Mobile phase variables have a deep influence on the chromatographic behavior with polysaccharide-based chiral stationary phases. Basic additives are generally used tominimize peak broadening arising from unwanted interactions between polar solutes and underivatized silanols. However, basic additives can improve enantioselectivity through disruption of hydrogen bonds and modification of the polymer morphology. Acidic additives are incorporated into the mobile phase during the analysis of acidic compounds as efficiency enhancers. Acidic additives can also improve enantioselectivity by minimizing within the chiral recognition site nonenantioselective retention. Peak shape without acidic additive in the eluent could be severely distorted during the analysis of salified compounds. Concentration and type of alcohol modifier can have an effect on the morphology of the polymer. The different winding of the chiral selector, caused by alcohol modifiers of different size/shape, ultimately results in different stereo environment of the chiral cavities in the polymer chain. Trace amounts of water in normal-phase eluents can affect retention time, tailing, and resolution. Deliberate addition of water to the eluent can improve peak resolution and save analysis time and solvent needs. Immobilized-type polysaccharide-derived chiral stationary phases offer new selectivity profiles and often improved enantioselectivity.

The effect of mobile phase composition in the enantioseparation of pharmaceutically relevant compounds with polysaccharide-based stationary phases

SARDELLA, Roccaldo;IANNI, FEDERICA;MARINOZZI, Maura;NATALINI, Benedetto
2014

Abstract

Mobile phase variables have a deep influence on the chromatographic behavior with polysaccharide-based chiral stationary phases. Basic additives are generally used tominimize peak broadening arising from unwanted interactions between polar solutes and underivatized silanols. However, basic additives can improve enantioselectivity through disruption of hydrogen bonds and modification of the polymer morphology. Acidic additives are incorporated into the mobile phase during the analysis of acidic compounds as efficiency enhancers. Acidic additives can also improve enantioselectivity by minimizing within the chiral recognition site nonenantioselective retention. Peak shape without acidic additive in the eluent could be severely distorted during the analysis of salified compounds. Concentration and type of alcohol modifier can have an effect on the morphology of the polymer. The different winding of the chiral selector, caused by alcohol modifiers of different size/shape, ultimately results in different stereo environment of the chiral cavities in the polymer chain. Trace amounts of water in normal-phase eluents can affect retention time, tailing, and resolution. Deliberate addition of water to the eluent can improve peak resolution and save analysis time and solvent needs. Immobilized-type polysaccharide-derived chiral stationary phases offer new selectivity profiles and often improved enantioselectivity.
2014
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/1173479
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 58
  • ???jsp.display-item.citation.isi??? 54
social impact