The presentation of an auditory stimulus semantically-congruent with a visual element of a multi-objects display can enhance processing of that element. Here we used multisensory objects (MO) as non-informative cues in a spatial cueing paradigm, aiming to directly assess the interplay between MO integration and spatial attention. We presented two pictures (e.g., left — dog, right — cat) plus a central sound (e.g., a dog's bark) that defined the location of the MO (left, in this example). This was followed by a target (a Gabor patch) either at the MO location or in the opposite hemifield. Subjects discriminated the orientation of the Gabor, while ignoring all task-irrelevant pictures and sounds. Further, we manipulated the task requirements including `easy' or `difficult' discrimination (Gabor tilt = ±5° or ±10°), and by presenting either a single unilateral Gabor (Exp. 1, `low' competition) or two Gabors bilaterally (red and blue, with the target now defined by colour; Exp. 2, `high' competition). Functional imaging data revealed activation of frontal regions when the target was presented on the opposite side of the MO (invalid trials). The frontal eye-fields activated irrespective of task requirements, while the inferior frontal gyrus activated only when the MO-cue was invalid and competition was low (Exp. 1 only). These findings show that MOs automatically affect the distribution of spatial attention, and that re-orienting operations on invalid trials activate dorsal and ventral frontal areas depending on top-down task constraints. Overall, the results are consistent with the hypothesis linking the integration of multisensory objects with biases of spatial attention.

Multisensory objects and the orienting of spatial attention

Mastroberardino S.;SANTANGELO, Valerio;
2012

Abstract

The presentation of an auditory stimulus semantically-congruent with a visual element of a multi-objects display can enhance processing of that element. Here we used multisensory objects (MO) as non-informative cues in a spatial cueing paradigm, aiming to directly assess the interplay between MO integration and spatial attention. We presented two pictures (e.g., left — dog, right — cat) plus a central sound (e.g., a dog's bark) that defined the location of the MO (left, in this example). This was followed by a target (a Gabor patch) either at the MO location or in the opposite hemifield. Subjects discriminated the orientation of the Gabor, while ignoring all task-irrelevant pictures and sounds. Further, we manipulated the task requirements including `easy' or `difficult' discrimination (Gabor tilt = ±5° or ±10°), and by presenting either a single unilateral Gabor (Exp. 1, `low' competition) or two Gabors bilaterally (red and blue, with the target now defined by colour; Exp. 2, `high' competition). Functional imaging data revealed activation of frontal regions when the target was presented on the opposite side of the MO (invalid trials). The frontal eye-fields activated irrespective of task requirements, while the inferior frontal gyrus activated only when the MO-cue was invalid and competition was low (Exp. 1 only). These findings show that MOs automatically affect the distribution of spatial attention, and that re-orienting operations on invalid trials activate dorsal and ventral frontal areas depending on top-down task constraints. Overall, the results are consistent with the hypothesis linking the integration of multisensory objects with biases of spatial attention.
2012
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/919841
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact