A novel thin film sensor consisting of a soft elastomeric capacitor (SEC) for meso-scale monitoring has been developed by the authors. Each SEC transduces surface strain into a measurable change in capacitance. In previous work, the authors have shown that the performance of the SEC compares well with conventional resistive strain gauges, providing a resolution of 25 με using an inexpensive off-the-shelf data acquisition system for capacitance measurements. Here, we further the understanding of the thin film sensor by characterizing its dynamic behavior. The SEC is subjected to dynamic loads in bending mode. The study of Fourier and wavelet transforms indicates that the sensor can be used to identify dynamic inputs. Overall results demonstrate the promising capabilities of the thin film sensor at dynamic monitoring of civil structures.
Dynamic characterization of a soft elastomeric capacitor for structural health monitoring applications
UBERTINI, Filippo
2014
Abstract
A novel thin film sensor consisting of a soft elastomeric capacitor (SEC) for meso-scale monitoring has been developed by the authors. Each SEC transduces surface strain into a measurable change in capacitance. In previous work, the authors have shown that the performance of the SEC compares well with conventional resistive strain gauges, providing a resolution of 25 με using an inexpensive off-the-shelf data acquisition system for capacitance measurements. Here, we further the understanding of the thin film sensor by characterizing its dynamic behavior. The SEC is subjected to dynamic loads in bending mode. The study of Fourier and wavelet transforms indicates that the sensor can be used to identify dynamic inputs. Overall results demonstrate the promising capabilities of the thin film sensor at dynamic monitoring of civil structures.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.