The preparation of electrically conductive acrylic resins containing reduced graphene oxide (rGO) by photopolymerization is presented. The synthesis consists of a single-step procedure starting from a homogeneous water dispersion of GO, which undergoes reduction induced by the UV radiation during the photopolymerization of an acrylic resin. The role played by the amount of radical photoinitiator added to the resin has been evaluated in relation to the in-situ reduction of GO, that was monitored by Xray photoelectron spectroscopy. Results show that the UV-induced photopolymerization of acrylic resins with added GO gives rise to conductive acrylic composites thanks to the simultaneous reduction of GO to rGO and crosslinking of the resin. On this basis UV-induced photopolymerization is proposed as a sustainable strategy for the production of conductive graphene/polymer composites.
IN-SITU GRAPHENE OXIDE REDUCTION DURING UV-PHOTOPOLYMERIZATION OF GRAPHENE OXIDE/ACRYLIC RESINS MIXTURES
VALENTINI, LUCA;BITTOLO BON, SILVIA;
2012
Abstract
The preparation of electrically conductive acrylic resins containing reduced graphene oxide (rGO) by photopolymerization is presented. The synthesis consists of a single-step procedure starting from a homogeneous water dispersion of GO, which undergoes reduction induced by the UV radiation during the photopolymerization of an acrylic resin. The role played by the amount of radical photoinitiator added to the resin has been evaluated in relation to the in-situ reduction of GO, that was monitored by Xray photoelectron spectroscopy. Results show that the UV-induced photopolymerization of acrylic resins with added GO gives rise to conductive acrylic composites thanks to the simultaneous reduction of GO to rGO and crosslinking of the resin. On this basis UV-induced photopolymerization is proposed as a sustainable strategy for the production of conductive graphene/polymer composites.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.