (1). Then, we define εL as the average of the worst experimental localization precision
over all the 35 random deployments, that is, εL =

∑35
i=1 εL(Mi)/35.

Table 4: Summary of Notation for Experiments

symbol description unit

εL localization precision given in input as parameter m

εL(P ) experimental position precision for a point P m

εL(Mi) worst experimental localization precision for deployment Mi m

εL error bound: average value of the worst bound over all 35 missions m

with the same parameters

6.3. Experimental Results

The goal of the experiments described in this section is to compare the user-defined preci-
sion εL with the experimental precision, denoted as the error bound εL. Specifically, we want to
experimentally verify that our bound holds, and thus εL < εL.

Given the localization precision εL, we select dmin for Dir by applying Eq. (9) and compare
it with the results from the experiments. Fig. 20 plots the error bound εL of the Dir algorithm
for εL = 0.3 and εL = 0.6. In Fig. 20, the value dmin has been computed by inverting Eq. (9).
Fig. 20(a) shows that the smallest error bound increases with Iw, except when dmin is very small:
in that case, the ground error becomes large and dominates on the error due to the geometry. So,
the minimum error for εL = 0.3 is achieved for Iw = 5. Fig. 20(b) shows that the error bound
increases with h.

It is worthy to note that the error bound in Fig. 20 is always smaller than the user-defined
localization precision. Not only the average value over all the missions εL is smaller than εL,
but also the maximum error in each mission is below the user-defined localization precision, i.e.,
εL(M) ≤ εL.
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Figure 20: The error bound εL in Algorithm Dir
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Figure 21: The error bound εL in Algorithm Omni
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Figure 22: Comparing the error bound εL for Omni and Dir when εL = 0.3
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Fig. 21 plots the error bound εL of the Omni algorithm. As expected, the error bound is always
smaller than the user-defined localization precision. Omni, as Dir, is more precise when Iw = 5
than when Iw = 2. This is because the dmin values for Iw = 2 are below 20 meters for both
algorithms, and so the ground error that affects the measurements is bigger in both cases when
Iw = 2 than when Iw = 5.
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Figure 23: The error bound εL for Omni when the first estimation −P̂ err ≤ P̂ ≤ P̂ err

The a-priori localization precision εL is well ensured by both the proposed algorithms. Fig. 22
provides a comparison between the precision of Omni and Dir. The Omni algorithm is slightly
more precise than Dir because Omni uses values of dmin larger than Dir, and the βmin angle is
larger in Omni than Dir (see Fig. 19(a) and Fig. 14). Moreover, Omni uses two trilaterations.
However, one can note that the precision of Omni algorithm strongly depends on the quality of
the first position estimation. If the first estimation of the position is so poor that it computes a
wrong diamond, the second estimation can only be poor. To validate this second motivation, in
Fig. 23, we report the error bound εL when the error of the first trilateration is accentuated (by
injecting an error ad-hoc) up to P̂ err. Clearly, the blows-up effect is larger when n is large because
the probability of injecting a very high error increases with n. When P̂ err = 3Iw, it is most likely
that the first estimation returns a wrong diamond. In this case, the localization error εL blows up
significantly.

Nonetheless recall that the error in P̂ is not arbitrary large because at least the ground error
is bounded due to the fact that the dmin constraint is verified.

Finally, in Fig. 24, we compare the length of the static path ΠO and ΠD of the Omni and Dir
algorithms at different levels of precision, having fixed Iw = 10. Fixed the same level of precision,
Dir and Omni have more or less the same number of vertical scans, but each vertical scan in Omni
goes well beyond the deployment area. Precisely, in Omni, each vertical scan has length 2Fy +Qy,
where Fy = (dmax − Iw)

√
3/2, whereas Fy = 0 for Dir. Fig. 24 shows that the static path of Dir

is better than that of Omni. The increase on the path length of the static path of Omni is the
price paid for not using specialized hardware. Note that the path length in Omni is not monotonic
decreasing because we use a fixed inter-scan value without resizing it as we do in Dir.

