Active control devices, such as active mass dampers, are mainly employed for the reduction of wind-induced vibrations in highrise buildings, with the final aim of satisfying vibration serviceability limit state requirements and of meeting appropriate comfort criteria. When such active devices, normally operating under wind loads associated with short return periods, are subjected to seismic events, they can experience large amplitude vibrations and exceed stroke limits.This may lead to a reduced performance of the control system that can even worsen the performance of the whole structure. In this paper, a nonlinear control strategy based on a modified direct velocity feedback algorithm is proposed for handling stroke limits of an active mass driver (AMD) system. In particular, a suitable nonlinear braking term proportional to the relative AMD velocity is included in the control law in order to slowdown the device in the proximity of the stroke limits. Experimental and numerical free vibration tests are carried out on a scaled-down five-story frame structure equipped with an AMD to demonstrate the effectiveness of the proposed control strategy.

Free Vibration Response of a Frame Structural Model Controlled by a Nonlinear Active Mass Driver System

VENANZI, ILARIA;UBERTINI, Filippo
2014

Abstract

Active control devices, such as active mass dampers, are mainly employed for the reduction of wind-induced vibrations in highrise buildings, with the final aim of satisfying vibration serviceability limit state requirements and of meeting appropriate comfort criteria. When such active devices, normally operating under wind loads associated with short return periods, are subjected to seismic events, they can experience large amplitude vibrations and exceed stroke limits.This may lead to a reduced performance of the control system that can even worsen the performance of the whole structure. In this paper, a nonlinear control strategy based on a modified direct velocity feedback algorithm is proposed for handling stroke limits of an active mass driver (AMD) system. In particular, a suitable nonlinear braking term proportional to the relative AMD velocity is included in the control law in order to slowdown the device in the proximity of the stroke limits. Experimental and numerical free vibration tests are carried out on a scaled-down five-story frame structure equipped with an AMD to demonstrate the effectiveness of the proposed control strategy.
2014
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/1210677
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? ND
social impact