Transplantation of whole human pancreases or isolated islets into patients with type 1 diabetes mellitus has been severely hampered by the scarcity of cadaveric human donor organs, which mandates search for insulin producing cells/tissue source alternatives. Recent progress in stem cell biology has started looking into functionally competent, insulin-secreting progenitor cells. It had been previously observed that induced expression of the β-cell transcriptional factor of the pancreatic and duodenal homeobox gene1 (PDX1), in human hepatocytes, may activate multiple features of the β-cell phenotype. These "FH-B-TPN" cells were shown to release insulin in response to physiological glucose stimulation both, in vitro and in vivo. However, because FH-B-TPNs lack the expression of a number of β-cell or non β-cell genes, and are associated with low insulin content, we aimed to determine whether these cells, upon physical manipulation and envelopment within "clinical grade" alginate-based microcapsules, would reverse hyperglycemia after graft into diabetic animal models.

Treatment of diabetes mellitus with microencapsulated fetal human liver (FH-B-TPN) engineered cells

MONTANUCCI, Pia;CALAFIORE, Riccardo
2013

Abstract

Transplantation of whole human pancreases or isolated islets into patients with type 1 diabetes mellitus has been severely hampered by the scarcity of cadaveric human donor organs, which mandates search for insulin producing cells/tissue source alternatives. Recent progress in stem cell biology has started looking into functionally competent, insulin-secreting progenitor cells. It had been previously observed that induced expression of the β-cell transcriptional factor of the pancreatic and duodenal homeobox gene1 (PDX1), in human hepatocytes, may activate multiple features of the β-cell phenotype. These "FH-B-TPN" cells were shown to release insulin in response to physiological glucose stimulation both, in vitro and in vivo. However, because FH-B-TPNs lack the expression of a number of β-cell or non β-cell genes, and are associated with low insulin content, we aimed to determine whether these cells, upon physical manipulation and envelopment within "clinical grade" alginate-based microcapsules, would reverse hyperglycemia after graft into diabetic animal models.
2013
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/1154486
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 21
social impact