Nitric oxide (NO) is generated in biological systems and plays an important role as a bioregulatory molecule. Its ability to bind hemoglobin and myoglobin is well known. Moreover, it may lose an electron forming the nitrosyl group involved in the formation of S-nitrosothiols. The main problem in analyzing NO is its extreme reactivity. We have tackled this task by using an amperometric sensor to determine free NO, S-nitrosothiols (such as S-nitrosoglutathione), and nitrite in cell-free systems and murine microglial cell cultures. The determination of nitrosothiols is of biochemical relevance and a difficult task particularly at low concentration values. In this article we describe a new method based on the reductive cleavage of the S-NO bond by cuprous ions followed by a solid-state amperometric determination. The system described by us is sensitive, rapid, does not require previous purification steps, is easy to perform, and is inexpensive. For this reason, we think that it may represent an important analytical improvement. It has been suggested that nitrosothiols may exert biological activity by acting as a reservoir of NO. We tested the production of nitrite and of RSNO in stimulated, cultured murine microglial cells and we have shown that nitrite accumulates in these conditions. GSNO also accumulates, provided that GSH is present in the medium.

A new assay for the determination of low-molecular weight nitrosothiols (nitrosoglutathione and nitrosocysteine), NO and nitrites by using a specific and sensitive solid-state amperometric sensor

PALMERINI, Carlo Alberto;ARIENTI, Giuseppe;PALOMBARI, Roberto
1998

Abstract

Nitric oxide (NO) is generated in biological systems and plays an important role as a bioregulatory molecule. Its ability to bind hemoglobin and myoglobin is well known. Moreover, it may lose an electron forming the nitrosyl group involved in the formation of S-nitrosothiols. The main problem in analyzing NO is its extreme reactivity. We have tackled this task by using an amperometric sensor to determine free NO, S-nitrosothiols (such as S-nitrosoglutathione), and nitrite in cell-free systems and murine microglial cell cultures. The determination of nitrosothiols is of biochemical relevance and a difficult task particularly at low concentration values. In this article we describe a new method based on the reductive cleavage of the S-NO bond by cuprous ions followed by a solid-state amperometric determination. The system described by us is sensitive, rapid, does not require previous purification steps, is easy to perform, and is inexpensive. For this reason, we think that it may represent an important analytical improvement. It has been suggested that nitrosothiols may exert biological activity by acting as a reservoir of NO. We tested the production of nitrite and of RSNO in stimulated, cultured murine microglial cells and we have shown that nitrite accumulates in these conditions. GSNO also accumulates, provided that GSH is present in the medium.
1998
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/117066
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact