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ABSTRACT
This paper presents a framework for life-cycle loss estimation for non-structural
damage in tall buildings under wind and seismic loads. Life-cycle cost analysis is a
useful design tool for decision makers, aimed at predicting monetary losses over the
lifetime of a structure, accounting for uncertainties involved in the problem defini-
tion. For tall buildings, sensitive to dynamic excitations like earthquake and wind,
it can be particularly suitable to base design decisions not only on initial cost and
performance but also on future repair expenses. The proposed approach harmonizes
the procedures for intervention costs evaluation of structures subjected to multiple-
hazards, taking into account the peculiar differences of wind and earthquake, in
terms of load characterization, type and evolution of damage. Relative effect of the
two hazards on damage to drift- and acceleration-sensitive non-structural elements
are examined. The influence of uncertainty in structural damping is also taken into
account. It is shown that, although it is commonly believed that the design of a
given structure is usually dominated by either winds or earthquakes, when LCC-
based design is performed, both winds and earthquakes may be important.

KEYWORDS
Life-cycle cost analysis; Tall buildings; Non-structural damage; Multi-hazard
analysis; Hazard curves; Fragility analysis.

1. Introduction

The approach to structural design suggested by Codes’ provisions is based on the def-
inition of a deterministic model of the structure and is aimed at verifying that the
building is capable of withstanding specific levels of excitations, considered as accept-
able worst-cases scenarios. Nowadays, the deterministic design approach has started to
be replaced by the fully-probabilistic assessment of the structural performance (Lavan
& Avishur, 2013; Spence & Kareem, 2014; Venanzi, 2015). In this context, life-cycle
cost analysis (LCCA) is becoming a valid tool as it allows accounting for the effects
of uncertainties involved in the design, materials’ deterioration, damage of structural
and non-structural elements, maintenance and repair interventions during the entire
lifetime of the building (Lagaros, 2007; C. Mitropoulou, Lagaros, & Papadrakakis,
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2015; C. C. Mitropoulou, Lagaros, & Papadrakakis, 2011; Okasha & Frangopol, 2011).
LCCA is well established in earthquake engineering and many contributions have

been given in the last decade for developing different loss estimation models (Aslani
& Miranda, 2005). The loss assessment method is always based on the PEER equa-
tion solution which allows the computation of the probability of exceeding a threshold
cost (Ramirez et al., 2012; Ramirez & Miranda, 2012). Many applications of LCCA
are devoted to comparing different retrofitting solutions and planning maintenance
schemes in existing bridges (Padgett, Dennemann, & Ghosh, 2010; Wang, Zhai, Li,
Ni, & Guo, 2015). LCCA is often used in conjunction with optimization methods,
with the aim of minimizing the expected life-cycle cost (Barone & Frangopol, 2014;
Frangopol & Maute, 2003; Kaveh, Kalateh-Ahani, & Fahimi-Farzam, 2014; Liu, Wen,
& Burns, 2004; Puthanpurayil, Lavan, & Dhakal, 2015, 2017).

In wind engineering further efforts still must be made to improve methods and
models, although some recent works presented relevant contributions drawing from
seismic engineering field (Ierimonti, Caracoglia, Venanzi, & Materazzi, 2017). In Cui
and Caracoglia (2015); Seo and Caracoglia (2013), a numerical framework is developed
for estimating the life-cycle monetary losses due to wind-induced damage on long-span
bridges and tall buildings, respectively. Damage loss estimation for buildings subjected
to hurricanes and strong winds were treated by some authors (Bjarnadottir, Li, & Stew-
art, 2014; Chung, Lin, & Vanmarcke, 2011). The software Hazus-MH, implemented by
the Federal Emergency Management Agency (FEMA), estimates potential losses due
to hurricanes in the U.S. territory (Vickery et al., 2006). A risk design optimization
method for optimizing life-cycle costs and functionality of tall buildings is proposed
in G. Li and Hu (2014).

Life-cycle cost analysis proved to be a valid tool also for the performance assess-
ment of structural control systems for vibration mitigation. In Matta (2015) a method
for evaluating, in a life-cycle cost perspective, the seismic effectiveness of tuned mass
dampers on inelastic building structures is presented. In Taflanidis and Beck (2009), a
systematic probabilistic framework is presented for optimization of the life-cycle cost
of engineering systems equipped with passive dissipative devices.

In recent years, life-cycle loss estimation methodologies have also been proposed for
structures subjected to multiple-hazards. In Asprone, Jalayer, Prota, and Manfredi
(2010), a probabilistic model for multi-hazard risk estimation for a reinforced concrete
structure subjected to blast threats in the presence of seismic risk is developed. In
Jalayer, Asprone, Prota, and Manfredi (2011) a methodology is presented for LCCA
of critical infrastructures accounting for uncertainty in the occurrence of future events
due to different types of hazard and for deterioration of the structure after a series of
events. Y. Li and Van de Lindt (2012) propose a loss-based approach for design of light-
frame wood buildings in areas prone to more than one natural hazard. Multi-hazard
risk due to earthquakes and hurricanes is considered in Kameshwar and Padgett (2014)
for the LCCA of a portfolio of highway bridges. In Mahmoud and Cheng (2017), the
life-cycle cost of two different steel buildings under wind and earthquake is examined.

Although some papers have been published on LCCA of structures subjected to mul-
tiple hazards, to the Authors’ knowledge a gap can be found in literature on LCCA
of tall buildings subjected to wind and earthquake. This is probably due to the com-
monly accepted idea that tall buildings are mainly prone to wind induced damage and
do not experience significant losses due to seismic load.

