The reduced Jurassic sedimentary sequences deposited on a structural high in the Umbria-Marche Apennines, as well their relationships with adjacent expanded basinal sequences, have been reconstructed through detailed, interdisciplinary study of the Sasso di Pale and Monte Serrone areas near Foligno, Italy. The physiographic features of the basin originated in the Early Jurassic (latest early Pliensbachian), when extensional tectonic activity broke up a shallow water platform where the Calcare Massiccio had been deposited, and the area evolved from an edge-stepped structural high to a distally steepened ramp. The biostratigraphic framework of this paper is mainly based on calcareous nannofossils, which are a useful tool for dating condensed Jurassic successions. Although the sections studied have limited thickness and much lateral facies variation, the sedimentary evolution can be traced and interpreted within a wider Jurassic environmental perspective. In the upper Pliensbachian–lower Bajocian interval, local sea-level variations are compatible with the global sea-level curve. Furthermore, some of the characteristic events—such as the Pliensbachian–Toarcian crisis, the Early Toarcian Jenkyns Event, and the Middle Jurassic carbonate crisis—can be recognized. The present study shows how the reconstruction of local paleogeography can fit into a more general framework and how regional and global signals can be recognized even in a small structural high such as the one we have investigated.
The Jurassic structural high of Sasso di Pale (Umbria-Marche Basin, Italy): How a small Apennine structure recorded Early to Middle Jurassic global perturbations
Angela Baldanza
Writing – Original Draft Preparation
;Roberto BizzarriWriting – Original Draft Preparation
;Angela BertinelliWriting – Original Draft Preparation
;
2022
Abstract
The reduced Jurassic sedimentary sequences deposited on a structural high in the Umbria-Marche Apennines, as well their relationships with adjacent expanded basinal sequences, have been reconstructed through detailed, interdisciplinary study of the Sasso di Pale and Monte Serrone areas near Foligno, Italy. The physiographic features of the basin originated in the Early Jurassic (latest early Pliensbachian), when extensional tectonic activity broke up a shallow water platform where the Calcare Massiccio had been deposited, and the area evolved from an edge-stepped structural high to a distally steepened ramp. The biostratigraphic framework of this paper is mainly based on calcareous nannofossils, which are a useful tool for dating condensed Jurassic successions. Although the sections studied have limited thickness and much lateral facies variation, the sedimentary evolution can be traced and interpreted within a wider Jurassic environmental perspective. In the upper Pliensbachian–lower Bajocian interval, local sea-level variations are compatible with the global sea-level curve. Furthermore, some of the characteristic events—such as the Pliensbachian–Toarcian crisis, the Early Toarcian Jenkyns Event, and the Middle Jurassic carbonate crisis—can be recognized. The present study shows how the reconstruction of local paleogeography can fit into a more general framework and how regional and global signals can be recognized even in a small structural high such as the one we have investigated.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.