The self-incompatibility type is of key importance to understanding pollination in orchards, because most olive cultivars are partially self-incompatible and thus require pollinizers to ensure fruit set. The gametophytic model has been advocated to function in the olive, but no allele pair has been attributed to any variety. The GSI model failed in most combinations to explain fruit set. Olive growers must screen experimentally and empirically to look for inter-compatible pair-wise combinations of varieties for optimum pollination. The sporophytic model, with given dominance relationships for six S-alleles matches 98 % of the experimental data of the two sets investigated. We propose a method to analyze data from controlled crosses between olive cultivars applied to two experiments for varieties crossed in a diallel design. Furthermore, the dominance between the S-allele pair allows rational prediction of olive variety self-incompatibility levels. The S-allele pairs were unraveled for more than 60 cultivars. To go further, crosses between reference varieties-those in which the S-allele pair was unraveled-and varieties under experimentation (VarE) with an unknown S-allele pair will enable an increase in knowledge and the choice of the best pollinizers in silico. Nevertheless, we pose outstanding questions in orchards where open-pollination efficiency with varieties harboring the R2R3, R1R3, R1R5, or R3R5 pairs. These S-allele pairs require pollen grains without R2 or R3, R1 or R3, and R3 or R5 determinants. Such pollinizer varieties are not abundant in France and Italy, and this questions whether their spread is sufficient for optimal pollination of main varieties.

The self-incompatibility mating system of the olive (Olea europaea L.) functions with dominance between S-alleles

FARINELLI, Daniela;
2014

Abstract

The self-incompatibility type is of key importance to understanding pollination in orchards, because most olive cultivars are partially self-incompatible and thus require pollinizers to ensure fruit set. The gametophytic model has been advocated to function in the olive, but no allele pair has been attributed to any variety. The GSI model failed in most combinations to explain fruit set. Olive growers must screen experimentally and empirically to look for inter-compatible pair-wise combinations of varieties for optimum pollination. The sporophytic model, with given dominance relationships for six S-alleles matches 98 % of the experimental data of the two sets investigated. We propose a method to analyze data from controlled crosses between olive cultivars applied to two experiments for varieties crossed in a diallel design. Furthermore, the dominance between the S-allele pair allows rational prediction of olive variety self-incompatibility levels. The S-allele pairs were unraveled for more than 60 cultivars. To go further, crosses between reference varieties-those in which the S-allele pair was unraveled-and varieties under experimentation (VarE) with an unknown S-allele pair will enable an increase in knowledge and the choice of the best pollinizers in silico. Nevertheless, we pose outstanding questions in orchards where open-pollination efficiency with varieties harboring the R2R3, R1R3, R1R5, or R3R5 pairs. These S-allele pairs require pollen grains without R2 or R3, R1 or R3, and R3 or R5 determinants. Such pollinizer varieties are not abundant in France and Italy, and this questions whether their spread is sufficient for optimal pollination of main varieties.
2014
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/1221509
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 39
  • ???jsp.display-item.citation.isi??? 37
social impact