Conversely, the idea at the base of the paper is that also earthquake can contribute
to damage to non structural components and therefore, when estimating non structural
life cycle losses, it is advantageous to use a LCCA procedure that can account for both
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wind and seismic load in a unified manner. Moreover, damage to non-structural com-
ponents is one of the most important sources of expenses for tall buildings and there-
fore its estimation deserves particular attention (Miranda, Mosqueda, Retamales, &
Pekcan, 2012). Especially high-rise buildings, due to their high slenderness and related
high natural period, are mainly prone to serviceability problems and non-structural
damage (Priestley, Calvi, & Kowalsky, 2007; Pu, Kasai, & Kashima, 2012).

For these reasons, the main goal of this paper is to present a framework for LCCA
of non structural damage in tall buildings subjected to wind and seismic loads. The
proposed multi-hazard life-cycle cost assessment methodology accounts for repair costs
due to damage of acceleration-sensitive and drift-sensitive non structural components
and provides the expected life-cycle cost for multiple-hazards. Also uncertainty in the
definition of structural parameters and parameters characterizing the aerodynamic
loads can be taken into account.

Numerical analyses, carried out on a benchmark 76-story building subjected to an
ensemble of seismic accelerograms and to wind forces measured in the wind tunnel, al-
low the estimation of the relative influence of the two hazards on the expected lifetime
costs. Several parametric analyses showed the effect of structural damping random-
ness on loss estimation. In addition, the effect of the height of the building on LCC,
and in particular on the relative contribution of winds and earthquake to the LCC is
examined.

The outline of the paper is as follows. Section 2 presents the proposed framework
for multi-hazard life-cycle cost analysis of tall buildings under wind and earthquake.
Sections 3 and 4 describe the damage analysis and the hazard analyses for wind and
earthquake. Section 5 presents the particular case study examined, while the results of
the numerical simulations are presented in Section 6. Parametric analysis to evaluate
the influence of uncertainty in structural damping definition are presented in Section
7. Another parametric analysis to show how the building’s height influences the rel-
ative importance of wind- and earthquake-induced losses is carried out in Section 8.
Finally, some concluding remarks are given in Section 9.

2. Multi-Hazard Life-Cycle cost analysis

The framework for multi-hazard LCCA of tall buildings proposed in this study, is
based on the following assumptions: 1) the structure is restored to its original condition
after each occurrence of damage; 2) multiple hazards, like wind and seismic loads, never
occur simultaneously and never act on the damaged structure; 3) maintenance costs are
neglected as they do not vary significantly between different structural configurations.
Therefore, as they do not give an important contribution to the choice of the best
design solution, they are so far neglected in the analyses.

Under these hypotheses, the expected life-cycle cost of a non-structural element over
a time period t, which is the design life or the remaining life of a retrofitted structure,
can be expressed as follows (Wen, 2001; Wen & Kang, 2001b):

E(C) = C0 + E[

N∑
l=1

k∑
j=1

Cje
−λtlP lj ] (1)

where E[.] denotes expected value; C0 is the initial cost; Cj is the cost of jth damage
state being reached; l is the loading occurrence number; tl is the loading occurrence
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time; N is the total number of loading occurrences in t; λ is the constant discount rate
per year; P lj is the probability of exceeding jth damage state given the l-th occurrence
of hazard; k is the total number of damage states under consideration.

It is worth noticing that with respect to the original formulation by Wen that
considers the probability of limit state crossing, in Equation (1) the probability of
exceeding a certain damage state is considered. The use of probability of exceeding
a damage state (a level of damage) instead of a limit state (a response threshold)
allows accounting for the randomness of damage occurrence given a specific value of
structural response.

If the probability of exceeding damage states is time-independent, the expected
total cost can be evaluated in closed form as (Wen & Kang, 2001b):

E(C) = C0 +
1− e−λt

λ

k∑
j=1

(CjυPj) (2)

where υ is the mean rate of occurrence of the hazard, modeled by a Poisson process,
Pj is the probability of exceeding the jth damage state given the occurrence of hazard.

If n hazards types are considered (e.g. wind and earthquake), Equation (2) becomes:

E(C) = C0 +
1− e−λt

λ

k∑
j=1

n∑
i=1

(CijυiP
i
j ) (3)

where υi is the mean rate of occurrence of the hazard i, P ij is the probability of ex-
ceeding the jth damage state given the occurrence of hazard i. The total expected
cost of the structure in its lifetime is the summation of the expected costs of all the
non-structural elements in the structure.

By normalizing the restoration expenses with respect to the initial cost of the struc-
ture and limiting the analysis to the occurrence of wind (w) and earthquake (e) haz-
ards, Equation (3) becomes:

E(
C − C0

C0
) =

1− e−λt

λ
[

kw∑
j=1

(cwj υwP
w
j ) +

ke∑
j=1

(cejυeP
e
j )] (4)

where cwj = Cwj /C0 and cej = Cej /C0 are the ratio of the intervention costs for the jth
damage state relative to the initial construction cost for wind and earthquake, kw and
ke are the number of damage states to be considered for the analysis under wind and
seismic load, respectively.

The cost analysis, consisting in the solution of Equation (4), requires the compu-
tation of the probabilities of exceeding damage thresholds. With this aim, after a
preliminary modeling of wind and earthquake hazards, structural analysis and dam-
age analysis have to be performed. A schematic outline of the multi-hazard life-cycle
cost analysis procedure is shown in Figure 1. Structural analysis and damage analysis
are discussed in Section 3 while hazard analysis for earthquake and wind is discussed
in Section 4.

4



Figure 1. Overview of the proposed multi-hazard life-cycle cost analysis procedure.

