This study deals with some microstructural and crystallographic aspects of the thermally induced transformation of goethite (α-FeOOH) into hematite (α-Fe2O3), occurring at about 300 °C. Powder specimens of goethite have been annealed in air at different temperatures, ranging from 200 °C up to 1,000 °C. The resulting products have been analyzed for a complete characterization of the changes brought about by the thermal treatments, using a multianalytical approach, based on: thermogravimetry, differential thermal analysis, transmission electron microscopy, Raman spectroscopy, and X-ray diffraction. At lower temperatures, the transition to hematite produces no important changes in size and shape of the original goethite grains. Recrystallization, and partial sintering, occurs only at temperatures in excess of 800 °C. The relevant evolution of pores present in both phases has been also considered, as it may provide important indications on the actual formation mechanism of hematite.

On the geothite to hematite phase transformation

Mattarelli, Maurizio;
2010

Abstract

This study deals with some microstructural and crystallographic aspects of the thermally induced transformation of goethite (α-FeOOH) into hematite (α-Fe2O3), occurring at about 300 °C. Powder specimens of goethite have been annealed in air at different temperatures, ranging from 200 °C up to 1,000 °C. The resulting products have been analyzed for a complete characterization of the changes brought about by the thermal treatments, using a multianalytical approach, based on: thermogravimetry, differential thermal analysis, transmission electron microscopy, Raman spectroscopy, and X-ray diffraction. At lower temperatures, the transition to hematite produces no important changes in size and shape of the original goethite grains. Recrystallization, and partial sintering, occurs only at temperatures in excess of 800 °C. The relevant evolution of pores present in both phases has been also considered, as it may provide important indications on the actual formation mechanism of hematite.
2010
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/1118671
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 150
  • ???jsp.display-item.citation.isi??? 144
social impact