Evolutionary calculations of a typical massive star are run in order to analyze the n-capture process occurring during the hydrostatic core He-burning phase, studying the effects of variations in the C-12(alpha, gamma)O-16 and Ne-22(alpha, n)Mg-25 rates within their present uncertainties and in other nuclear inputs. The nucleosynthetic mechanism is characterized by a low mean neutron density, which never exceeds 10 to the 6th n/cu cm. A good production of the s-isotopes in the atomic mass range 70-90 is found, the actual neutron exposure depending on some critical parameters. Important contributions are also found for several light n-rich species and for the heavy rare isotopes Gd-152 and Ta-180. How s-processing in a typical massive star compares with predictions by classical analysis is addressed.

S-process nucleosynthesis in massive stars and the weak component. I - Evolution and neutron captures in a 25 solar mass star

BUSSO, Maurizio Maria;
1991

Abstract

Evolutionary calculations of a typical massive star are run in order to analyze the n-capture process occurring during the hydrostatic core He-burning phase, studying the effects of variations in the C-12(alpha, gamma)O-16 and Ne-22(alpha, n)Mg-25 rates within their present uncertainties and in other nuclear inputs. The nucleosynthetic mechanism is characterized by a low mean neutron density, which never exceeds 10 to the 6th n/cu cm. A good production of the s-isotopes in the atomic mass range 70-90 is found, the actual neutron exposure depending on some critical parameters. Important contributions are also found for several light n-rich species and for the heavy rare isotopes Gd-152 and Ta-180. How s-processing in a typical massive star compares with predictions by classical analysis is addressed.
1991
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/1064051
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 102
social impact