Recent research developments focused on Climate Change issue aimed at achieving Kyoto targets. In this context, an innovative methodology (officially recognized by WEC in 2009) is proposed to mitigate Global Warming by artificially enhancing earth’s Albedo. Such a methodology allows to quantify the maximum environmental benefit achievable through the installation of Albedo control technologies, as a function of the geographical features of the installation site, local meteorological conditions, radiative properties, tilt angle, and orientation of the surfaces. This benefit is directly quantified in terms of CO2eq offset. Albedo control can be an effective mitigation strategy by means of three synergistic effects: a direct contribution towards Global Warming mitigation produced by an enhanced reflection to the space of the shortwave incident radiation; the indirect contribution from energy saving in buildings with high Albedo envelopes; the indirect contribution from the mitigation of Urban Heat Island phenomenon. Since the effectiveness of Albedo control is mostly relevant in Mediterranean area, for both climate conditions and historical architectural heritage, this work presents procedures and findings of the ABCD project (Albedo, Building green, Control of Global Warming and Desertification) concluded in 2012, funded by the Italian Ministry for the Environment. A description of the analytic model is also presented. The paper focuses on the application of the methodology to a Tunisian factory site, showing that approximately 16,000 tCO2eq could be offset in 30 years with the installation of about 115,000 m2 of high-reflective surfaces. Finally, a tradable value (ETS carbon credits) for Albedo control technologies is proposed.
Albedo control as an effective strategy to tackle Global Warming: A case study
COTANA, Franco;ROSSI, Federico;FILIPPONI, MIRKO;COCCIA, VALENTINA;PISELLO, ANNA LAURA;BONAMENTE, EMANUELE;PETROZZI, ALESSANDRO;CAVALAGLIO, GIANLUCA
2014
Abstract
Recent research developments focused on Climate Change issue aimed at achieving Kyoto targets. In this context, an innovative methodology (officially recognized by WEC in 2009) is proposed to mitigate Global Warming by artificially enhancing earth’s Albedo. Such a methodology allows to quantify the maximum environmental benefit achievable through the installation of Albedo control technologies, as a function of the geographical features of the installation site, local meteorological conditions, radiative properties, tilt angle, and orientation of the surfaces. This benefit is directly quantified in terms of CO2eq offset. Albedo control can be an effective mitigation strategy by means of three synergistic effects: a direct contribution towards Global Warming mitigation produced by an enhanced reflection to the space of the shortwave incident radiation; the indirect contribution from energy saving in buildings with high Albedo envelopes; the indirect contribution from the mitigation of Urban Heat Island phenomenon. Since the effectiveness of Albedo control is mostly relevant in Mediterranean area, for both climate conditions and historical architectural heritage, this work presents procedures and findings of the ABCD project (Albedo, Building green, Control of Global Warming and Desertification) concluded in 2012, funded by the Italian Ministry for the Environment. A description of the analytic model is also presented. The paper focuses on the application of the methodology to a Tunisian factory site, showing that approximately 16,000 tCO2eq could be offset in 30 years with the installation of about 115,000 m2 of high-reflective surfaces. Finally, a tradable value (ETS carbon credits) for Albedo control technologies is proposed.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.