Protective immunity against fungal pathogens is achieved by the integration of two distinct arms of the immune system, the innate and adaptive responses. Innate and adaptive immune responses are intimately linked and controlled by sets of molecules and receptors that act to generate the most effective form of immunity for protection against fungal pathogens. The decision of how to respond will still be primarily determined by interactions between pathogens and cells of the innate immune system, but the actions of T cells will feed back into this dynamic equilibrium to regulate the balance between tolerogenic and inflammatory responses. In the last two decades, the immunopathogenesis of fungal infections and fungal diseases was explained primarily in terms of Th1/Th2 balance. Although Th1 responses driven by the IL-12/IFN-gamma axis are central to protection against fungi, other cytokines and T cell-dependent pathways have come of age. The newly described Th17 developmental pathway may play an inflammatory role previously attributed to uncontrolled Th1 responses and serves to accommodate the seemingly paradoxical association of chronic inflammatory responses with fungal persistence in the face of an ongoing inflammation. Regulatory T cells in their capacity to inhibit aspects of innate and adaptive antifungal immunity have become an integral component of immune resistance to fungi, and provide the host with immune defense mechanisms adequate for protection, without necessarily eliminating fungal pathogens which would impair immune memory--or causing an unacceptable level of tissue damage. The enzyme indoleamine 2,3-dioxygenase and tryptophan metabolites contribute to immune homeostasis by inducing Tregs and taming overzealous or heightened inflammatory responses.
Cell mediated immunity to fungi: a reassessment.
ROMANI, Luigina
2008
Abstract
Protective immunity against fungal pathogens is achieved by the integration of two distinct arms of the immune system, the innate and adaptive responses. Innate and adaptive immune responses are intimately linked and controlled by sets of molecules and receptors that act to generate the most effective form of immunity for protection against fungal pathogens. The decision of how to respond will still be primarily determined by interactions between pathogens and cells of the innate immune system, but the actions of T cells will feed back into this dynamic equilibrium to regulate the balance between tolerogenic and inflammatory responses. In the last two decades, the immunopathogenesis of fungal infections and fungal diseases was explained primarily in terms of Th1/Th2 balance. Although Th1 responses driven by the IL-12/IFN-gamma axis are central to protection against fungi, other cytokines and T cell-dependent pathways have come of age. The newly described Th17 developmental pathway may play an inflammatory role previously attributed to uncontrolled Th1 responses and serves to accommodate the seemingly paradoxical association of chronic inflammatory responses with fungal persistence in the face of an ongoing inflammation. Regulatory T cells in their capacity to inhibit aspects of innate and adaptive antifungal immunity have become an integral component of immune resistance to fungi, and provide the host with immune defense mechanisms adequate for protection, without necessarily eliminating fungal pathogens which would impair immune memory--or causing an unacceptable level of tissue damage. The enzyme indoleamine 2,3-dioxygenase and tryptophan metabolites contribute to immune homeostasis by inducing Tregs and taming overzealous or heightened inflammatory responses.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.