PURPOSE OF REVIEW: Type 1 and type 2 diabetes mellitus represent a widespread metabolic disorder, related to autoimmune β-cell destruction and insulin resistance, leading to β-cell dysfunction, respectively, that are associated with severe chronic complications with irreversible multiorgan morphological and functional damage. Conventional treatment, based on exogenous insulin or oral agents may control and delay but not prevent the disease complications, which has lead, so far, to a steady increase in mortality and morbidity. β-Cell substitution cell therapy, initially pursued by whole pancreatic and isolated islet transplantation, with scarce and limited efficiency, now is looking at the new technologies for cell and molecular therapy for diabetes, based on stem cells. RECENT FINDINGS: Pancreatic endocrine cells regeneration might replenish the destroyed β-cell pool, with neogenerated β-cell derived from pancreatic and extrapancreatic stem cell sources. Additionally, embryonic or adult stem cells derived from different cell lineages, and able to differentiate into β-like cell elements, may not only restore the original insulin secretory patterns but also exert the immunomodulatory effects aimed at interrupting the β-cell-directed autoimmune destruction vicious cycle. SUMMARY: These new strategies may, one day, provide for the final cure of diabetes mellitus.

Stem cells for pancreatic β-cell replacement in diabetes mellitus

CALAFIORE, Riccardo;MONTANUCCI, Pia;
2014

Abstract

PURPOSE OF REVIEW: Type 1 and type 2 diabetes mellitus represent a widespread metabolic disorder, related to autoimmune β-cell destruction and insulin resistance, leading to β-cell dysfunction, respectively, that are associated with severe chronic complications with irreversible multiorgan morphological and functional damage. Conventional treatment, based on exogenous insulin or oral agents may control and delay but not prevent the disease complications, which has lead, so far, to a steady increase in mortality and morbidity. β-Cell substitution cell therapy, initially pursued by whole pancreatic and isolated islet transplantation, with scarce and limited efficiency, now is looking at the new technologies for cell and molecular therapy for diabetes, based on stem cells. RECENT FINDINGS: Pancreatic endocrine cells regeneration might replenish the destroyed β-cell pool, with neogenerated β-cell derived from pancreatic and extrapancreatic stem cell sources. Additionally, embryonic or adult stem cells derived from different cell lineages, and able to differentiate into β-like cell elements, may not only restore the original insulin secretory patterns but also exert the immunomodulatory effects aimed at interrupting the β-cell-directed autoimmune destruction vicious cycle. SUMMARY: These new strategies may, one day, provide for the final cure of diabetes mellitus.
2014
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/1221313
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 23
  • ???jsp.display-item.citation.isi??? 17
social impact