A weighted automaton is functional if any two accepting runs on the same finite word have the same value. In this paper, we investigate functional weighted automata for four different measures: the sum, the mean, the discounted sum of weights along edges and the ratio between rewards and costs. On the positive side, we show that functionality is decidable for the four measures. Furthermore, the existential and universal threshold problems, the language inclusion problem and the equivalence problem are all decidable when the weighted automata are functional. On the negative side, we also study the quantitative extension of the realizability problem and show that it is undecidable for sum, mean and ratio. We finally show how to decide whether the language associated with a given functional automaton can be defined with a deterministic one, for sum, mean and discounted sum. The results on functionality and determinizability are expressed for the more general class of functional weighted automata over groups. This allows one to formulate within the same framework new results related to discounted sum automata and known results on sum and mean automata. Ratio automata do not fit within this general scheme and specific techniques are required to decide functionality.
Quantitative Languages Defined by Functional Automata
GENTILINI, Raffaella;
2012
Abstract
A weighted automaton is functional if any two accepting runs on the same finite word have the same value. In this paper, we investigate functional weighted automata for four different measures: the sum, the mean, the discounted sum of weights along edges and the ratio between rewards and costs. On the positive side, we show that functionality is decidable for the four measures. Furthermore, the existential and universal threshold problems, the language inclusion problem and the equivalence problem are all decidable when the weighted automata are functional. On the negative side, we also study the quantitative extension of the realizability problem and show that it is undecidable for sum, mean and ratio. We finally show how to decide whether the language associated with a given functional automaton can be defined with a deterministic one, for sum, mean and discounted sum. The results on functionality and determinizability are expressed for the more general class of functional weighted automata over groups. This allows one to formulate within the same framework new results related to discounted sum automata and known results on sum and mean automata. Ratio automata do not fit within this general scheme and specific techniques are required to decide functionality.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.