Seed priming is a pre-sowing treatment which leads to a physiological state that enables seed to germinate more efficiently. The majority of seed treatments are based on seed imbibition allowing the seeds to go through the first reversible stage of germination but do not allow radical protrusion through the seed coat. Seeds keeping their desiccation tolerance are then dehydrated and can be stored until final sowing. During subsequent germination, primed seeds exhibit a faster and more synchronized germination and young seedlings are often more vigorous and resistant to abiotic stresses than seedlings obtained from unprimed seeds. Priming often involves soaking seed in predetermined amounts of water or limitation of the imbibition time. The imbibition rate could be somehow controlled by osmotic agents such as PEG and referred as osmopriming. Halopriming implies the use of specific salts while "hormopriming" relies on the use of plant growth regulators. Some physical treatments (UV, cold or heat,..) also provide germination improvement thus suggesting that priming effects are not necessarily related to seed imbibition. A better understanding of the metabolic events taking place during the priming treatment and the subsequent germination should help to use this simple and cheap technology in a more efficient way.
Seed Priming: New Comprehensive Approaches for an Old Empirical Technique.
Paolo Benincasa;Roberta Pace;
2016
Abstract
Seed priming is a pre-sowing treatment which leads to a physiological state that enables seed to germinate more efficiently. The majority of seed treatments are based on seed imbibition allowing the seeds to go through the first reversible stage of germination but do not allow radical protrusion through the seed coat. Seeds keeping their desiccation tolerance are then dehydrated and can be stored until final sowing. During subsequent germination, primed seeds exhibit a faster and more synchronized germination and young seedlings are often more vigorous and resistant to abiotic stresses than seedlings obtained from unprimed seeds. Priming often involves soaking seed in predetermined amounts of water or limitation of the imbibition time. The imbibition rate could be somehow controlled by osmotic agents such as PEG and referred as osmopriming. Halopriming implies the use of specific salts while "hormopriming" relies on the use of plant growth regulators. Some physical treatments (UV, cold or heat,..) also provide germination improvement thus suggesting that priming effects are not necessarily related to seed imbibition. A better understanding of the metabolic events taking place during the priming treatment and the subsequent germination should help to use this simple and cheap technology in a more efficient way.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.