The importance of simulation models to assess the impacts of droughts and the effects of mitigation options on water supply systems is well known. However a common procedure about the exploitation of model results is not established yet. Vulnerability is used to characterize the performance of the system, and it can be a helpful indicator in the evaluation of the most likely failures. In this paper a water allocation model is applied to the water supply system of the upper Tiber Basin (Central Italy) in which both surface waters (rivers,reservoirs) and ground waters (wells, springs) are exploited to feed mainly irrigation and civil users. Drought vulnerability indices are calculated to analyze the performance of the supply system under different climate and management conditions. Water shortage scenarios are simulated as a progressive reduction of mean precipitation, an increase in its standard deviation or a combination of both. The model shows that the safety of the water supply system mainly relies on the reservoirs and that the foreseen increased exploitation of the springs to replace contaminated wells, could be seriously limited by discharge decrease during fall. The vulnerability reduction obtained by a hypothetical augmentation of the storage capacity through additional small reservoirs was positively tested by the model. In conclusion vulnerability indices and synoptic risk maps demonstrated to be useful tools to analyze the model outputs. They provide easy-to-read scenarios to be used in a decision making framework considering negotiating among the main users.

Vulnerability to drought of a complex water supply system. The upper Tiber basin case study (Central Italy)

CASADEI, Stefano
2013

Abstract

The importance of simulation models to assess the impacts of droughts and the effects of mitigation options on water supply systems is well known. However a common procedure about the exploitation of model results is not established yet. Vulnerability is used to characterize the performance of the system, and it can be a helpful indicator in the evaluation of the most likely failures. In this paper a water allocation model is applied to the water supply system of the upper Tiber Basin (Central Italy) in which both surface waters (rivers,reservoirs) and ground waters (wells, springs) are exploited to feed mainly irrigation and civil users. Drought vulnerability indices are calculated to analyze the performance of the supply system under different climate and management conditions. Water shortage scenarios are simulated as a progressive reduction of mean precipitation, an increase in its standard deviation or a combination of both. The model shows that the safety of the water supply system mainly relies on the reservoirs and that the foreseen increased exploitation of the springs to replace contaminated wells, could be seriously limited by discharge decrease during fall. The vulnerability reduction obtained by a hypothetical augmentation of the storage capacity through additional small reservoirs was positively tested by the model. In conclusion vulnerability indices and synoptic risk maps demonstrated to be useful tools to analyze the model outputs. They provide easy-to-read scenarios to be used in a decision making framework considering negotiating among the main users.
2013
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/1158074
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 21
social impact