The differentiation of a preadipocyte into a mature adipocyte is a highly regulated process that requires a scripted program of transcriptional events leading to changes in gene expression. Several genes are associated with adipogenesis, including the CAAT/enhancer-binding protein (C/EBPs) and peroxisome proliferator-activated receptor (PPAR) families of transcription factors. In this study, we have investigated the role of the farnesoid X receptor (FXR), a bile acid-activated nuclear receptor, in regulating adipogenesis in a preadipocyte cell line (3T3-L1 cells). Our results show that FXR is expressed in the white adipose tissue of adult mice and in differentiated 3T3-L1 cells but not in undifferentiated preadipocytes. Exposure of 3T3-L1 cells to INT-747 (6-ethyl cheno-deoxycholic acid), a potent and selective FXR ligand, increases preadipocyte differentiation induced by a differentiating mixture containing insulin. Augmentation of differentiating mixture-induced differentiation of 3T3-L1 cells by INT-747 associated with induction of aP2, C/EBP, and PPAR2 mRNAs along with other adipocyterelated genes. This effect was reversed by guggulsterone, an FXR antagonist, and partially reverted by GW9662 (2-chloro-5-nitro-N-phenylbenzamide), a selective PPAR antagonist, indicating that FXR modulates adipocyte-related genes by PPAR-dependent and -independent pathways. Regulation of adipocyte-related genes by INT-747 was lost in FXR/ mice, indicating that modulation of these genes by INT-747 requires an intact FXR. In addition, INT-747 enhances both insulin induced serine phosphorylation of Akt and glucose uptake by 3T3-L1 cells. Taken together, these results suggest that activation of FXR plays a critical role in regulating adipogenesis and insulin signaling.

The Farnesoid X Receptor Promotes Adipocyte Differentiation and Regulates Adipose Cell Function in Vivo

MENCARELLI, Andrea;RENGA, Barbara;GIOIELLO, ANTIMO;FIORUCCI, Stefano
2006

Abstract

The differentiation of a preadipocyte into a mature adipocyte is a highly regulated process that requires a scripted program of transcriptional events leading to changes in gene expression. Several genes are associated with adipogenesis, including the CAAT/enhancer-binding protein (C/EBPs) and peroxisome proliferator-activated receptor (PPAR) families of transcription factors. In this study, we have investigated the role of the farnesoid X receptor (FXR), a bile acid-activated nuclear receptor, in regulating adipogenesis in a preadipocyte cell line (3T3-L1 cells). Our results show that FXR is expressed in the white adipose tissue of adult mice and in differentiated 3T3-L1 cells but not in undifferentiated preadipocytes. Exposure of 3T3-L1 cells to INT-747 (6-ethyl cheno-deoxycholic acid), a potent and selective FXR ligand, increases preadipocyte differentiation induced by a differentiating mixture containing insulin. Augmentation of differentiating mixture-induced differentiation of 3T3-L1 cells by INT-747 associated with induction of aP2, C/EBP, and PPAR2 mRNAs along with other adipocyterelated genes. This effect was reversed by guggulsterone, an FXR antagonist, and partially reverted by GW9662 (2-chloro-5-nitro-N-phenylbenzamide), a selective PPAR antagonist, indicating that FXR modulates adipocyte-related genes by PPAR-dependent and -independent pathways. Regulation of adipocyte-related genes by INT-747 was lost in FXR/ mice, indicating that modulation of these genes by INT-747 requires an intact FXR. In addition, INT-747 enhances both insulin induced serine phosphorylation of Akt and glucose uptake by 3T3-L1 cells. Taken together, these results suggest that activation of FXR plays a critical role in regulating adipogenesis and insulin signaling.
2006
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/1003304
Citazioni
  • ???jsp.display-item.citation.pmc??? 52
  • Scopus 137
  • ???jsp.display-item.citation.isi??? 129
social impact