3. Structural and damage analysis

For each hazard, damage analysis consists in the computation of the probabilities of
exceeding damage thresholds by solving the well known PEER equation (Ciampoli,
Petrini, & Augusti, 2011; PEER, 2010):

P ij =

∫ ∫ ∫ ∫
P (DSj |EDP )f(EDP |IMi, SP, IPi)

f(IPi|IMi, SP )f(IMi)f(SP )d(EDP )d(IPi)d(IMi)d(SP ) (5)

where DSj is the jth damage state; EDP is the vector collecting the engineering de-
mand parameters (i.e. structural response components) provoking the damage; IMi is
the intensity measure of the ith hazard; SP is the vector of the parameters charac-
terizing the structural system; IPi is the vector of the interaction parameters (aero-
dynamic and aeroelastic parameters in wind engineering problems); P (DSj |EDP ) is
the fragility curve (i.e. the complementary cumulative distribution function of DSj
conditioned to the occurrence of EDP); f(EDP |IMi, SP, IPi) is the PDF of EDP
conditional on IMi, SP and IPi; f(IPi|IMi, SP ) is the PDF of IPi conditional on
IMi and SP , f(IMi) and f(SP ) are the PDFs of IMi and SP , respectively.

Interaction parameters have been introduced in the formulation of the PEER equa-
tion for Performance-Based Wind Engineering (PBWE) (Ciampoli et al., 2011; Spence
& Kareem, 2014). In PBWE the load modeling requires the definition of the aerody-
namic and aeroelastic coefficients which depend on structural shape, structural dy-
namic characteristics and load intensity. If the interaction parameters are supposed to
be deterministic, Equation (5) can be simplified as follows:

P ij =

∫ ∫ ∫
P (DSj |EDP )f(EDP |IMi, SP )

f(IMi)f(SP )d(EDP )d(IMi)d(SP ) (6)

Equation (6) can be adopted both in wind engineering problems, if the interaction
parameters can be considered deterministic, and in earthquake engineering problems
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in which interaction parameters do not exist.
The structural analysis leads to the evaluation of the term f(EDP |IMi, SP ). In

general, a nonlinear analysis is required. Nonetheless, in some cases a linear analy-
sis can be justified, depending on the building, the excitation characteristics and its
intensity.

4. Hazard modeling

4.1. Seismic load

In order to characterize seismic load, it is necessary to have available Seismic Hazard
Curve (SHC) which is computed by Probabilistic Seismic Hazard Analysis (PSHA)
(Cornell, 1968; McGuire, 1995) and accounts for uncertainties on type of source, dis-
tance and ground motion intensity. SHC represents the annual frequency of exceeding
a certain intensity measure υe(IM), that is related to the annual probability of ex-
ceeding at least one event He(IM) by the following relationship, provided that the
earthquake occurrences are modeled as a Poisson process with a mean occurrence rate
of υe per year (Gencturk, Hossain, & Lahourpour, 2016):

He = 1− e−υe (7)

The intensity measure IM can be the peak ground acceleration or the spectral ac-
celeration at a selected period. In order to account for randomness of seismic load, it is
also necessary to dispose of a set of base accelerograms which are then scaled to match
the relevant IM according to the SHC in order to compute probability distributions
of response components. Accelerograms can be records of natural earthquakes or can
be spectrum-compatible numerically generated. Exploiting Equation (6), the annual
probability of exceeding damage state j due to earthquake is:

P eaj =

∫ ∫ ∫
P (DSj |EDP )

dP (EDP |IM, SP )

dEDP

dHe(IM)

dIM
f(SP )d(EDP )d(IM)d(SP ) (8)

and the t-year probability of exceeding damage state j is:

P etj = 1− (1− P eaj)t (9)

Since the earthquake occurrences are modeled as a Poisson process with a mean
occurrence rate of νe per year, the exceedance probability over a period t is given by
Wen and Kang (2001a):

P etj = 1− e−υePjt (10)

where Pj is the probability of exceeding a damage state j given the occurrence of a
seismic event and t is the service life of the structure. Based on Equations (8) to (10)
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and considering the sole seismic hazard, Equation (3) becomes:

E(
C − C0

C0
) =

1− e−λt

λt

k∑
j=1

[−cej ln(1− P etj)] (11)

When the same non-structural element can experience different levels of damage
(e.g. slight, moderate or severe), to make sure that the cost associated to the smaller
damage is not considered more than once, the actual probability of being at a single
level of damage should be computed as follows (Padgett et al., 2010):

E(
C − C0

C0
) =

1− e−λt

λt

k∑
j=1

−cej [ln(1− P etj)− ln(1− P etj+1)] (12)

4.2. Wind load

In order to characterize wind load, it is necessary to have available a wind hazard
curve for the site and a set of wind load time histories. Wind action on buildings is
affected by uncertainties in parameters characterizing the wind field (mean wind veloc-
ity, turbulence intensity, dominant wind direction), and parameters characterizing the
aerodynamic and aeroelastic properties of the structure (aerodynamic and aeroelastic
coefficients). The former are referred to as intensity measure parameters (IM) and the
latter as interaction parameters (IP). Therefore, the computation of the probability of
exceeding a damage state should account for both the parameters groups as specified
in Ciampoli et al. (2011).

In this paper, for the sake of simplicity, the wind mean reference velocity Vref is
considered as the only random parameter characterizing the loading intensity and the
interaction parameters are considered as deterministic.

The reference wind velocity is the largest annual mean wind speed at 10 meters
high in open terrain and in non-hurricane-prone regions it can be well modeled by a
Type I extreme value distribution (Gumbel distribution) (Gomes & Vickery, 1977).

In order to have an unique framework for the multi-hazard LCCA, a Wind Hazard
Curve (WHC) conceptually similar to the one computed by PSHA is evaluated. WHC
for a specific site is obtained by estimation of extreme wind speeds based on in-site
recorded wind speed data or can be taken from literature.

Assuming that in the case of wind load characterization, IM is the extreme annual
value of the reference mean wind speed, and adopting for Vref the Gumbel probability
distribution, WHC is computed as follows:

Hw(Vref ) = 1− exp[−exp(
Vref − µ

β
)] (13)

where µ and β are related to the mean value and the standard deviation of the distri-
bution.

Following the approach reported in Section 4.2 and using Equations (8) to (10), the
expected normalized life-cycle cost is computed by:

E(
C − C0

C0
) =

1− e−λt

λt

k∑
j=1

−cwj [ln(1− Pwtj )− ln(1− Pwtj+1)] (14)
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Figure 2. Plan and elevation views of the 76-story building (after Yang et al. (2004)).

5. The case study

5.1. Description of the structure

The structure chosen as case study is the 76-story building, 306 meters high, pro-
posed as benchmark problem for response control under wind load by Yang, Agrawal,
Samali, and Wu (2004). Figure 2 shows the plan and elevation views of the structure.
The building has a square cross section with chamfer at two corners, constant along
the height. It is a reinforced concrete building consisting of a concrete core, designed
to resist lateral loads and concrete frames mainly devoted to support gravity loads.

A simplified model of the building is considered, consisting of an Euler-Bernoulli
cantilever beam with 76 degrees of freedom, one for each floor. Therefore, only the
planar response of the structure is considered. In accordance to the information pro-
vided by the benchmark, damping ratio for all modes is 1% and the first two natural
periods are 6.25 s and 1.30 s.

5.2. Characterization of seismic load

To characterize seismic load, 20 accelerograms relative to the Los Angeles area, with a
10% probability of exceedance in 50 years, are selected from the PEER NISEE (2017).
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Table 1. Parameters of seismic hazard curves

Location υeasy Sa,asy α

Otira 16.54 1.49 29.75
Wellington 321.22 4.04 58.63

Christchurch 37.44 0.33 29.07
Aukland 1368.88 0.68 63.21

These acceleration time histories are then scaled to match the relevant IM according to
the hazard curves. Seismic hazard curves are computed according to Bradley, Dhakal,
Cubrinovski, Mander, and MacRae (2007) who proposed a hyperbolic model in the
double logarithmic plane:

ln(υe)− ln(υeasy) =
α

ln(Sa)− ln(Sa,asy)
(15)

where υeasy and Sa,asy are the horizontal and vertical asymptotes, α is a constant and
ε is a random variable representing uncertainty.

In the present work a set of hazard curves for the main centers in New Zeeland are
adopted (Bradley et al., 2007). Without loss of generality it was chosen to use hazard
curves relative to New Zeeland and accelerograms relative to Los Angeles. This was
due mainly to the unavailability of information relative to the same area.

Nonetheless, as the selected accelerograms are different in terms of spectral charac-
teristics, they are considered covering a wide range of in site conditions. Curves are
expressed in terms of spectral acceleration for a building whose first natural period is
T ∗

1 = 1.5 s. As the fundamental period of the tall building is T1 = 6.25 s, the spectral
acceleration of the selected hazard curve is then scaled by a factor χ = 7.84. The
coefficient χ is defined as:

χ =
E[Sa(T

∗
1 )]

E[Sa(T1)]
(16)

where E[.] denotes mean value and is computed considering the set of available ac-
celerograms.

In order to obtain Sa from each accelerogram, the structure has been considered as
an equivalent 1 DOF system having T1 = 6.25 s and a mass equal to the first modal
mass of the building. The analytical hyperbolic relationships describing the hazard
curves are obtained by computing the parameters that appear is Equation (15). The
coefficients, computed by non-linear regression in the range [10−5 < υ < 10−1], are
reported in Table 1. Seismic hazard curves adopted in the simulations are shown in
Figure 3.

5.3. Characterization of wind load

Wind loads on the benchmark building were obtained by tests performed in the bound-
ary layer wind tunnel facility at the Department of Civil Engineering at University
of Sidney, Australia (Samali, Kwok, Wood, & Yang, 2004). The rigid model of the
building had a length scale of 1:400. Wind pressures were recorded for 27 s, corre-
sponding to about 1 h in prototype scale. Pressure coefficients were integrated and

9



Figure 3. Seismic hazard curves adopted in the simulations.

converted into across-wind forces at each story. The mean wind velocity at the top of
the building was 47.25 m/s corresponding to 13.5 m/s reference wind velocity at 10
m above ground, by considering a power law exponent of 0.365. As the benchmark
provides only acrosswind forces, a planar analysis in the direction orthogonal to the
mean wind speed direction was carried out.

With the aim of having different realizations of the wind load stochastic process,
the 76 time histories of the across-wind forces are divided into 20 time histories each
one having a duration of 10 minutes, allowing superposition between adjacent time
windows. For the purpose of the life-cycle analysis, the wind hazard curve is computed
by Equation (13). The mean values of annual maxima of wind velocity are taken by
wind load Code of New Zeeland (AZ-NZS, 2011) for the considered locations and for
a return period of 1 year. The 3–seconds gust reference wind speeds provided by the
Code are transformed into 10–minutes gust values, leading to the mean reference ve-
locities reported in Table 2. In absence of information on standard deviation of the
reference wind velocity, a coefficient of variation of 0.2 was assumed for all the sites.
Figure 4 shows the wind hazard curve adopted in the simulations.

