One of the techniques used to increase the water yield of springs during dry seasons and droughts is drilling wells close to them. Where there is a low-hydraulic conductivity boundary close to a spring (the case considered here), this technique implies low well efficiency, high drawdown, and high cost of withdrawals. In addition, a set of pumping wells close to a spring can cause both it and the stream originating from it to dry up - a situation which is not always acceptable from an environmental point of view. In order to study better management strategies, this paper presents a finite difference model of the Scirca spring (Umbria – Marche Apennines, Italy), which originates from a limestone massif in which some formations are karstified. The model, built with Modflow using the equivalent porous media (EPM) approach, simulated the effects of pumping wells at various distances from the spring. Hydraulic Conductivity and Storativity were calibrated and validated on discharge data during recession, when recharge is nil. ‘‘Inverse modeling’’ was then used to estimate the daily recharge of the hydro-geological system of the Scirca spring for a period of several years. Lastly, the efficiency of various management schemes was evaluated by simulating the reaction of the spring, in terms of discharge, to a series of pumping scenarios, all guaranteeing a certain imposed withdrawal during summer, much larger than the natural spring discharge, given by spring discharge and well drawdown. The wells were located between 2850 and 100 m from the spring, the pumping time-span was set at 90 days, and pumping rates of 60, 90 and 120 l/s were applied. Results show that the maximum discharge at which spring drainage is avoided and that minimum vital flow is guaranteed is 90 l/s. The higher water volumes extracted during summer (dry season) are balanced by a lowering of the maximum natural discharges in winter and spring (recharge seasons). Simulations indicate that, by drilling pumping wells far from the spring, the efficiency of the whole system can be optimized in terms of total withdrawal, drilling and management costs, with reduced environmental impact. The mathematical model also shows how long the system takes to regain its ‘‘undisturbed’’ state, with a tolerance of 0.5 l/s. The model highlights the possibility of forcing the system to supply a smaller amount of water in winter, in order to increase the summer yield. Such a management scheme, which can be applied to other springs, may be useful in better meeting the demand for water during dry seasons.

Modeling the effects of pumping wells in spring management: the case of Scirca spring (Central Apennines, Italy)

DRAGONI, Valter Ulderico;MOTTOLA, ADOLFO;CAMBI, Costanza
2013

Abstract

One of the techniques used to increase the water yield of springs during dry seasons and droughts is drilling wells close to them. Where there is a low-hydraulic conductivity boundary close to a spring (the case considered here), this technique implies low well efficiency, high drawdown, and high cost of withdrawals. In addition, a set of pumping wells close to a spring can cause both it and the stream originating from it to dry up - a situation which is not always acceptable from an environmental point of view. In order to study better management strategies, this paper presents a finite difference model of the Scirca spring (Umbria – Marche Apennines, Italy), which originates from a limestone massif in which some formations are karstified. The model, built with Modflow using the equivalent porous media (EPM) approach, simulated the effects of pumping wells at various distances from the spring. Hydraulic Conductivity and Storativity were calibrated and validated on discharge data during recession, when recharge is nil. ‘‘Inverse modeling’’ was then used to estimate the daily recharge of the hydro-geological system of the Scirca spring for a period of several years. Lastly, the efficiency of various management schemes was evaluated by simulating the reaction of the spring, in terms of discharge, to a series of pumping scenarios, all guaranteeing a certain imposed withdrawal during summer, much larger than the natural spring discharge, given by spring discharge and well drawdown. The wells were located between 2850 and 100 m from the spring, the pumping time-span was set at 90 days, and pumping rates of 60, 90 and 120 l/s were applied. Results show that the maximum discharge at which spring drainage is avoided and that minimum vital flow is guaranteed is 90 l/s. The higher water volumes extracted during summer (dry season) are balanced by a lowering of the maximum natural discharges in winter and spring (recharge seasons). Simulations indicate that, by drilling pumping wells far from the spring, the efficiency of the whole system can be optimized in terms of total withdrawal, drilling and management costs, with reduced environmental impact. The mathematical model also shows how long the system takes to regain its ‘‘undisturbed’’ state, with a tolerance of 0.5 l/s. The model highlights the possibility of forcing the system to supply a smaller amount of water in winter, in order to increase the summer yield. Such a management scheme, which can be applied to other springs, may be useful in better meeting the demand for water during dry seasons.
2013
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/1116066
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 15
social impact