To fulfill the industrial demand of forged steels with high tensile properties and microstructural requirements coupled with reduced cost, the possibility to increase the properties of C-Mn steels by means of precipitation strengthening as achieved by micro-alloying (and without the addition of expensive elements such as Mo and Cr) has been evaluated. In order to do that, the effect of V addition has been exploited by means of metallurgical modelling followed by a laboratory ingot manufacturing. Heat treatment has been designed aimed to achieve the desired target tensile properties. Results show that ASTM A694 F70 grade requirements can bel fulfilled by 0.15% V addition and a proper heat treatment in a ferrite-pearlite microstructure, representative of a forged component. Results are discussed in comparison to those of a similar steel without V addition.
Micro-alloyed steel for forgings
Mengaroni, Sabrina;NAPOLI, GIUSEPPE;ZITELLI, CHIARA;Di Schino, Andrea
2018
Abstract
To fulfill the industrial demand of forged steels with high tensile properties and microstructural requirements coupled with reduced cost, the possibility to increase the properties of C-Mn steels by means of precipitation strengthening as achieved by micro-alloying (and without the addition of expensive elements such as Mo and Cr) has been evaluated. In order to do that, the effect of V addition has been exploited by means of metallurgical modelling followed by a laboratory ingot manufacturing. Heat treatment has been designed aimed to achieve the desired target tensile properties. Results show that ASTM A694 F70 grade requirements can bel fulfilled by 0.15% V addition and a proper heat treatment in a ferrite-pearlite microstructure, representative of a forged component. Results are discussed in comparison to those of a similar steel without V addition.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.