The modeling of unsteady wall shear stress plays a crucial role in the analysis of fast transients in pressurized pipe systems, since it allows to evaluate transient energy dissipation properly. The main aim of this paper is to give a contribution to the understanding of transient pressurized flow dynamics in turbulent regime by measuring not only pressure but also the instantaneous axial velocity profile at two sections of the laboratory pipe. Specifically, by means of ultrasonic Doppler velocimetry—a completely nonintrusive technique—instantaneous velocity gradients at pipe wall are measured allowing to evaluate the time history of the actual wall shear stress by coupling velocity measurements to a two-zone stress model. As a result, the behavior of accelerating and decelerating flows with respect to the corresponding steady ones, i.e., with the same value of the discharge, is pointed out. Due to the characteristics of the laboratory pipe—a 352-m long high density polyethylene pipe—transients phenomena are investigated both at short and long time scales.

Wall shear stress in transient turbulent pipe flow by local velocity measurement

BRUNONE, Bruno;
2010

Abstract

The modeling of unsteady wall shear stress plays a crucial role in the analysis of fast transients in pressurized pipe systems, since it allows to evaluate transient energy dissipation properly. The main aim of this paper is to give a contribution to the understanding of transient pressurized flow dynamics in turbulent regime by measuring not only pressure but also the instantaneous axial velocity profile at two sections of the laboratory pipe. Specifically, by means of ultrasonic Doppler velocimetry—a completely nonintrusive technique—instantaneous velocity gradients at pipe wall are measured allowing to evaluate the time history of the actual wall shear stress by coupling velocity measurements to a two-zone stress model. As a result, the behavior of accelerating and decelerating flows with respect to the corresponding steady ones, i.e., with the same value of the discharge, is pointed out. Due to the characteristics of the laboratory pipe—a 352-m long high density polyethylene pipe—transients phenomena are investigated both at short and long time scales.
2010
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/110618
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 88
  • ???jsp.display-item.citation.isi??? 79
social impact