Staff members applying Interventional Radiology procedures are exposed to ionizing radiation, which can induce detrimental effects to the human body, and requires an improvement of radiation protection. This paper is focused on the study of the sensor element for a wireless realtime dosimeter to be worn by the medical staff during the interventional radiology procedures, in the framework of the Real-Time Active PIxel Dosimetry (RAPID) INFN project. We characterize a CMOS imager to be used as detection element for the photons scattered by the patient body. The CMOS imager has been first characterized in laboratory using fluorescence X-ray sources, then a PMMA phantom has been used to diffuse the X-ray photons from an angiography system. Different operating conditions have been used to test the detector response in realistic situations, by varying the X-ray tube parameters (continuous/pulsed mode, tube voltage and current, pulse parameters), the sensor parameters (gain, integration time) and the relative distance between sensor and phantom. The sensor response has been compared with measurements performed using passive dosimeters (TLD) and also with a certified beam, in an accredited calibration centre, in order to obtain an absolute calibration. The results are very encouraging, with dose and dose rate measurement uncertainties below the 10% level even for the most demanding Interventional Radiology protocols.

Performance of CMOS imager as sensing element for a Real-time Active Pixel Dosimeter for Interventional Radiology procedures

BISSI, LUCIA;CONTI, ELIA;PLACIDI, Pisana;SCORZONI, Andrea;
2014-01-01

Abstract

Staff members applying Interventional Radiology procedures are exposed to ionizing radiation, which can induce detrimental effects to the human body, and requires an improvement of radiation protection. This paper is focused on the study of the sensor element for a wireless realtime dosimeter to be worn by the medical staff during the interventional radiology procedures, in the framework of the Real-Time Active PIxel Dosimetry (RAPID) INFN project. We characterize a CMOS imager to be used as detection element for the photons scattered by the patient body. The CMOS imager has been first characterized in laboratory using fluorescence X-ray sources, then a PMMA phantom has been used to diffuse the X-ray photons from an angiography system. Different operating conditions have been used to test the detector response in realistic situations, by varying the X-ray tube parameters (continuous/pulsed mode, tube voltage and current, pulse parameters), the sensor parameters (gain, integration time) and the relative distance between sensor and phantom. The sensor response has been compared with measurements performed using passive dosimeters (TLD) and also with a certified beam, in an accredited calibration centre, in order to obtain an absolute calibration. The results are very encouraging, with dose and dose rate measurement uncertainties below the 10% level even for the most demanding Interventional Radiology protocols.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/1169881
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 12
social impact