Complete caps and saturating sets in projective Galois spaces are the ge- ometrical counterpart of linear codes with covering radius 2. The smaller the cap/saturating set, the better the covering properties of the code. In this paper we survey the state of the art of the research on these geometrical objects, with particular emphasis on the recent developments and on the connections with algebraic curves over finite fields

The geometry of covering codes: small complete caps and saturating sets in Galois spaces

GIULIETTI, Massimo
2013

Abstract

Complete caps and saturating sets in projective Galois spaces are the ge- ometrical counterpart of linear codes with covering radius 2. The smaller the cap/saturating set, the better the covering properties of the code. In this paper we survey the state of the art of the research on these geometrical objects, with particular emphasis on the recent developments and on the connections with algebraic curves over finite fields
2013
9781107651951
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/1166074
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 27
social impact