6. Numerical analyses

6.1. Structural analysis

As stated in Section 3, the structural analysis can be linear or nonlinear, depending
on the characteristics of the building and the excitation. The assumption of linear
behavior is commonly accepted for wind-excited tall buildings, that usually remain
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Table 2. Parameters of wind hazard curves

Location V 3s−gust
ref V 10min−gust

ref CoV

(m/s) (m/s)

Otira 30 20.1 0.2
Wellington 34 22.8 0.2

Christchurch 30 20.1 0.2
Auckland 30 20.1 0.2

Figure 4. Wind hazard curves adopted in the simulations.

11



elastic under wind loading.
Experience shows that many tall buildings may remain linear also under seismic ex-

citations (Pu et al., 2012) but there are cases in which nonlinear analysis is advisable
(Hart & Jain, 2014; Zhou & Xu, 2007). Therefore, it is not possible to make a general
hypothesis and the linearity has to be checked case by case. The main advantage of
the adoption of linear analysis is that it is not necessary to compute f(EDP |IMi, SP )
for each IM but it is sufficient to properly scale the EDPs, with a consequent benefit
in terms of computational effort.

For the selected case study, the linear analysis is adopted. To check the assumption
of linear behavior, preliminary structural analyses under the selected seismic accelero-
grams are carried out. In particular, maximum bending moments at the base of the
internal core are used to verify that the related curvatures are smaller than the one
corresponding to elastic limit.

Results obtained considering full stiffness and cracked stiffness reduced by 50%, as
usually done in order to account for the presence of cracks (Breccolotti, Materazzi,
& Venanzi, 2008), show that the central core does not experience yielding. Then, the
contribution of the various lateral load resisting systems (central core and frames) to
the lateral stiffness of the building is assessed. This is done in two ways. First, the
deformed shape of the building under a uniform lateral static load is obtained. This
deformed shape is found to be similar to that of a wall structure. Furthermore, based
on Yang et al. (2004) reasonable sizes of the elements are assumed and the parameter
controlling the behaviour of wall-frame structures, αH, was estimated to be around
0.5 (Stafford Smith & Coull, 1991). This implies that the frame has a very small effect
on the behaviour of the structure. Thus, assuming a linear behaviour of this frame is
not expected to lead to large errors in the prediction of the behaviour of the structure,
even under strong events.
Based on the above analyses, it can be stated that for the specific example structure,
the estimation of the response using linear analysis is expected to lead to reason-
able predictions, even for strong ground motions. Even if a strong earthquake occurs,
leading to damage to outer frames, the probability of occurrence of such a strong
earthquake is small. The contribution of such rare events to the life-cycle cost is not
expected to be large. Therefore, a small error in the prediction of the behavior of
the structure under these rare events, due to the use of linear analysis, is expected
to lead to second order inaccuracies that may be negligible. To compute the struc-
tural response, the linear dynamic analysis is carried out adopting the Newmark-beta
method.

As the proposed procedure is devoted to the evaluation of life-cycle costs of damage
to non-structural components, the interstory drift ratio (IDR) and the peak acceler-
ation (a) are chosen as engineering demand parameters (EDP s). In this first phase
of the study the structural parameters (SP s) and the interaction parameters (IP s)
are considered as deterministic. Analyses are carried out adopting a damping ratio
of 1% of the critical for each mode. The subsequent step for the application of the
procedure is the computation of the probability density functions of EDP s, according
to Equation (8). With this aim, the structural response is calculated by using the 20
accelerograms and the 20 wind load time histories in order to derive the mean values
and standard deviations of the peak response under earthquake (EDP

e
) and wind

(EDP
w

). In the case of seismic load, the 20 accelerograms are preliminary scaled to
have the same reference value of peak spectral acceleration at the first natural pe-
riod of the building Sa(T1), which is the mean value (among the 20 accelerograms) of
Sa(T1). In the case of wind load, the 20 time histories are preliminary scaled to have
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the same reference value of mean wind velocity V ref , which is different from the one
used in the wind tunnel tests.

As the building response is linear, the peak EDP e and EDPw are computed in
correspondence of each intensity level (Sa(T1) and Vref ) by scaling the mean EDP s
as follows:

EDP e|Sa(T1) = EDP
e Sa(T1)

Sa(T1)
(17)

EDPw|V = EDP
w

(
Vref

V ref

)2 (18)

Then, the mean values and the standard deviations of EDP e and EDPw for each
hazard intensity, are used to evaluate the probability density functions, assuming for
the EDP s a lognormal distribution.
In principle, the linear scaling of the response cannot be done for wind excited struc-
tures, also in case of elastic structural behavior. This is due to the fact that the
cross-correlation between the different time histories of the multivariate process rep-
resenting the wind field depends in a non-linear manner from the mean wind velocity,
then as the mean wind intensity increases, the cross-correlation does not remain the
same (Di Paola, 1998).

Nevertheless, when wind tunnel records are adopted to characterize the wind load on
prismatic tall buildings, it is commonly adopted the hypothesis that the wind field, i.
e. the pressure distribution induced by wind on the building’s surface does not change
with the change of the reference wind velocity.

Equations (18) cannot be used in the case of adoption of nonlinear analysis and the
probability distributions of EDP e and EDPw must be carried out in correspondence
of each value of the intensity measures Sa(T1) and Vref .

6.2. Damage and cost analyses

A crucial issue for the application of the procedure is the choice of fragility informa-
tion for wind and earthquake, i.e. the characterization of the probability of exceeding
a damage state conditioned to the occurrence of a specific value of an engineering de-
mand parameter, P (DSj |EDP ). As wind and earthquake are different in terms of load
duration and power spectral density, it seems reasonable that fragility data for non-
structural components do not coincide for the two hazards. Nonetheless, to Authors’
knowledge, fragility curves for non-structural components of tall buildings subjected
to wind loads are still not available.

