The availability of virtual environments on the Web is fostering new applications of virtual reality in several fields, including some therapeutical applications. We present an application of virtual reality applied to the tele-rehabilitation of patients with traumatic brain injury and stroke. Our system, based on X3D and Ajax3D technologies, enhances the possibility of making tele-rehabilitation exercises aimed at the recovery of the neurological disease. The system, called Nu!RehaVR, has been designed to integrate the activity carried out on a tele-rehabilitation system, Nu!Reha (Nu!Reha is a trademark of Pragma Engineering srl. See http://www.nureha.eu) desk, with the activities performed in the virtual worlds, through some rehabilitation exercises in contexts incompatible with the patients’ impairments (not able to move or forced in static positions because of therapies, etc.). The architecture of Nu!RehaVR and the environments associated to two exercises, “Utilising an elevator to reach a given floor” and “Crossing a road using a traffic light”, are illustrated. These exercises can be considered as prototypes of a series of tele-rehabilitation exercises which help to stimulate the patients performing actions in relatively dangerous scenarios. The system is designed to allow the remote monitoring and assessment of the patient’s activities by the medical staff at the hospital using the communication facilities of the tele-rehabilitation system.
Nu!RehaVR: Virtual Reality in Neuro Tele-rehabilitation of Traumatic Brain Injury and Stroke Patients
GERVASI, Osvaldo;
2010
Abstract
The availability of virtual environments on the Web is fostering new applications of virtual reality in several fields, including some therapeutical applications. We present an application of virtual reality applied to the tele-rehabilitation of patients with traumatic brain injury and stroke. Our system, based on X3D and Ajax3D technologies, enhances the possibility of making tele-rehabilitation exercises aimed at the recovery of the neurological disease. The system, called Nu!RehaVR, has been designed to integrate the activity carried out on a tele-rehabilitation system, Nu!Reha (Nu!Reha is a trademark of Pragma Engineering srl. See http://www.nureha.eu) desk, with the activities performed in the virtual worlds, through some rehabilitation exercises in contexts incompatible with the patients’ impairments (not able to move or forced in static positions because of therapies, etc.). The architecture of Nu!RehaVR and the environments associated to two exercises, “Utilising an elevator to reach a given floor” and “Crossing a road using a traffic light”, are illustrated. These exercises can be considered as prototypes of a series of tele-rehabilitation exercises which help to stimulate the patients performing actions in relatively dangerous scenarios. The system is designed to allow the remote monitoring and assessment of the patient’s activities by the medical staff at the hospital using the communication facilities of the tele-rehabilitation system.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.