For each level of precision, the lost in the path length of Omni versus Dir is above 30%. Both
algorithms require a longer path if the localization error εL is smaller. When the communication
radius increases, the threshold dmin has a smaller impact on the length path for both algorithms
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because the number of vertical scans decreases.

r
120 130 140 150 160 170

p
at

h
(m

)

#104

0.6

0.8

1

1.2

1.4

1.6

1.8

2
h = 30; Iw = 10

OMNI 0L = 0:3

DIR 0L = 0:3

OMNI 0L = 0:6

DIR 0L = 0:6

Figure 24: Path length in Omni and Dir algorithms

7. Conclusion and Future Work

In this paper, we presented two localization algorithms that replace multiple fixed anchors
sensors with a flying drone. The peculiarity of our algorithms is their ability to guarantee any
localization precision required by the final user of the wireless sensor network with directional and
omnidirectional antennas. This result is achieved by choosing only measurements above a certain
threshold dmin, and forcing the ranging waypoints to observe a specific geometry.

Omni and Dir can be applied in any 2D environment, such as a vertical surfaces, regular slopes,
etc., by taking into account the different orientation of the horizontal plane in Eq. (3). However, if
the orientation is not regular, or even not known a-priori, substantial modifications to the proposed
algorithms are needed. We will address these issues as future extensions of this paper.

References

[1] V. K. Shah, S. Bhattacharjee, S. Silvestri, S. K. Das, Designing sustainable smart connected communities using
dynamic spectrum access via band selection, in: ACM BuildSys, Delft, the Netherlands, 2017.

[2] N. Bartolini, T. Calamoneri, T. La Porta, C. Petrioli, S. Silvestri, Sensor activation and radius adaptation (sara)
in heterogeneous sensor networks, ACM Transactions on Sensor Networks (TOSN) 8 (3) (2012) 24.

[3] F. Barsi, A. A. Bertossi, F. B. Sorbelli, R. Ciotti, S. Olariu, M. C. Pinotti, Asynchronous corona training
protocols in wireless sensor and actor networks, IEEE Transactions on Parallel and Distributed Systems 20 (8)
(2009) 1216–1230.

[4] G. Han, H. Xu, T. Q. Duong, J. Jiang, T. Hara, Localization algorithms of wireless sensor networks: A survey,
Telecommun. Syst. 52 (4) (2013) 2419–2436.

[5] N. Bartolini, S. Ciavarella, S. Silvestri, T. La Porta, On the vulnerabilities of voronoi-based approaches to mobile
sensor deployment, IEEE Transactions on Mobile Computing 15 (12) (2016) 3114–3128.

[6] L. Gupta, R. Jain, G. Vaszkun, Survey of important issues in uav communication networks, IEEE Communica-
tions Surveys Tutorials 18 (2) (2016) 1123–1152.

[7] M. Flury, R. Merz, J. L. Boudec, Synchronization for impulse-radio UWB with energy-detection and multi-user
interference: Algorithms and application to IEEE 802.15.4a, IEEE Trans. Signal Processing 59 (11) (2011)
5458–5472.

29



[8] K. Goss, R. Musmeci, S. Silvestri, Realistic models for characterizing the performance of unmanned aerial
vehicles, in: Computer Communication and Networks (ICCCN), 2017 26th International Conference on, IEEE,
2017, pp. 1–9.

[9] T. He, C. Huang, B. M. Blum, J. A. Stankovic, T. Abdelzaher, Range-free localization schemes for large
scale sensor networks, in: Proceedings of the 9th Annual International Conference on Mobile Computing and
Networking, MobiCom ’03, ACM, New York, NY, USA, 2003, pp. 81–95.

[10] C. H. Ou, K. F. Ssu, Sensor position determination with flying anchors in three-dimensional wireless sensor
networks, IEEE Transactions on Mobile Computing 7 (9) (2008) 1084–1097.

[11] S. Halder, A. Ghosal, A survey on mobile anchor assisted localization techniques in wireless sensor networks,
Wireless Networks 22 (7) (2016) 2317–2336.

