The need to both avoid waste production and find new renewable resources has led to new and promising research based on the possibility of revalorizing the biomass producing sustainable chemicals and/or materials. This may play a major role in replacing systems traditionally obtained from non-renewable sources. Most of the low-value biomass is termed lignocellulosic, referring to its main constituent biopolymers: cellulose, hemicellulose, and lignin. Different extraction methods were optimized over the years for the extraction of these components from natural fibers and sources, and most of these techniques have been adapted for the extraction of lignocellulosic components from agricultural and forest wastes. This chapter reviews the characteristics, applications, and especially, the extraction methods for lignocellulosic materials (cellulose, hemicellulose, and lignin), focusing on their advantages and drawbacks in terms of technical issues and environmental impact. Also reported and discussed are a number of recent advances developed in our laboratories.

Extraction of lignocellulosic materials from waste products

FORTUNATI, ELENA;LUZI, FRANCESCA;PUGLIA, Debora;TORRE, Luigi
2016

Abstract

The need to both avoid waste production and find new renewable resources has led to new and promising research based on the possibility of revalorizing the biomass producing sustainable chemicals and/or materials. This may play a major role in replacing systems traditionally obtained from non-renewable sources. Most of the low-value biomass is termed lignocellulosic, referring to its main constituent biopolymers: cellulose, hemicellulose, and lignin. Different extraction methods were optimized over the years for the extraction of these components from natural fibers and sources, and most of these techniques have been adapted for the extraction of lignocellulosic components from agricultural and forest wastes. This chapter reviews the characteristics, applications, and especially, the extraction methods for lignocellulosic materials (cellulose, hemicellulose, and lignin), focusing on their advantages and drawbacks in terms of technical issues and environmental impact. Also reported and discussed are a number of recent advances developed in our laboratories.
2016
978-0-323-44248-0
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/1407917
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? ND
social impact