Motoneurons of the rat spinal cord express low-affinity nerve growth factor receptor (LNGFR) and corresponding mRNA during development, and re-express it after their axotomy by peripheral nerve injury. The present study establishes the anatomical and quantitative baseline of LNGFR immunoreactive (LNGFR-IR) neurons of the entire normal adult female rat and then investigates the temporal course for the re-expression of LNGFR-IR in lumbar motoneurons after either a crush lesion (which is followed by regeneration and reconnection to the muscle) or a cut lesion with removal of the distal stump (where a neuroma but no reconnection is formed). In the normal adult spinal cord, two types of LNGFR-IR neurons were recognized: (1) small populations of large motoneurons located in the ventral horn mainly in correspondence to the regions of the phrenic, cremasteric and dorsolateral nuclei, and (2) a more numerous and more dorsally located population of small neurons. With a sciatic cut lesion, the number of LNGFR-IR motoneurons at spinal levels L4-L6 rapidly and dramatically increased to a maximum between post-lesion days 1 and 7, apparently involving most axotomized motoneurons of the region, and returned to the baseline level by day 30. With a crush lesion, similar numbers and virtually the same time-course of LNGFR-IR appearance were seen, but the onset of progressive disappearance of LNGFR-IR neurons was delayed by one week, so that at 30 days, the most caudal motoneurons (which are last to reach their target) were still LNGFR-IR. Comparison of these two time courses gives clues to the kind of signals that may be involved in initiating and/or maintaining the LNGFR response.

Nerve Growth Factor Receptor immunoreactivity in neurons of the normal adult rat spinal cord and its modulation after peripheral nerve lesions.

RENDE, Mario;
1992

Abstract

Motoneurons of the rat spinal cord express low-affinity nerve growth factor receptor (LNGFR) and corresponding mRNA during development, and re-express it after their axotomy by peripheral nerve injury. The present study establishes the anatomical and quantitative baseline of LNGFR immunoreactive (LNGFR-IR) neurons of the entire normal adult female rat and then investigates the temporal course for the re-expression of LNGFR-IR in lumbar motoneurons after either a crush lesion (which is followed by regeneration and reconnection to the muscle) or a cut lesion with removal of the distal stump (where a neuroma but no reconnection is formed). In the normal adult spinal cord, two types of LNGFR-IR neurons were recognized: (1) small populations of large motoneurons located in the ventral horn mainly in correspondence to the regions of the phrenic, cremasteric and dorsolateral nuclei, and (2) a more numerous and more dorsally located population of small neurons. With a sciatic cut lesion, the number of LNGFR-IR motoneurons at spinal levels L4-L6 rapidly and dramatically increased to a maximum between post-lesion days 1 and 7, apparently involving most axotomized motoneurons of the region, and returned to the baseline level by day 30. With a crush lesion, similar numbers and virtually the same time-course of LNGFR-IR appearance were seen, but the onset of progressive disappearance of LNGFR-IR neurons was delayed by one week, so that at 30 days, the most caudal motoneurons (which are last to reach their target) were still LNGFR-IR. Comparison of these two time courses gives clues to the kind of signals that may be involved in initiating and/or maintaining the LNGFR response.
1992
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/111989
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 42
  • ???jsp.display-item.citation.isi??? 42
social impact