Polymer/layered silicate nanocomposites were prepared, adding modified, and nonmodified montmorillonites to a resol resin. It was observed that the composites exhibited an intercalated disordered structure by means of X-ray diffraction (XRD) and transmission electronic microscopy. The crosslinking density of the resol network was greatly influenced by the presence and type of clay that was added to the resin. The composites filled with the modified montmorillonites showed a lower glass transition temperature value as well as a higher degradation peak at ∼ 400°C, which is characteristic of the degradation of methylene bridges, indicating a decrease in the crosslinking density of the resol network when modified clays are added. Resol/unmodified montmorillonite composites exhibited different behavior comparing to the other composites and the resol. A higher thermal resistance was observed in the fragmentation zone and a different tan δ response was seen in the DMA analysis. These differences in the behavior of the composites could be because of the interaction between the resol prepolymer and the clay modifiers and as a result of their chemical compatibility. The hardness and elastic modulus of the resol were improved with the addition of clays. However, higher values were obtained for the composite made with the more dispersed montmorillonite. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007

Structure-properties relationship in resol/montmorillonite nanocomposites

PUGLIA, Debora;KENNY, Jose Maria;
2007

Abstract

Polymer/layered silicate nanocomposites were prepared, adding modified, and nonmodified montmorillonites to a resol resin. It was observed that the composites exhibited an intercalated disordered structure by means of X-ray diffraction (XRD) and transmission electronic microscopy. The crosslinking density of the resol network was greatly influenced by the presence and type of clay that was added to the resin. The composites filled with the modified montmorillonites showed a lower glass transition temperature value as well as a higher degradation peak at ∼ 400°C, which is characteristic of the degradation of methylene bridges, indicating a decrease in the crosslinking density of the resol network when modified clays are added. Resol/unmodified montmorillonite composites exhibited different behavior comparing to the other composites and the resol. A higher thermal resistance was observed in the fragmentation zone and a different tan δ response was seen in the DMA analysis. These differences in the behavior of the composites could be because of the interaction between the resol prepolymer and the clay modifiers and as a result of their chemical compatibility. The hardness and elastic modulus of the resol were improved with the addition of clays. However, higher values were obtained for the composite made with the more dispersed montmorillonite. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007
2007
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/104065
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 28
  • ???jsp.display-item.citation.isi??? 26
social impact