New families of complete caps in finite Galois spaces are obtained. For most pairs $(N,p^h)$ with $h>8$ and $N\equiv 0 \pmod 4$, they turn out to be the smallest known complete caps in $AG(N,p^h)$. Our constructions rely on the bicovering properties of certain plane arcs contained in plane cubic curves with a cusp.

Small Complete Caps from Singular Cubics

BARTOLI, DANIELE;GIULIETTI, Massimo;
2014

Abstract

New families of complete caps in finite Galois spaces are obtained. For most pairs $(N,p^h)$ with $h>8$ and $N\equiv 0 \pmod 4$, they turn out to be the smallest known complete caps in $AG(N,p^h)$. Our constructions rely on the bicovering properties of certain plane arcs contained in plane cubic curves with a cusp.
2014
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/1166072
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 14
social impact