Fuel injectors often experience cavitation due to regions of extremely low pressure. In this work, a cavitation modeling method is implemented in the CONVERGE computational fluid dynamics (CFD) code in order to model the flow in fuel injectors. The CONVERGE code includes a Cartesian mesh based flow solver. In this solver, a volume of fluid (VOF) method is used to simulate the multiphase flow. The cavitation model is based on a flash-boiling method with rapid heat transfer between the liquid and vapor phases. In this method, a homogeneous relaxation model is used to describe the rate at which the instantaneous quality, the mass fraction of vapor in a two-phase mixture, will tend towards its equilibrium value. The model is first validated with the nozzle flow case of Winklhofer by comparing the mass flow rate with experimentally measured values at different outlet pressures. The cavitation contour shape is also compared with the experimental observations. Flow in the Engine Combustion Network Spray-A nozzle configuration is simulated. The mesh dependency is also studied in this work followed by validation against discharge coefficient data. Finally, calculations of a five-hole injector, including moving needle effects, are compared to experimental measurements.

Validation of a Three-Dimensional Internal Nozzle Flow Model Including Automatic Mesh Generation and Cavitation Effects

BATTISTONI, MICHELE;
2014

Abstract

Fuel injectors often experience cavitation due to regions of extremely low pressure. In this work, a cavitation modeling method is implemented in the CONVERGE computational fluid dynamics (CFD) code in order to model the flow in fuel injectors. The CONVERGE code includes a Cartesian mesh based flow solver. In this solver, a volume of fluid (VOF) method is used to simulate the multiphase flow. The cavitation model is based on a flash-boiling method with rapid heat transfer between the liquid and vapor phases. In this method, a homogeneous relaxation model is used to describe the rate at which the instantaneous quality, the mass fraction of vapor in a two-phase mixture, will tend towards its equilibrium value. The model is first validated with the nozzle flow case of Winklhofer by comparing the mass flow rate with experimentally measured values at different outlet pressures. The cavitation contour shape is also compared with the experimental observations. Flow in the Engine Combustion Network Spray-A nozzle configuration is simulated. The mesh dependency is also studied in this work followed by validation against discharge coefficient data. Finally, calculations of a five-hole injector, including moving needle effects, are compared to experimental measurements.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/1213906
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 41
  • ???jsp.display-item.citation.isi??? 31
social impact