A fusion gene, echinoderm microtubule associated protein like 4 – anaplastic lymphoma kinase (EML4- ALK), with transforming activity has recently been identified in a subset of non-small cell lung cancer (NSCLC), but its pathogenetic, diagnostic, and therapeutic roles remain unclear. Both frequency and type of EML4-ALK transcripts were investigated by reverse transcription PCR in 120 frozen NSCLC specimens from Italy and Spain; non-neoplastic lung tissues taken far from the tumor were used as controls. In cases carrying the fusion transcript, we determined EML4-ALK gene and protein levels using fluorescence in situ hybridization, Western blotting, and immunoprecipitation. We also analyzed ALK protein levels in paraffin samples from 662 NSCLC specimens, including the 120 cases investigated in the molecular studies. EML4-ALK transcripts (variants 1 and 3) were detected in 9 of 120 NSCLC samples but were not specific for NSCLC since they were also found in noncancerous lung tissues taken far from the tumor. Notably, no transcripts were detected in matching tumor samples from these patients. Fluorescence in situ hybridization analysis of cases expressing EML4-ALK transcripts showed that only a minority of cells harbored the EML4-ALK gene. None of these cases was found to express the EML4-ALK protein as examined by immunohistochemistry, Western blotting, and immunoprecipitation. The EML4-ALK transcript cannot be regarded as a specific diagnostic tool for NSCLC. Our results show therefore that the causal role and value of EML4-ALK as a therapeutic target remain to be defined. (Am J Pathol 2009, 174:661–670; DOI: 10.2353/ajpath.2009.080755)

EML4-ALK rearrangement in non-small-cell lung cancer and non-tumor lung tissues.

M. MARTELLI;PETTIROSSI V;SIDONI A.;GAMBACORTA M;RAMIREZ J;FALINI B
2009

Abstract

A fusion gene, echinoderm microtubule associated protein like 4 – anaplastic lymphoma kinase (EML4- ALK), with transforming activity has recently been identified in a subset of non-small cell lung cancer (NSCLC), but its pathogenetic, diagnostic, and therapeutic roles remain unclear. Both frequency and type of EML4-ALK transcripts were investigated by reverse transcription PCR in 120 frozen NSCLC specimens from Italy and Spain; non-neoplastic lung tissues taken far from the tumor were used as controls. In cases carrying the fusion transcript, we determined EML4-ALK gene and protein levels using fluorescence in situ hybridization, Western blotting, and immunoprecipitation. We also analyzed ALK protein levels in paraffin samples from 662 NSCLC specimens, including the 120 cases investigated in the molecular studies. EML4-ALK transcripts (variants 1 and 3) were detected in 9 of 120 NSCLC samples but were not specific for NSCLC since they were also found in noncancerous lung tissues taken far from the tumor. Notably, no transcripts were detected in matching tumor samples from these patients. Fluorescence in situ hybridization analysis of cases expressing EML4-ALK transcripts showed that only a minority of cells harbored the EML4-ALK gene. None of these cases was found to express the EML4-ALK protein as examined by immunohistochemistry, Western blotting, and immunoprecipitation. The EML4-ALK transcript cannot be regarded as a specific diagnostic tool for NSCLC. Our results show therefore that the causal role and value of EML4-ALK as a therapeutic target remain to be defined. (Am J Pathol 2009, 174:661–670; DOI: 10.2353/ajpath.2009.080755)
2009
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/123559
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 297
  • ???jsp.display-item.citation.isi??? 267
social impact