To overcome this problem, many authors have avoided damage analysis and have
limited the analysis to the computation of the probability of exceeding threshold limit
states (Ciampoli et al., 2011; Cui & Caracoglia, 2015; Spence & Kareem, 2014). Some
other Authors refer to fragility curves taken by seismic engineering or adopt fragility
curves in terms of intensity measures of the two different hazards taken by literature
(Kameshwar & Padgett, 2014; Y. Li & Van de Lindt, 2012).

In the present work, the same fragility data in terms of engineering demand param-
eters are chosen for wind and earthquake. They are taken from the report by Aslani
and Miranda (2005), that provides statistical parameters for lognormal fragility func-
tions of generic non-structural drift-sensitive and acceleration-sensitive components.

In particular, the mean values of interstory drift and acceleration (IDRm and am)
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Table 3. Statistical parameters for fragility functions of non-structural drift-sensitive components Aslani and

Miranda (2005).

Damage level IDRm σIDR
(%)

DS1-IDR: slight 0.4 0.5
DS2-IDR: moderate 0.8 0.5
DS3-IDR: extensive 2.5 0.5
DS4-IDR: complete 5.0 0.5

Table 4. Statistical parameters for fragility functions of non-structural acceleration-sensitive components

(Aslani & Miranda, 2005).

Damage level am σa
(g)

DS1-a: slight 0.25 0.6
DS2-a: moderate 0.5 0.6
DS3-a: extensive 1.0 0.6
DS4-a: complete 2.0 0.6

and the corresponding standard deviations (σIDR and σa) used to evaluate the fragility
curves are reported in Tables 3 and 4. Figure 5 illustrates the fragility functions for
drift-sensitive and acceleration-sensitive components and for different levels of damage
severity. Cost ratios, that appear in Equations (12) and (14), are the mean values of
the distributions reported in Aslani and Miranda (2005) and are shown in Table 5.

6.3. Results

Numerical analyses adopting the proposed multi-hazard life-cycle loss assessment pro-
cedure are carried out for the four centers of Otira, Wellington, Christchurch and
Auckland, in New Zeeland. Regarding the seismic load, each one of the sites is char-
acterized by a different hazard curve as discussed in Section 5.2.

Figure 5. Fragility functions for drift-sensitive components (a) and acceleration-sensitive components (b),
for different levels of damage severity.
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Table 5. Cost ratios for damage to drift-sensitive and acceleration-sensitive components (Aslani & Miranda,

2005).

Damage level cIDR ca

DS1: slight 0.025 0.02
DS2: moderate 0.1 0.12
DS3: extensive 0.6 0.36
DS4: complete 1.2 1.2

Figure 6. Annual probability of exceeding different levels of drift-dependent damage (a) and acceleration

dependent damage (b) at the 76th floor under seismic load for the Auckland site.

Concerning the wind load, three of the sites, Otira, Christchurch and Auckland are
characterized by the same wind hazard curve while the city of Wellington is charac-
terized by a higher risk (Section 5.3). For each location, analyses are carried out to
evaluate general damages to drift-sensitive components (DS-IDR) and general dam-
ages to acceleration sensitive components (DS-a). Moreover, for each damage state,
four different damage severities are taken into account.

Results show that as the damage severity increases, the annual probability of ex-
ceeding the selected damage state decreases. This trend is shown in Figure 6, reporting
the annual probability of exceeding different levels of drift-dependent and acceleration-
dependent damage at the 76th floor under seismic load for the Auckland site, which
has been computed by exploiting Equation (8).

Figure 7 shows the annual probability of exceeding extensive damage at the 76th
floor under wind and earthquake for the four locations. In particular, Figure 7a is re-
ferred to drift-sensitive components (DS3-IDR) and Figure 7b to acceleration-sensitive
components (DS3-a).
It is possible to observe that wind load leads probability of damage occurrence com-
parable to earthquake in drift-sensitive components while seismic load leads to higher
probability of damage occurrence in acceleration-sensitive components. This can be
ascribed to the contribution of higher modes to the seismic response of tall build-
ings, that is more significant than their contribution to wind response. This result is
also confirmed in Aly and Abburu (2015). As further confirmation, high accelerations
in real tall buildings were observed in response to the 2011 Tohoku earthquake, and
shown to be due to higher mode effects (Pu et al., 2012).
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Figure 7. Annual probability of exceeding DS3-IDR (a) and DS3-a (b) at the 76th floor under wind and

earthquake for the four locations.

Table 6. Annual probability of exceeding damage states at the 76th floor for Auckland centre.

Damage level Earthquake Wind
DS-IDR DS-a DS-IDR DS-a

DS1 3.26E-04 1.18E-02 3.65E-01 2.78E-02
DS2 3.73E-05 3.90E-03 7.48E-02 2.20E-03
DS3 2.94E-07 1.00E-03 4.50E-04 6.14E-05
DS4 5.53E-09 2.02E-04 2.87E-06 6.73E-07

Similar results are shown in Table 6 that summarizes the annual probabilities of
exceeding each damage state under wind and earthquake at the top floor for Auck-
land center. Table 6 shows that as the level of damage increases, annual probability of
exceeding damage decreases. Moreover, acceleration-dependent damage due to earth-
quake has higher probability of occurrence than damage due to wind.

Figure 8 shows the distribution over the height of the building of the annual prob-
ability of exceeding damage states DS3-IDR and DS3-a for wind and earthquake.
Probabilities increase with the height, following the corresponding trend of peak in-
terstory drifts and peak accelerations. It is evident the contribution of higher modes on
the distribution of the probability of exceeding acceleration-dependent damage under
earthquake.

