The evaluation of the combined influence of rainfall patterns (in terms of mean intensity and duration) and the geomorphological and mechanical characteristics of hillslopes on their stability conditions is a major goal in the assessment of the shallow landslide triggering processes. Geographic Information Systems (GIS) represent an important tool to develop models that combine hydrological and geomechanical analyses for the evaluation of slope stability, as they allow to combine information concerning rainfall characteristics with topographic and mechanical properties of the slopes over wide areas. In this paper, a GIS-based code is developed to determine physically based intensity/ duration rainfall thresholds at the local scale. Given the rainfall duration and the local geometric, hydrological and mechanical characteristics of the slopes, the code evaluates the spatial distribution of the minimum rainfall intensity that triggers shallow landslides and debris flows over a given area. The key feature of the code is the capability of evaluating the time tp required to reach the peak pore pressure head on the failure surface and computing the corresponding critical intensity/duration thresholds based on post-event peak pore pressures. The reliability of the model is tested using a set of one-dimensional analyses, comparing the physically based thresholds obtained for three different slopes with some empirical rainfall thresholds. In a log–log scale, the thresholds provided by the model decrease linearly with increased rainfall duration and they are bracketed by the empirical thresholds considered. Finally, an example of application to a study area of the Umbria region in central Italy is presented, describing the capability of the model of providing site-specific thresholds for different rainfall scenarios.

Spatially distributed rainfall thresholds for the initiation of shallow landslides

SALCIARINI, DIANA;TAMAGNINI, Claudio;CONVERSINI, Pietro;
2012

Abstract

The evaluation of the combined influence of rainfall patterns (in terms of mean intensity and duration) and the geomorphological and mechanical characteristics of hillslopes on their stability conditions is a major goal in the assessment of the shallow landslide triggering processes. Geographic Information Systems (GIS) represent an important tool to develop models that combine hydrological and geomechanical analyses for the evaluation of slope stability, as they allow to combine information concerning rainfall characteristics with topographic and mechanical properties of the slopes over wide areas. In this paper, a GIS-based code is developed to determine physically based intensity/ duration rainfall thresholds at the local scale. Given the rainfall duration and the local geometric, hydrological and mechanical characteristics of the slopes, the code evaluates the spatial distribution of the minimum rainfall intensity that triggers shallow landslides and debris flows over a given area. The key feature of the code is the capability of evaluating the time tp required to reach the peak pore pressure head on the failure surface and computing the corresponding critical intensity/duration thresholds based on post-event peak pore pressures. The reliability of the model is tested using a set of one-dimensional analyses, comparing the physically based thresholds obtained for three different slopes with some empirical rainfall thresholds. In a log–log scale, the thresholds provided by the model decrease linearly with increased rainfall duration and they are bracketed by the empirical thresholds considered. Finally, an example of application to a study area of the Umbria region in central Italy is presented, describing the capability of the model of providing site-specific thresholds for different rainfall scenarios.
2012
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/1014867
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 47
  • ???jsp.display-item.citation.isi??? 43
social impact