No genes are yet directly implicated in etiology of male infertility. Identification of genes critical at various stages of spermatogenesis is pivotal for the timely diagnostic and treatment of infertility. We previously found that L-GILZ deficiency in a mouse KO model leads to hyperactivation of Ras signaling and increased proliferation in spermatogonia, resulting in male sterility. The possibility to establish culture cell system that maintains spermatogonial cells in vitro allowed us to delivery a recombinant protein TAT-L-GILZ able to restore normal proliferation rate in gilz KO spermatogonia. We also found that N-terminal part of L-GILZ protein is responsible for Ras/L-GILZ protein-to-protein interaction, important for the control of proliferation rate of spermatogonia. Therefore, treatments increasing L-GILZ expression, such as delivering small molecules or peptides that mimic L-GILZ functions, are approaches with great potential of applicability for new therapeutic strategies based on gene/protein delivery to the affected testes.

Recombinant long-Glucocorticoid-induced leucine zipper (L-GILZ) protein restores the control of proliferation in gilz KO spermatogonia

VENANZI, ALESSANDRA;DI SANTE, MOISES;BRUSCOLI, STEFANO;BIAGIOLI, MICHELE;SORCINI, DANIELE;FRAMMARTINO, TIZIANA;BERESHCHENKO, OXANA;RICCARDI, Carlo
2014

Abstract

No genes are yet directly implicated in etiology of male infertility. Identification of genes critical at various stages of spermatogenesis is pivotal for the timely diagnostic and treatment of infertility. We previously found that L-GILZ deficiency in a mouse KO model leads to hyperactivation of Ras signaling and increased proliferation in spermatogonia, resulting in male sterility. The possibility to establish culture cell system that maintains spermatogonial cells in vitro allowed us to delivery a recombinant protein TAT-L-GILZ able to restore normal proliferation rate in gilz KO spermatogonia. We also found that N-terminal part of L-GILZ protein is responsible for Ras/L-GILZ protein-to-protein interaction, important for the control of proliferation rate of spermatogonia. Therefore, treatments increasing L-GILZ expression, such as delivering small molecules or peptides that mimic L-GILZ functions, are approaches with great potential of applicability for new therapeutic strategies based on gene/protein delivery to the affected testes.
2014
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/1234698
Citazioni
  • ???jsp.display-item.citation.pmc??? 7
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 11
social impact