Expected normalized repair costs are computed for earthquake and wind using
Equations (12) and (14), respectively. Figure 9 shows the expected normalized life-
cycle costs of drift-dependent (Figure 9a) and acceleration-dependent damages (Figure
9b) for the four sites and for a lifetime of 50 years.

Drift-related costs due to wind are greater that those due to earthquake for all
the four considered sites while acceleration-related costs due to earthquake are sig-
nificantly higher than those due to wind. Therefore, results in terms of costs do not
perfectly reflect results in terms of probability of exceedance shown in Figure 8. This
is due to the fact that the total expected costs shown in Figure 9 are the sum of costs
due to all types of damages (from DS1 to DS4). Results also show that costs related
to inter-story drift represent the largest percentage of total repair costs of the building
for all the selected locations.

Different expected building’s life durations are investigated to assess their influence
on life-cycle costs. Figure 10 shows the results in terms of total normalized expected
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Figure 8. Annual probability of exceeding DS3-IDR and DS3-a for wind and earthquake as a function of the

floors’ height for Auckland centre.

Figure 9. Expected normalized life-cycle costs of drift-dependent (a) and acceleration dependent damages

(b).
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Figure 10. Dependency of expected normalized life-cycle cost on lifetime.

costs for the four locations and for building’s life of 1, 10, 30 and 50 years. Costs are
obtained by summing up those due to wind and to earthquake and by averaging values
over all the floors.

As expected, costs increase significantly with lifetime and the increase depends on
the location. The maximum cost is expected for the city of Wellington, where wind-
induced drift-dependent damages are highest. Being equal the wind hazard intensity
(in the cities of Christchurch, Otira and Auckland), costs increase with seismic hazard.

7. Influence of uncertainty on structural damping

It is well known that damping is the most uncertain parameter among those char-
acterizing the dynamic response. In slender structures, like high-rise buildings, the
correct estimate of structural damping is a crucial issue. Major sources of damping
in tall buildings, which are expected to remain in linear range, are material damping
and friction damping which are related to molecular interaction between the material
and to friction between members and connections, respectively (Aquino & Tamura,
2013; Kanduri & Morrow, 1996). Also aerodynamic damping can be experienced by
buildings vibrating in air flow. It represents a source of positive damping in low to
moderate wind speeds and can play a minor role in vibration reduction (Venanzi &
Materazzi, 2012).

Typically, a viscous damping model is used in engineering practice as it leads to
a linear equation of motion. In absence of full-scale measurement on the considered
building, the modal damping ratios are chosen from Codes on the basis of the material
of construction (steel-framed, reinforced concrete, steel-framed reinforced concrete) or

18



taken from full-scale data available in literature (Fukuwa, Nishizaka, Yagi, Tanaka,
& Tamura, 1996; Satake, Suda, Arakawa, Sasaki, & Tamura, 2003). Several authors
agree that structural damping is dependent on natural frequency and response ampli-
tude (Çelebi, 1996). Damping predictors based on full-scale data have been proposed,
among others, by Jeary (1986); Lagomarsino (1993); Satake et al. (2003). All models
include frequency-dependent and amplitude-dependent terms but their application is
limited to a specific range of buildings. In this Section, the uncertainty in structural
damping is included in life-cycle cost estimation. Damping ratio is considered as the
uncertain structural parameter (SP ) which appears in Equation (6).

To solve the integral, the probability distribution of the uncertain structural pa-
rameter f(SP ) must be selected. The lognormal distribution is here considered to
characterize randomness of damping ratio. The mean value is ξm = 1% and the coeffi-
cient of variation is varied from 0.1 to 0.4 with increments of 0.1 (Kanduri & Morrow,
1996). The Rayleigh model is adopted to compute the viscous damping matrix of the
structure. Figure 11 shows the results of numerical analyses with uncertain damping
ratio. In particular, it reports the ratios between the annual probabilities of exceeding
different levels of damage computed with random ξ and the corresponding probabil-
ities obtained with deterministic damping ratio, relative to the Auckland site. The
deterministic damping ratio is the mean value of the probability distributions of ξ and
is equal to 1%. It is possible to observe that ratio of probabilities increase with the
damage severity, showing that the influence of considering the damping ratio as an
uncertain value is greater for high levels of damage. Moreover Figure 11 highlights
that the higher is the coefficient of variation that characterizes the probability dis-
tribution of ξ, the greater is the influence of variable damping ratio. Probabilities of
exceeding acceleration-dependent damages are more strongly dependant of CoV than
probabilities of exceeding drift-dependent damages.

Figure 12 shows the expected life-cycle total costs (for both wind and earthquake)
as a function of the CoV for wind and earthquake, referred to the Auckland site. Costs
are normalized with respect to the costs obtained with the deterministic damping ratio
of 1%, corresponding to the mean value of the probability distributions.

Results in terms of costs reflect those in terms of probability: i) costs increase with
the coefficient of variation; ii) costs obtained with the constant average damping ra-
tio are intermediate between those obtained with the various CoV, except for the
case of drift-dependent damage under wind (where deterministic cost is smaller) and
the case of acceleration-dependent damage under earthquake (where the deterministic
cost is higher); iii) the choice of the CoV has a greater effect on the cost related to
accelerations than on those related to drifts.

8. Influence of building’s height on Life-Cycle Cost

The influences on LCC of type of loading, type of damage and building’s location have
been previously investigated. In this Section, parametric analyses are carried out to
assess what is the influence of building’s height on the LCC of tall buildings subjected
to multiple hazards.

8.1. Buildings’ design

Several tall buildings have been considered having height ranging from H=100 m to
H=300 m with 10 meters increments. They have square cross section with side length
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Figure 11. Ratios between annual probability of exceeding damage states computed with uncertain damping

ratio and the corresponding probabilities obtained with deterministic damping ratio (Auckland).

