Organically modified alpha-layered zirconium phosphate samples (ZrP(C(12))(x)) containing dodecyl groups bonded to the alpha-layers through P-O-C bonds have been prepared by reaction of 1,2-epoxydodecane solutions in tetrahydrofuran (THF) with gels of partially exfoliated zirconium phosphate in THF. Two dimensional correlation solid state NMR experiments for (1)H-(13)C and (1)H-(31)P nuclei have been used to prove the formation of P-O-C bonds arising from nucleophilic attack of POH mainly to carbon 1 and, to a lesser extent, to carbon 2 of epoxydodecane. ZrP(C(12))(x) samples with x in the range from similar to 0.5 to similar to 2.0 are thermally stable up to at least 200 degrees C, and their interlayer distance increases continuously with x from similar to 20 to similar to 35 angstrom. On the basis of structural considerations, it has been suggested that samples with low x values could intercalate aliphatic polymers. Accordingly, preliminary results have shown that molten polyethylene is intercalated in ZrP(C(12))(0.49) and ZrP(C(12))(0.73). These materials can therefore be regarded as filler candidates for polymer matrixes.
Organically Modified Zirconium Phosphate by Reaction with 1,2-Epoxydodecane as Host Material for Polymer Intercalation: Synthesis and Physicochemical Characterization
CASCIOLA, Mario;DONNADIO, Anna;PICA, Monica
2010
Abstract
Organically modified alpha-layered zirconium phosphate samples (ZrP(C(12))(x)) containing dodecyl groups bonded to the alpha-layers through P-O-C bonds have been prepared by reaction of 1,2-epoxydodecane solutions in tetrahydrofuran (THF) with gels of partially exfoliated zirconium phosphate in THF. Two dimensional correlation solid state NMR experiments for (1)H-(13)C and (1)H-(31)P nuclei have been used to prove the formation of P-O-C bonds arising from nucleophilic attack of POH mainly to carbon 1 and, to a lesser extent, to carbon 2 of epoxydodecane. ZrP(C(12))(x) samples with x in the range from similar to 0.5 to similar to 2.0 are thermally stable up to at least 200 degrees C, and their interlayer distance increases continuously with x from similar to 20 to similar to 35 angstrom. On the basis of structural considerations, it has been suggested that samples with low x values could intercalate aliphatic polymers. Accordingly, preliminary results have shown that molten polyethylene is intercalated in ZrP(C(12))(0.49) and ZrP(C(12))(0.73). These materials can therefore be regarded as filler candidates for polymer matrixes.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.