[12] P. Perazzo, F. B. Sorbelli, M. Conti, G. Dini, C. M. Pinotti, Drone path planning for secure positioning and
secure position verification, IEEE Transactions on Mobile Computing 16 (9) (2017) 2478–2493.

[13] K. Kim, W. Lee, Mbal: A mobile beacon-assisted localization scheme for wireless sensor networks, in: 2007 16th
International Conference on Computer Communications and Networks, 2007, pp. 57–62.

[14] S. M. Mazinani, F. Farnia, Localization in wireless sensor network using a mobile anchor in obstacle environment,
International Journal of Computer and Communication Engineering 2 (4) (2013) 438.

[15] J. Jiang, G. Han, H. Xu, L. Shu, M. Guizani, LMAT: Localization with a mobile anchor node based on
trilateration in wireless sensor networks, in: 2011 IEEE Global Telecommunications Conference - GLOBECOM
2011, 2011, pp. 1–6.

[16] F. B. Sorbelli, S. K. Das, C. M. Pinotti, S. Silvestri, Precise localization in sparse sensor networks using a drone
with directional antennas, in: Proceedings of the 19th International Conference on Distributed Computing and
Networking, ICDCN ’18, ACM, New York, NY, USA, 2018, pp. 34:1–34:10.

[17] C. M. Pinotti, F. Betti Sorbelli, P. Perazzo, G. Dini, Localization with guaranteed bound on the position
error using a drone, in: Proceedings of the 14th ACM International Symposium on Mobility Management and
Wireless Access, MobiWac ’16, ACM, New York, NY, USA, 2016, pp. 147–154.

[18] Enac, UAV regulations in Italy, https://goo.gl/vgktKd (2018 (accessed April 10, 2018)).
[19] G. Heredia, F. Caballero, I. Maza, L. Merino, A. Viguria, A. Ollero, Multi-unmanned aerial vehicle (uav)

cooperative fault detection employing differential global positioning (dgps), inertial and vision sensors, Sensors
9 (9) (2009) 7566–7579.

[20] DecaWave, DecaWave Ltd: ScenSor SWM1000 Module, http://www.decawave.com/products/dwm1000-module
(2018 (accessed April 10, 2018)).

[21] J.-S. Lee, Y.-W. Su, C.-C. Shen, A comparative study of wireless protocols: Bluetooth, uwb, zigbee, and wi-fi,
in: Industrial Electronics Society, 2007. IECON 2007. 33rd Annual Conference of the IEEE, Ieee, 2007, pp.
46–51.

[22] A. Alarifi, A. S. Al-Salman, M. Alsaleh, A. Alnafessah, S. Alhadhrami, M. A. Al-Ammar, H. S. Al-Khalifa,
Ultra wideband indoor positioning technologies: Analysis and recent advances, Sensors 16 (5) (2016) 707.

[23] F. B. Sorbelli, S. K. Das, C. M. Pinotti, S. Silvestri, On the accuracy of localizing terrestrial objects using
drones, in: IEEE International Conference on Communications, ICC 2018, 2018, accepted for publication.

[24] H. T. Hu, F. C. Chen, Q. X. Chu, A compact directional slot antenna and its application in MIMO array, IEEE
Transactions on Antennas and Propagation 64 (12) (2016) 5513–5517.

[25] 3D Robotics, Solo Specs: Just the facts, https://news.3dr.com/solo-specs-just-the-facts (2018 (accessed
April 10, 2018)).

30

https://goo.gl/vgktKd
http://www.decawave.com/products/dwm1000-module
https://news.3dr.com/solo-specs-just-the-facts

	Introduction
	Related Works
	Background
	Static Path Definitions
	Measurement Definitions
	Distance Definitions
	Precision Definitions

	The DIR Algorithm
	Model of Directional Antennas
	Static Path
	Localization Process
	Formal Properties of the DIR algorithm

	The OMNI algorithm
	Static Path
	Localization Process
	Formal Properties of the OMNI algorithm

	Experimental Evaluation
	The Parameters to Derive the User-required Localization Precision
	Experimental Settings
	Experimental Results

	Conclusion and Future Work