Figure 12. Expected life-cycle costs normalized with respect to the corresponding costs obtained with deter-

ministic damping ratios (Auckland).
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30 m. To compute the lumped mass matrix a mass equal to 1 ton/m2 is considered.
To compute the stiffness matrix, each structure is modeled as a cantilever beam with
shear walls. The equivalent flexural stiffness is considered constant along the height.
To obtain the flexural stiffness EI, the relationship between the flexural stiffness and
the natural period of vibration of a Euler-Bernoulli beam T is adopted:

EI = (
2π

3.516
)2m

H4

T 2
(19)

where m is the building’s mass per unit height. Without loss of generality, the natural
period is computed according to “Eurocode 8: Design of structures for earthquake
resistance Part 1: General rules, seismic actions and rules for buildings” (2004):

T = 0.085H0.75 (20)

The P-delta effect is taken into account by adding the structural geometric stiffness
matrix to the structural stiffness matrix, as in Rutenberg (1981). A damping ratio
of 1% for each mode is considered. The damping matrix is computed from mass and
stiffness matrix, by adopting the Rayleigh assumption.

8.2. Life-Cycle Cost analysis

The life-cycle cost analysis procedure is applied to investigate the influence of build-
ing’s height on LCC. To characterize earthquake and wind hazards, the sets of time
histories and the hazard curves described in Sections 5.2 and 5.3 are used. Fragility
curves for acceleration-induced damage and drift-induced damage adopted in the pre-
vious Sections are used.

Figure 13 shows the results obtained under earthquake for the city of Christchurch.
In particular, Figures 13a)-b) report the annual probability of exceeding DS3-a and
DS3-IDR and Figures 13c)-d) show the corresponding expected normalized Life-Cycle
Costs. Figure 14 shows the same results in terms of annual probability and expected
LCC, obtained under wind. The three lines in each graph are representative of dif-
ferent stiffnesses of the buildings: the normal stiffness, obtained with Equations (19)
and (20), a stiffness increased by 30% and a stiffness decreased by 30%. As the height
increases, the annual damage probability decreases under earthquake and increases
under wind. The LCC shows a similar trend. The effect of stiffness variation is more
pronounced for wind then for earthquake and increases under wind with the height of
the building.

The trends shown in Figures 13-14 imply that, for shorter buildings earthquake loss
may dominate the design and wind-related loss may be negligible. Similarly, for taller
buildings wind may dominate the design and earthquake-related loss may be negligi-
ble. There is a relatively large range of structures of intermediate height where both
winds and earthquakes contribute considerably to the LCC. In these cases, a design
for only one of the hazards may not be adequate from a LCC perspective.

It must be pointed out that in real buildings the initial cost of acceleration-sensitive
non-structural components and the initial cost of drift-sensitive non-structural com-
ponents may be different. In a specific building the cost of acceleration-sensitive com-
ponents can be a percentage (α) of the cost of drift-sensitive components and this
percentage changes from building to building. This will reflect on the relative LCC
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Figure 13. Annual probability of exceeding DS3-a (a), DS3-IDR (b) due to earthquake; earthquake-induced

costs related to acceleration (c) and earthquake-induced costs related to drift (d) (Christchurch).
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Figure 14. Annual probability of exceeding DS3-a (a), DS3-IDR (b) due to wind; wind-induced costs related

to acceleration (c) and wind-induced costs related to drift (d) (Christchurch).
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Figure 15. Comparison between total costs for earthquake and wind: α = 0.4 (a); α = 0.1 (b) (Christchurch).

due to winds and earthquakes.
Figure 15 shows the comparison between the total expected normalized LCC ob-

tained under wind and earthquake. As the height increases, the cost induced by wind
increases with height while cost induced by earthquake reduces with height. In partic-
ular, results shown in Figure 15(a) are obtained for α=0.4 and those in Figure 15(b)
are obtained for α=0.1. It can be observed that the height at which the loss due to
wind and the loss due to earthquake intersect depends on the relative total cost of
drift-sensitive versus acceleration-sensitive components in the building.

9. Conclusions

In this paper a framework for Life-Cycle Cost Analysis of tall buildings subjected
to wind and seismic loads is presented. The procedure uses wind and seismic hazard
curves for the specific site of the building and provides the expected normalized value
of repair costs of non-structural elements during lifetime.

Several life-cycle cost analyses are carried out on a tall building considered located
in four different cities of New Zeeland. Results show that in order to have a correct
estimate of the life-cycle cost of a building it is not possible to neglect expenses related
to repair of non-structural components which are of the same order of magnitude of
initial costs.

Results also show that wind load produces higher costs related to drift-dependent
damages then seismic load. Conversely, earthquake produces higher costs related to
acceleration-dependent damages then wind load. This is explained by the higher modes
contribution, that is more significant in seismic loading, and highly affects the accel-
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eration response. The life-cycle cost increases with the duration of life-cycle and is
strictly dependent on the hazards’ characteristics of the site.

Parametric analyses carried out to assess the influence of uncertainty in structural
damping show that the choice of the probability distribution significantly affects life-
cycle costs, especially those related to acceleration-dependent damages. Neglecting
damping randomness leads to important approximations in life-cycle cost estimation.

Further sensitivity analyses allow to evaluate the effect of building’s height on
the LCC. The wind-induced non-structural losses increase with height while the
earthquake-induced losses show an opposite trend. The height at which the loss due
to wind and the loss due to earthquake intersect depends on the relative total cost of
drift-sensitive versus acceleration-sensitive components in the building.
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